Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Am J Physiol Endocrinol Metab ; 316(5): E782-E793, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30779633

RESUMEN

Bile acids are involved in the emulsification and absorption of dietary fats, as well as acting as signaling molecules. Recently, bile acid signaling through farnesoid X receptor and G protein-coupled bile acid receptor (TGR5) has been reported to elicit changes in not only bile acid synthesis but also metabolic processes, including the alteration of gluconeogenic gene expression and energy expenditure. A role for bile acids in glucose metabolism is also supported by a correlation between changes in the metabolic state of patients (i.e., obesity or postbariatric surgery) and altered serum bile acid levels. However, despite evidence for a role for bile acids during metabolically challenging settings, the direct effect of elevated bile acids on insulin action in the absence of metabolic disease has yet to be investigated. The present study examines the impact of acutely elevated plasma bile acid levels on insulin sensitivity using hyperinsulinemic-euglycemic clamps. In wild-type mice, elevated bile acids impair hepatic insulin sensitivity by blunting the insulin suppression of hepatic glucose production. The impaired hepatic insulin sensitivity could not be attributed to TGR5 signaling, as TGR5 knockout mice exhibited a similar inhibition of insulin suppression of hepatic glucose production. Canonical insulin signaling pathways, such as hepatic PKB (or Akt) activation, were not perturbed in these animals. Interestingly, bile acid infusion directly into the portal vein did not result in an impairment in hepatic insulin sensitivity. Overall, the data indicate that acute increases in circulating bile acids in lean mice impair hepatic insulin sensitivity via an indirect mechanism.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Gluconeogénesis/genética , Resistencia a la Insulina/genética , Hígado/metabolismo , Receptores Acoplados a Proteínas G/genética , Animales , Colagogos y Coleréticos/farmacología , Ácidos Cólicos/farmacología , Ácido Desoxicólico/farmacología , Perfilación de la Expresión Génica , Gluconeogénesis/efectos de los fármacos , Técnica de Clampeo de la Glucosa , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/efectos de los fármacos , Ratones , Ratones Noqueados , Obesidad/metabolismo , Cultivo Primario de Células , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Ácido Taurocólico/farmacología
2.
Am J Physiol Endocrinol Metab ; 316(6): E1012-E1023, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30860883

RESUMEN

Sepsis costs the healthcare system $23 billion annually and has a mortality rate between 10 and 40%. An early indication of sepsis is the onset of hyperglycemia, which is the result of sepsis-induced insulin resistance in skeletal muscle. Previous investigations have focused on events in the myocyte (e.g., insulin signaling and glucose transport and subsequent metabolism) as the causes for this insulin-resistant state. However, the delivery of insulin to the skeletal muscle is also an important determinant of insulin action. Skeletal muscle microvascular blood flow, which delivers the insulin to the muscle, is known to be decreased during sepsis. Here we test whether the reduced capillary blood flow to skeletal muscle belies the sepsis-induced insulin resistance by reducing insulin delivery to the myocyte. We hypothesize that decreased capillary flow and consequent decrease in insulin delivery is an early event that precedes gross cardiovascular alterations seen with sepsis. This hypothesis was examined in mice treated with either lipopolysaccharide (LPS) or polymicrobial sepsis followed by intravital microscopy of the skeletal muscle microcirculation. We calculated insulin delivery to the myocyte using two independent methods and found that LPS and sepsis rapidly reduce insulin delivery to the skeletal muscle by ~50%; this was driven by decreases in capillary flow velocity and the number of perfused capillaries. Furthermore, the changes in skeletal muscle microcirculation occur before changes in both cardiac output and arterial blood pressure. These data suggest that a rapid reduction in skeletal muscle insulin delivery contributes to the induction of insulin resistance during sepsis.


Asunto(s)
Capilares/metabolismo , Hiperglucemia/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Microcirculación , Músculo Esquelético/metabolismo , Sepsis/metabolismo , Animales , Permeabilidad Capilar , Modelos Animales de Enfermedad , Ecocardiografía , Lipopolisacáridos , Ratones , Microvasos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/irrigación sanguínea
3.
J Mol Evol ; 87(4-6): 147-151, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31273433

RESUMEN

Pancreatic islet zinc levels vary widely between species. Very low islet zinc levels in Guinea pigs were thought to be driven by evolution of the INS gene that resulted in the generation of an isoform lacking a histidine at amino acid 10 in the B chain of insulin that is unable to bind zinc. However, we recently showed that the SLC30A8 gene, that encodes the zinc transporter ZnT8, is a pseudogene in Guinea pigs, providing an alternate mechanism to potentially explain the low zinc levels. We show here that the SLC30A8 gene is also inactivated in sheep, cows, chinchillas and naked mole rats but in all four species a histidine is retained at amino acid 10 in the B chain of insulin. Zinc levels are known to be very low in sheep and cow islets. These data suggest that evolution of SLC30A8 rather than INS drives variation in pancreatic islet zinc content in multiple species.


Asunto(s)
Diabetes Mellitus/genética , Evolución Molecular , Islotes Pancreáticos/citología , Transportador 8 de Zinc/metabolismo , Zinc/metabolismo , Animales , Diabetes Mellitus/metabolismo , Predisposición Genética a la Enfermedad , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Islotes Pancreáticos/química , Transportador 8 de Zinc/genética
4.
J Mol Evol ; 86(9): 613-617, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30392157

RESUMEN

In most mammals pancreatic islet beta cells have very high zinc levels that promote the crystallization and storage of insulin. Guinea pigs are unusual amongst mammals in that their islets have very low zinc content. The selectionist theory of insulin evolution proposes that low environmental zinc led to the selection of a mutation in Guinea pig insulin that negated the requirement for zinc binding. In mice deletion of the Slc30a8 gene, that encodes the zinc transporter ZnT8, markedly reduces islet zinc content. We show here that SLC30A8 is a pseudogene in Guinea pigs. We hypothesize that inactivation of the SLC30A8 gene led to low islet zinc content that allowed for the evolution of insulin that no longer bound zinc.


Asunto(s)
Cobayas/genética , Transportador 8 de Zinc/genética , Transportador 8 de Zinc/metabolismo , Animales , Proteínas Portadoras , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Regulación de la Expresión Génica/genética , Predisposición Genética a la Enfermedad/genética , Humanos , Insulina/genética , Insulina/metabolismo , Secreción de Insulina/genética , Ratones , Seudogenes/genética , Homología de Secuencia de Aminoácido , Zinc/metabolismo
5.
J Endocrinol ; 246(2): 189-205, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32485672

RESUMEN

SLC30A8 encodes the zinc transporter ZnT8. SLC30A8 haploinsufficiency protects against type 2 diabetes (T2D), suggesting that ZnT8 inhibitors may prevent T2D. We show here that, while adult chow fed Slc30a8 haploinsufficient and knockout (KO) mice have normal glucose tolerance, they are protected against diet-induced obesity (DIO), resulting in improved glucose tolerance. We hypothesize that this protection against DIO may represent one mechanism whereby SLC30A8 haploinsufficiency protects against T2D in humans and that, while SLC30A8 is predominantly expressed in pancreatic islet beta cells, this may involve a role for ZnT8 in extra-pancreatic tissues. Consistent with this latter concept we show in humans, using electronic health record-derived phenotype analyses, that the 'C' allele of the non-synonymous rs13266634 SNP, which confers a gain of ZnT8 function, is associated not only with increased T2D risk and blood glucose, but also with increased risk for hemolytic anemia and decreased mean corpuscular hemoglobin (MCH). In Slc30a8 KO mice, MCH was unchanged but reticulocytes, platelets and lymphocytes were elevated. Both young and adult Slc30a8 KO mice exhibit a delayed rise in insulin after glucose injection, but only the former exhibit increased basal insulin clearance and impaired glucose tolerance. Young Slc30a8 KO mice also exhibit elevated pancreatic G6pc2 gene expression, potentially mediated by decreased islet zinc levels. These data indicate that the absence of ZnT8 results in a transient impairment in some aspects of metabolism during development. These observations in humans and mice suggest the potential for negative effects associated with T2D prevention using ZnT8 inhibitors.


Asunto(s)
Índices de Eritrocitos/fisiología , Alelos , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Índices de Eritrocitos/genética , Humanos , Insulina/metabolismo , Ratones , Ratones Noqueados , Reticulocitos/metabolismo , Transportador 8 de Zinc/genética , Transportador 8 de Zinc/metabolismo
6.
J Mol Endocrinol ; 64(4): 235-248, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32213654

RESUMEN

The G6PC1, G6PC2 and G6PC3 genes encode distinct glucose-6-phosphatase catalytic subunit (G6PC) isoforms. In mice, germline deletion of G6pc2 lowers fasting blood glucose (FBG) without affecting fasting plasma insulin (FPI) while, in isolated islets, glucose-6-phosphatase activity and glucose cycling are abolished and glucose-stimulated insulin secretion (GSIS) is enhanced at submaximal but not high glucose. These observations are all consistent with a model in which G6PC2 regulates the sensitivity of GSIS to glucose by opposing the action of glucokinase. G6PC2 is highly expressed in human and mouse islet beta cells however, various studies have shown trace G6PC2 expression in multiple tissues raising the possibility that G6PC2 also affects FBG through non-islet cell actions. Using real-time PCR we show here that expression of G6pc1 and/or G6pc3 are much greater than G6pc2 in peripheral tissues, whereas G6pc2 expression is much higher than G6pc3 in both pancreas and islets with G6pc1 expression not detected. In adult mice, beta cell-specific deletion of G6pc2 was sufficient to reduce FBG without changing FPI. In addition, electronic health record-derived phenotype analyses showed no association between G6PC2 expression and phenotypes clearly unrelated to islet function in humans. Finally, we show that germline G6pc2 deletion enhances glycolysis in mouse islets and that glucose cycling can also be detected in human islets. These observations are all consistent with a mechanism by which G6PC2 action in islets is sufficient to regulate the sensitivity of GSIS to glucose and hence influence FBG without affecting FPI.


Asunto(s)
Glucemia/metabolismo , Glucosa-6-Fosfatasa/genética , Células Secretoras de Insulina/metabolismo , Animales , Glucemia/genética , Células Cultivadas , Regulación hacia Abajo/genética , Ayuno/sangre , Eliminación de Gen , Mutación de Línea Germinal , Glucosa-6-Fosfatasa/metabolismo , Humanos , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos/genética
7.
J Mol Endocrinol ; 58(3): 127-139, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28122818

RESUMEN

Genome-wide association study (GWAS) data have linked the G6PC2 gene to variations in fasting blood glucose (FBG). G6PC2 encodes an islet-specific glucose-6-phosphatase catalytic subunit that forms a substrate cycle with the beta cell glucose sensor glucokinase. This cycle modulates the glucose sensitivity of insulin secretion and hence FBG. GWAS data have not linked G6PC2 to variations in body weight but we previously reported that female C57BL/6J G6pc2-knockout (KO) mice were lighter than wild-type littermates on both a chow and high-fat diet. The purpose of this study was to compare the effects of G6pc2 deletion on FBG and body weight in both chow-fed and high-fat-fed mice on two other genetic backgrounds. FBG was reduced in G6pc2 KO mice largely independent of gender, genetic background or diet. In contrast, the effect of G6pc2 deletion on body weight was markedly influenced by these variables. Deletion of G6pc2 conferred a marked protection against diet-induced obesity in male mixed genetic background mice, whereas in 129SvEv mice deletion of G6pc2 had no effect on body weight. G6pc2 deletion also reduced plasma cholesterol levels in a manner dependent on gender, genetic background and diet. An association between G6PC2 and plasma cholesterol was also observed in humans through electronic health record-derived phenotype analyses. These observations suggest that the action of G6PC2 on FBG is largely independent of the influences of environment, modifier genes or epigenetic events, whereas the action of G6PC2 on body weight and cholesterol are influenced by unknown variables.


Asunto(s)
Peso Corporal/genética , Colesterol/sangre , Eliminación de Gen , Estudios de Asociación Genética , Glucosa-6-Fosfatasa/genética , Animales , Glucemia , Dieta Alta en Grasa , Ayuno , Femenino , Expresión Génica , Antecedentes Genéticos , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Insulina/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Páncreas/metabolismo , Polimorfismo de Nucleótido Simple
8.
Endocrinology ; 157(11): 4133-4145, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27653037

RESUMEN

The glucose-6-phosphatase catalytic subunit 2 (G6PC2) gene encodes an islet-specific glucose-6-phosphatase catalytic subunit. G6PC2 forms a substrate cycle with glucokinase that determines the glucose sensitivity of insulin secretion. Consequently, deletion of G6pc2 lowers fasting blood glucose (FBG) without affecting fasting plasma insulin. Although chronic elevation of FBG is detrimental to health, glucocorticoids induce G6PC2 expression, suggesting that G6PC2 evolved to transiently modulate FBG under conditions of glucocorticoid-related stress. We show, using competition and mutagenesis experiments, that the synthetic glucocorticoid dexamethasone (Dex) induces G6PC2 promoter activity through a mechanism involving displacement of the islet-enriched transcription factor MafA by the glucocorticoid receptor. The induction of G6PC2 promoter activity by Dex is modulated by a single nucleotide polymorphism, previously linked to altered FBG in humans, that affects FOXA2 binding. A 5-day repeated injection paradigm was used to examine the chronic effect of Dex on FBG and glucose tolerance in wild-type (WT) and G6pc2 knockout mice. Acute Dex treatment only induces G6pc2 expression in 129SvEv but not C57BL/6J mice, but this chronic treatment induced G6pc2 expression in both. In 6-hour fasted C57BL/6J WT mice, Dex treatment lowered FBG and improved glucose tolerance, with G6pc2 deletion exacerbating the decrease in FBG and enhancing the improvement in glucose tolerance. In contrast, in 24-hour fasted C57BL/6J WT mice, Dex treatment raised FBG but still improved glucose tolerance, with G6pc2 deletion limiting the increase in FBG and enhancing the improvement in glucose tolerance. These observations demonstrate that G6pc2 modulates the complex effects of Dex on both FBG and glucose tolerance.


Asunto(s)
Glucemia/efectos de los fármacos , Dexametasona/farmacología , Glucosa-6-Fosfatasa/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Cricetinae , Ayuno/sangre , Glucosa-6-Fosfatasa/genética , Factores de Transcripción Maf de Gran Tamaño/genética , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Ratas , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
9.
PLoS One ; 11(9): e0162439, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27611587

RESUMEN

Elevated fasting blood glucose (FBG) has been associated with increased risk for development of type 2 diabetes. Single nucleotide polymorphisms (SNPs) in G6PC2 are the most important common determinants of variations in FBG in humans. Studies using G6pc2 knockout mice suggest that G6pc2 regulates the glucose sensitivity of insulin secretion. G6PC2 and the related G6PC1 and G6PC3 genes encode glucose-6-phosphatase catalytic subunits. This study describes a functional analysis of 22 non-synonymous G6PC2 SNPs, that alter amino acids that are conserved in human G6PC1, mouse G6pc1 and mouse G6pc2, with the goal of identifying variants that potentially affect G6PC2 activity/expression. Published data suggest strong conservation of catalytically important amino acids between all four proteins and the related G6PC3 isoform. Because human G6PC2 has very low glucose-6-phosphatase activity we used an indirect approach, examining the effect of these SNPs on mouse G6pc1 activity. Using a novel in situ functional assay for glucose-6-phosphatase activity we demonstrate that the amino acid changes associated with the human G6PC2 rs144254880 (Arg79Gln), rs149663725 (Gly114Arg) and rs2232326 (Ser324Pro) SNPs reduce mouse G6pc1 enzyme activity without affecting protein expression. The Arg79Gln variant alters an amino acid mutation of which, in G6PC1, has previously been shown to cause glycogen storage disease type 1a. We also demonstrate that the rs368382511 (Gly8Glu), rs138726309 (His177Tyr), rs2232323 (Tyr207Ser) rs374055555 (Arg293Trp), rs2232326 (Ser324Pro), rs137857125 (Pro313Leu) and rs2232327 (Pro340Leu) SNPs confer decreased G6PC2 protein expression. In summary, these studies identify multiple G6PC2 variants that have the potential to be associated with altered FBG in humans.


Asunto(s)
Sustitución de Aminoácidos , Expresión Génica , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Mutación , Secuencia de Aminoácidos , Animales , Glucemia , Línea Celular , Codón , Secuencia Conservada , Activación Enzimática , Ayuno/sangre , Glucosa-6-Fosfatasa/química , Humanos , Ratones , Polimorfismo de Nucleótido Simple , Ratas
10.
Endocrinology ; 157(8): 3002-8, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27300767

RESUMEN

The glucose-6-phosphatase catalytic 2 (G6PC2) gene is expressed specifically in pancreatic islet beta cells. Genome-wide association studies have shown that single nucleotide polymorphisms in the G6PC2 gene are associated with variations in fasting blood glucose (FBG) but not fasting plasma insulin. Molecular analyses examining the functional effects of these single nucleotide polymorphisms demonstrate that elevated G6PC2 expression is associated with elevated FBG. Studies in mice complement these genome-wide association data and show that deletion of the G6pc2 gene lowers FBG without affecting fasting plasma insulin. This suggests that, together with glucokinase, G6PC2 forms a substrate cycle that determines the glucose sensitivity of insulin secretion. Because genome-wide association studies and mouse studies demonstrate that elevated G6PC2 expression raises FBG and because chronically elevated FBG is detrimental to human health, increasing the risk of type 2 diabetes, it is unclear why G6PC2 evolved. We show here that the synthetic glucocorticoid dexamethasone strongly induces human G6PC2 promoter activity and endogenous G6PC2 expression in isolated human islets. Acute treatment with dexamethasone selectively induces endogenous G6pc2 expression in 129SvEv but not C57BL/6J mouse pancreas and isolated islets. The difference is due to a single nucleotide polymorphism in the C57BL/6J G6pc2 promoter that abolishes glucocorticoid receptor binding. In 6-hour fasted, nonstressed 129SvEv mice, deletion of G6pc2 lowers FBG. In response to the stress of repeated physical restraint, which is associated with elevated plasma glucocorticoid levels, G6pc2 gene expression is induced and the difference in FBG between wild-type and knockout mice is enhanced. These data suggest that G6PC2 may have evolved to modulate FBG in response to stress.


Asunto(s)
Glucemia/metabolismo , Ayuno/sangre , Glucosa-6-Fosfatasa/fisiología , Estrés Fisiológico , Animales , Células Cultivadas , Dexametasona/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa-6-Fosfatasa/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética
11.
Endocrinology ; 157(12): 4534-4541, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27754787

RESUMEN

Polymorphisms in the SLC30A8 gene, which encodes the ZnT8 zinc transporter, are associated with altered susceptibility to type 2 diabetes (T2D), and SLC30A8 haploinsufficiency is protective against the development of T2D in obese humans. SLC30A8 is predominantly expressed in pancreatic islet ß-cells, but surprisingly, multiple knockout mouse studies have shown little effect of Slc30a8 deletion on glucose tolerance or glucose-stimulated insulin secretion (GSIS). Multiple other Slc30a isoforms are expressed at low levels in pancreatic islets. We hypothesized that functional compensation by the Slc30a7 isoform, which encodes ZnT7, limits the impact of Slc30a8 deletion on islet function. We therefore analyzed the effect of Slc30a7 deletion alone or in combination with Slc30a8 on in vivo glucose metabolism and GSIS in isolated islets. Deletion of Slc30a7 alone had complex effects in vivo, impairing glucose tolerance and reducing the glucose-stimulated increase in plasma insulin levels, hepatic glycogen levels, and pancreatic insulin content. Slc30a7 deletion also affected islet morphology and increased the ratio of islet α- to ß-cells. However, deletion of Slc30a7 alone had no effect on GSIS in isolated islets, whereas combined deletion of Slc30a7 and Slc30a8 abolished GSIS. These data demonstrate that the function of ZnT8 in islets can be unmasked by removal of ZnT7 and imply that ZnT8 may affect T2D susceptibility through actions in other tissues where it is expressed at low levels rather than through effects on pancreatic islet function.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Glucosa/farmacología , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Animales , Peso Corporal/genética , Proteínas de Transporte de Catión/genética , Femenino , Células Secretoras de Glucagón/metabolismo , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Factores Sexuales , Transportador 8 de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA