Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Gen Comp Endocrinol ; 250: 46-53, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28577898

RESUMEN

Although corticosterone (CORT) regulates many physiological mechanisms, the associations between CORT levels, immunocompetence, energy expenditures and overwinter survival have not been examined. Here, we studied individual variation in CORT level extracted from hair, immunocompetence quantified as the neutrophil-to-lymphocyte (N/L) ratio, total white blood cells (WBC) and natural antibody levels (NAbs), along with the resting (RMR) and peak metabolic rates (PMR) and mortality during three consecutive winter seasons in a natural population of the root vole, Microtus oeconomus. In early winter, hair CORT level was strongly positively associated with body mass and inversely related to voles' ability to survive. We suggest that the observed association between hair CORT level and body mass may be the key component of the physiological nexus driving the survivorship of individual rodents. Additionally, hair CORT was a significant predictor of variation of the whole body RMR, which in turn enhanced overwinter survival in the studied population. On the other hand, hair CORT was not significantly associated with changes in the blood indices. Interestingly, the analysis carried out only during the first year of study (2008), which was characterized by a high population density and prevalence of infestation with a blood protozoan, Babesia spp., showed that the intensity of the infestation was negatively correlated with both the hair CORT level and the N/L ratio. Because CORT is often considered immunosuppressive, we expected a positive association between its level and the N/L ratio. However, hair CORT did not significantly correlate with the N/L ratio. We suggest that the lack of an association between hair CORT and the N/L ratio resulted from a small inter-individual variation in the N/L ratio in 2008, which was much higher and less variable than in the other years of our study.


Asunto(s)
Arvicolinae/inmunología , Arvicolinae/metabolismo , Metabolismo Basal , Corticosterona/metabolismo , Cabello/metabolismo , Inmunocompetencia , Estaciones del Año , Animales , Peso Corporal , Corticosterona/sangre , Femenino , Masculino , Probabilidad , Análisis de Supervivencia
2.
J Exp Biol ; 219(Pt 4): 501-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26889000

RESUMEN

Plant-herbivore interactions are hypothesized to drive vole population cycles through the grazing-induced production of phytoliths in leaves. Phytoliths act as mechanical defences because they deter herbivory and lower growth rates in mammals. However, how phytoliths impair herbivore performance is still unknown. Here, we tested whether the amount of phytoliths changes tooth wear patterns. If confirmed, abrasion from phytoliths could play a role in population crashes. We applied dental microwear texture analysis (DMTA) to laboratory and wild voles. Lab voles were fed two pelleted diets with differing amounts of silicon, which produced similar dental textures. This was most probably due to the loss of food mechanical properties through pelletization and/or the small difference in silicon concentration between diets. Wild voles were trapped in Poland during spring and summer, and every year across a population cycle. In spring, voles feed on silica-rich monocotyledons, while in the summer they also include silica-depleted dicotyledons. This was reflected in the results; the amount of silica therefore leaves a traceable record in the dental microwear texture of voles. Furthermore, voles from different phases of population cycles have different microwear textures. We tentatively propose that these differences result from grazing-induced phytolith concentrations. We hypothesize that the high amount of phytoliths in response to intense grazing in peak years may result in malocclusion and other dental abnormalities, which would explain how these silicon-based plant defences help provoke population crashes. DMTA could then be used to reconstruct vole population dynamics using teeth from pellets or palaeontological material.


Asunto(s)
Arvicolinae/fisiología , Plantas/química , Dióxido de Silicio/química , Desgaste de los Dientes , Animales , Arvicolinae/anatomía & histología , Dieta/veterinaria , Herbivoria , Hojas de la Planta/química , Polonia , Estaciones del Año , Dióxido de Silicio/administración & dosificación
3.
J Exp Biol ; 218(Pt 2): 309-15, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25524975

RESUMEN

Recent studies on grasses and sedges suggest that the induction of a mechanism reducing digestibility of plant tissues in response to herbivore damage may drive rodent population cycles. This defence mechanism seems to rely on the abrasive properties of ingested plants. However, the underlying mechanism has not been demonstrated in small wild herbivores. Therefore, we carried out an experiment in which we determined the joint effect of abrasive sedge components on the histological structure of small intestine as well as resting metabolic rate (RMR) of the root vole (Microtus oeconomus). Histological examination revealed that voles fed with a sedge-dominated diet had shorter villi composed from narrower enterocytes in duodenum, jejunum and ileum. Reduction in the height of villi decreased along the small intestine. Activity of the mucus secretion increased along the small intestine and was significantly higher in the ileum. The intestinal abrasion exceeded the compensatory capabilities of voles, which responded to a sedge-dominated diet by a reduction of body mass and a concomitant decrease in whole body RMR. These results explain the inverse association between body mass and the probability of winter survival observed in voles inhabiting homogenous sedge wetlands.


Asunto(s)
Arvicolinae/fisiología , Metabolismo Basal , Mucosa Intestinal/fisiología , Intestino Delgado/anatomía & histología , Animales , Peso Corporal , Carex (Planta)/efectos adversos , Dieta/efectos adversos , Enterocitos , Mucosa Intestinal/metabolismo , Intestino Delgado/fisiología
4.
J Exp Biol ; 217(Pt 22): 3964-7, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25278468

RESUMEN

Experimental manipulation of energy expenditure has long been recognized as an effective means for identifying causative effects and avoiding confounded interpretations arising from spurious correlations. This approach has been successfully applied mainly to studies on birds, particularly on reproducing adults, whereas manipulations in mammals have proved more problematic. Here, we tested the hypothesis that shaving off 50% of the dorsal pelage should effectively increase energy expenditure in wild root voles (Microtus oeconomus) in their natural environment. We measured daily energy expenditure (DEE), using doubly labelled water in shaved and unshaved voles at the beginning of winter. The difference in DEE (corrected for body mass and year effects) between experimental and control group fluctuated from 11.5% to 17.3%. Probability of recapture over the 3 day DEE assay was strongly dependent on body mass, but did not differ between shaved and unshaved animals; however, a prevalence of larger (heavier) shaved individuals was observed. Shaved animals lost more weight between the first and second trapping. Shaving therefore appears to be an effective method of increasing the cost of total DEE in wild endotherms in their natural environment.


Asunto(s)
Arvicolinae/fisiología , Peso Corporal/fisiología , Metabolismo Energético/fisiología , Cabello , Animales , Regulación de la Temperatura Corporal/fisiología , Óxido de Deuterio , Isótopos de Oxígeno
5.
Biol Lett ; 10(12): 20140684, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25519753

RESUMEN

Despite its presumed significance, the association between immune defence, energy expenditures and overwinter survival is rarely studied. We analysed individual variation in immunocompetence quantified as neutrophil-to-lymphocyte ratio (N/L), total white blood cells (WBC) and natural antibody levels, along with resting (RMR) and peak metabolic rates (PMR) and mortality during three consecutive winter seasons in a natural population of the root vole, Microtus oeconomus. In early winter, WBC count was negatively correlated with RMR, whereas N/L ratio was negatively correlated with swim-elicited PMR. We suggest that while the first correlation reflected the trade-off between energy allocation in immunocompetence and other metabolically demanding processes, the latter correlation stemmed from stress-induced immunosuppression elicited by the necessity to cope with swimming in frequently flooded habitat. In addition, the analysis carried out during the first year of study characterized by a high population density and prevalence of infestation with a blood parasite--Babesia spp., showed that its intensity was inversely correlated with the N/L ratio. In summary, our results suggest that elevated N/L ratio increases the winter survival of free-ranging rodents by increasing their ability to cope with parasitic infections.


Asunto(s)
Arvicolinae/fisiología , Metabolismo Energético , Inmunocompetencia , Estaciones del Año , Sobrevida , Animales , Arvicolinae/inmunología , Arvicolinae/metabolismo
6.
J Exp Biol ; 216(Pt 4): 578-86, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23125341

RESUMEN

The small size and elongate shape of weasels (Mustela nivalis) probably evolved to facilitate movement within the burrow systems of prey species, but result in high energy costs of thermoregulation. In this study we measured metabolic rates of weasels during voluntary locomotion to determine whether energy costs of transport are also high in these unusually shaped mammals. In addition, we measured the lower and upper limits of aerobic metabolism [resting metabolic rate (RMR) and maximal oxygen consumption in forced exercise (V(O(2),max))], and used the wide size range of adult weasels to investigate the intraspecific scaling of energy metabolism. Finally, we combined measurements of energy use during running with radiotracking and doubly labeled water data from free-living weasels to estimate the importance of locomotor costs in daily energy budgets. We found that weasels have higher than predicted costs of running, largely because of an elevated intercept of the speed versus metabolic rate relationship. Running costs were strongly affected by the approximately fourfold range of body size in adults. As reported in other studies, the RMR of weasels was considerably higher than predicted from body mass. Maximal oxygen consumption was also higher than predicted, but factorial aerobic scope (V(O(2),max)/RMR) was within the normal range for mammals. Intraspecific mass scaling of RMR and V(O(2),max) did not differ from typical interspecific mammalian allometries. In wild weasels, locomotor costs comprised roughly 5% of daily energy expenditures; this low value was primarily a result of short travel times and distances.


Asunto(s)
Metabolismo Energético/fisiología , Mustelidae/fisiología , Carrera/fisiología , Animales , Peso Corporal/fisiología , Femenino , Masculino , Consumo de Oxígeno/fisiología , Análisis de Regresión , Descanso/fisiología , Telemetría , Factores de Tiempo
7.
J Exp Biol ; 216(Pt 24): 4712-21, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24031059

RESUMEN

We compiled published values of mammalian maximum oxygen consumption during exercise ( ) and supplemented these data with new measurements of for the largest rodent (capybara), 20 species of smaller-bodied rodents, two species of weasels and one small marsupial. Many of the new data were obtained with running-wheel respirometers instead of the treadmill systems used in most previous measurements of mammalian . We used both conventional and phylogenetically informed allometric regression models to analyze of 77 'species' (including subspecies or separate populations within species) in relation to body size, phylogeny, diet and measurement method. Both body mass and allometrically mass-corrected showed highly significant phylogenetic signals (i.e. related species tended to resemble each other). The Akaike information criterion corrected for sample size was used to compare 27 candidate models predicting (all of which included body mass). In addition to mass, the two best-fitting models (cumulative Akaike weight=0.93) included dummy variables coding for three species previously shown to have high (pronghorn, horse and a bat), and incorporated a transformation of the phylogenetic branch lengths under an Ornstein-Uhlenbeck model of residual variation (thus indicating phylogenetic signal in the residuals). We found no statistical difference between wheel- and treadmill-elicited values, and diet had no predictive ability for . Averaged across all models, the allometric scaling exponent was 0.839, with 95% confidence limits of 0.795 and 0.883, which does not provide support for a scaling exponent of 0.67, 0.75 or unity.


Asunto(s)
Mamíferos/fisiología , Consumo de Oxígeno , Filogenia , Condicionamiento Físico Animal , Animales , Tamaño Corporal , Dieta , Mamíferos/genética , Modelos Biológicos , Modelos Estadísticos , Especificidad de la Especie
8.
Mol Ecol ; 21(5): 1283-93, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22289133

RESUMEN

Body mass (BM) and resting metabolic rates (RMR) are two inexorably linked traits strongly related to mammalian life histories. Yet, there have been no studies attempting to estimate heritable variation and covariation of BM and RMR in natural populations. We used a marker-based approach to construct a pedigree and then the 'animal model' to estimate narrow sense heritability (h(2) ) of these traits in a free-living population of weasels Mustela nivalis--a small carnivore characterised by a wide range of BM and extremely high RMR. The most important factors affecting BM of weasels were sex and habitat type, whereas RMR was significantly affected only by seasonal variation of this trait. All environmental factors had only small effect on estimates of additive genetic variance of both BM and RMR. The amount of additive genetic variance associated with BM and estimates of heritability were high and significant in males (h(2) = 0.61), but low and not significant in females (h(2 ) =( ) 0.32), probably due to small sample size for the latter sex. The results from the two-trait model revealed significant phenotypic (r(P) = 0.62) and genetic correlation (r(A) = 0.89) between BM and whole body RMR. The estimate of heritability of whole body RMR (0.54) and BM corrected RMR (0.45) were lower than estimates of heritability for BM. Both phenotypic and genetic correlations between BM corrected RMR and BM had negative signals (r(P) = -0.42 and r(A) = -0.58). Our results indicate that total energy expenditures of individuals can quickly evolve through concerted changes in BM and RMR.


Asunto(s)
Metabolismo Basal/genética , Tamaño Corporal/genética , Ambiente , Mustelidae/genética , Animales , Femenino , Técnicas de Genotipaje , Masculino , Repeticiones de Microsatélite , Modelos Biológicos , Linaje , Polonia , Carácter Cuantitativo Heredable , Estaciones del Año
9.
Sci Rep ; 12(1): 2138, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136106

RESUMEN

The ability of animals to produce endogenous heat provides a buffer against environmental changes but also incurs high energetic costs. Especially small endothermic mammals have high energy demands. Some temperate-zone species (heterotherms) regularly use torpor, which slows down their entire metabolism but also potentially delays reproduction, to compensate for this. We used a unique experimental approach to test the consequences of extended low and high ambient temperatures on the trade-off in energy allocation to body mass maintenance, thermoregulation effort and seasonal sexual maturation in temperate zone male bats. We showed that long exposure to low ambient temperature shifts energy allocation away from sexual maturation to self-maintenance and results in a delay of sperm maturation by as much as an entire month. This effect was partially buffered by higher body mass. Heavier bats were able to afford more intensive thermoregulation and consequently speed up maturation. Interestingly, bats at constant high temperatures avoided deep torpor and matured faster than those at low temperatures, but sperm production was also slower than under natural conditions. Our results show that not only low, but also constant high ambient temperatures are detrimental during seasonal sexual maturation and the trade-off between investing into self-maintenance and fitness is a finely tuned compromise.


Asunto(s)
Regulación de la Temperatura Corporal , Quirópteros/fisiología , Maduración Sexual , Espermatozoides/crecimiento & desarrollo , Temperatura , Animales , Masculino
10.
J Anim Ecol ; 80(1): 259-69, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21039480

RESUMEN

1. The absolute energy needs of small animals are generally lower than those of larger animals. This should drive higher mortality of larger animals, when the environmental conditions deteriorate. However, demonstration of the effect of energy constraints on survivals proved difficult, because the range of body mass within species is generally too small to produce enough variation for studying such an effect. An opportunity for an intraspecific study comes from weasels inhabiting the Bialowieza Forest (north-eastern Poland), which are characterized by a threefold variation in body mass. 2. We assumed that in summer larger weasel males are favoured by sexual selection, because they are more successful when competing for mates. We then tested whether they suffer higher mortality in winter, because they have difficulty finding sufficient food to satisfy their energy needs and/or because the additional foraging time would result in increased exposure to predation. 3. We measured daily energy expenditures (DEE) of overwintering weasel males using the doubly labelled water (DLW) technique. We constructed an energetic model predicting how individuals of different size are able to balance their energy budgets feeding on large and small prey while minimizing time spent hunting, thereby reducing their own exposure to predation. 4. The range of body mass in overwintering weasels predicted by our model corresponded very well with the distribution of prey body mass in three different habitats within our study area. Larger individuals were able to compensate for higher food requirements by using habitats with larger prey species than those available to smaller male weasels. This effectively offset the expected negative association between body mass and winter survival predicted from considerations of energy balance. 5. Our results show how energetic constraints affect body mass and spatial segregation of a species at the intra-specific level not only across large geographical ranges, but also within a relatively small area.


Asunto(s)
Metabolismo Energético/fisiología , Mustelidae/metabolismo , Animales , Composición Corporal , Peso Corporal , Ecosistema , Femenino , Masculino , Modelos Biológicos , Conducta Predatoria , Roedores , Estaciones del Año , Caracteres Sexuales
11.
Curr Zool ; 67(2): 131-145, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33854531

RESUMEN

Small mammals that are specialists in homeothermic thermoregulation reduce their self-maintenance costs of normothermy to survive the winter. By contrast, heterothermic ones that are considered generalists in thermoregulation can lower energy expenditure by entering torpor. It is well known that different species vary the use of their strategies to cope with harsh winters in temperate zones; however, little is still known about the intraspecific variation within populations and the associated external and internal factors. We hypothesized that yellow-necked mice Apodemus flavicollis decrease their resting metabolic rate (RMR) from autumn to winter, and then increase it during spring. However, since the alternative for seasonal reduction of RMR could be the development of heterothermy, we also considered the use of this strategy. We measured body mass (m b), RMR, and body temperature (T b) of mice during 2 consecutive years. In the 1st year, mice decreased whole animal RMR in winter, but did not do so in the 2nd year. All mice entered torpor during the 2nd winter, whereas only a few did so during the first one. Mice showed a continuous increase of m b, which was steepest during the 2nd year. The relationship between RMR and m b varied among seasons and years most likely due to different mouse development stages. The m b gain at the individual level was correlated positively with RMR and heterothermy. This indicates that high metabolism in winter supports the growth of smaller animals, which use torpor as a compensatory mechanism. Isotope composition of mice hair suggests that in the 1st year they fed mainly on seeds, while in the 2nd, they likely consumed significant amounts of less digestible herbs. The study suggests that the use of specialist or generalist thermoregulatory strategies can differ with environmental variation and associated differences in developmental processes.

12.
Physiol Biochem Zool ; 91(5): 1057-1067, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30141728

RESUMEN

The evolution of endothermic thermoregulation is rooted in the processes involving high metabolism, which allows the maintenance of high and stable body temperatures (Tb). In turn, selection for high endothermic metabolism correlates with increased size of metabolically active organs and thus with high basal metabolic rate (BMR). Endothermic animals are characterized by an MR several times that of similar-sized ectotherms. However, many small mammals are temporally heterothermic and are able to temporally decrease Tb and MR by entering daily torpor or hibernation. Both BMR and minimum MR during torpor (TMRmin) likely result from oxidative respiration in mitochondria of the same tissues. It should be expected that these two MRs are positively correlated, suggesting that the evolution of endothermy and higher BMR set the limit for the ability to reduce MR while entering torpor. Using published data for 96 mammal species, we tested the hypothesis that, among heterothermic mammals, the processes leading to the evolution of higher BMR limit the ability to downregulate metabolism during torpor. We found that body mass (mb)-adjusted BMR was positively correlated with mb- and Tb-adjusted TMRmin, in a phylogenetically corrected analysis. Phylogenetic path modeling indicated that the mechanisms underlying the evolutionary increase of BMR in endotherms most likely constrain their ability to reduce MR during torpor. Given that heterothermy is considered an ancestral state in mammals, these results suggest an increase in BMR during the evolution of endothermy in homeothermic animals, which leads to the loss of their ability to enter torpor.


Asunto(s)
Metabolismo Basal/fisiología , Mamíferos/fisiología , Letargo/fisiología , Animales , Índice de Masa Corporal , Regulación hacia Abajo , Modelos Biológicos
13.
Physiol Biochem Zool ; 86(6): 791-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24241075

RESUMEN

Metabolic rates and body mass of mammals vary seasonally along with ambient temperatures and food availability. At the population level, seasonal changes in metabolic rate and mass can be due to selective mortality or emigration of individuals whose metabolic rate or mass differs from the average for the population. Alternatively, the metabolic rates of individuals can change seasonally, such that the population average increases or decreases due to shifts in the physiology of the overall population. The latter implies that individuals respond in a similar manner to changing seasonal conditions. We studied seasonal changes in body mass (BM) and resting metabolic rate (RMR) in free-ranging male weasels (Mustela nivalis) to test the consistency of these traits in individuals caught in different seasons of the year. At the population level, BM was remarkably stable across the seasons (F(3, 124)=0.25, P=0.9). In contrast, BM- corrected RMR varied significantly between seasons and was the lowest in winter (F(3, 135)=9.13, P<0.0001). We demonstrated that individual weasels were consistent in how their BM and RMR deviated from the seasonal means for the population (intraclass correlation, τ=0.78 and 0.33, respectively). This variation among individuals explained ~76% and 27% of the total variation of BM and basal metabolic rate, respectively. Hence, the relatively constant BM at the population level across seasons is due to a relative constancy of BM in individuals. Our study is one of relatively few research projects that demonstrate that seasonal changes in RMR observed in the wild population are in part due to a consistency in individual responses to changing environmental conditions.


Asunto(s)
Metabolismo Basal/fisiología , Peso Corporal/fisiología , Metabolismo Energético/fisiología , Mustelidae/fisiología , Animales , Masculino , Polonia , Reproducibilidad de los Resultados , Estaciones del Año
14.
PLoS One ; 8(8): e72646, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23977336

RESUMEN

The heat dissipation limit (HDL) hypothesis suggests that the capacity of endotherms to dissipate body heat may impose constraints on their energy expenditure. Specifically, this hypothesis predicts that endotherms should avoid the detrimental consequences of hyperthermia by lowering their energy expenditure and reducing their activity in response to high ambient temperatures (T(a)). We used an extensive data set on the daily energy expenditure (DEE, n = 27) and the daily activity time (AT, n = 48) of male weasels (Mustela nivalis) during the spring and summer breeding season to test these predictions. We found that T(a) was related in a "hump-shaped" (i.e. convex) manner to AT, DEE, resting metabolic rate (RMR) and metabolic scope (the ratio of DEE to RMR). These results support the HDL hypothesis because in response to warm Tas male weasels reduced their AT, DEE, and RMR. Although the activity and energy expenditure of large endotherms are most likely to be constrained in response to warm Tas because they are less able to dissipate heat, our results suggest that small endotherms may also experience constraints consistent with the HDL hypothesis.


Asunto(s)
Metabolismo Energético/fisiología , Actividad Motora , Mustelidae/fisiología , Temperatura , Animales , Peso Corporal , Ritmo Circadiano/fisiología , Ecosistema , Modelos Lineales , Masculino , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA