Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Am Chem Soc ; 142(5): 2413-2428, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31881154

RESUMEN

A series of 4,4'-dimethyl-2,2'-bipyridyl ruthenium complexes with carbonyl ligands were prepared and studied using a combination of electrochemical and spectroscopic methods with infrared detection to provide structural information on reaction intermediates in the photochemical reduction of CO2 to formate in acetonitrile (CH3CN). An unsaturated 5-coordinate intermediate was characterized, and the hydride-transfer step to CO2 from a singly reduced metal-hydride complex was observed with kinetic resolution. While triethanolamine (TEOA) was expected to act as a proton acceptor to ensure the sacrificial behavior of 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole as an electron donor, time-resolved infrared measurements revealed that about 90% of the photogenerated one-electron reduced complexes undergo unproductive back electron transfer. Furthermore, TEOA showed the ability to capture CO2 from CH3CN solutions to form a zwitterionic alkylcarbonate adduct and was actively engaged in key catalytic steps such as metal-hydride formation, hydride transfer to CO2 to form the bound formate intermediate, and dissociation of formate ion product. Collectively, the data provide an overview of the transient intermediates of Ru(II) carbonyl complexes and emphasize the importance of considering the participation of TEOA when investigating and proposing catalytic pathways.

2.
Chemistry ; 24(4): 906-917, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29149546

RESUMEN

The synthesis and characterization of a series of donor-π-acceptor-π-donor (D-A-D) curcuminoid molecules is presented herein that incorporates π-extended aryl and electron-donating amino terminal functionalization. Computational evaluation shows these molecules possess quadrupolar character with the lowest energy transitions displaying high molar extinction coefficients with broad tunability through manipulation of terminal donating groups. Consistent with their quadrupolar nature, these molecules show varying degrees of solvatochromic behavior in both their absorption and emission spectra, which has been analyzed by Lippert-Mataga and Kamlet-Taft analysis. Photophysical and photoacoustic (PA) properties of these molecules have been investigated by the optical photoacoustic z-scan (OPAZ) method. Selected curcuminoid molecules display nonlinear behavior at a high laser fluence through excited state absorption that translates to the production of an enhanced photoacoustic emission. A relative comparison of "molar PA emission" is also presented with the crystal violet linear optical absorbing/linear PA emitting system being utilized as a standard reference material for OPAZ experiments. Furthermore, PA tomography experiments are presented to illustrate the enhanced PA contrast obtainable via an excited state absorption.

3.
J Org Chem ; 83(16): 9497-9503, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29896959

RESUMEN

C-Unsubstituted 1,2-diazetidines, a rarely studied type of four-membered heterocyclic compounds, were synthesized through an operationally simple intermolecular vicinal disubstitution reaction. 1,2-Diazetidine derivatives bearing various N-arylsulfonyl groups were readily accessed and studied by experimental and computed Raman spectra. The ring-opening reaction of the diazetidine was explored and resulted in the identification of a selective N-N bond cleavage with thiols as nucleophiles, which stereoselectively produced a new class of N-sulfenylimine derivatives with C-aminomethyl groups.

4.
J Am Chem Soc ; 139(43): 15347-15355, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28942650

RESUMEN

A critical step in creating an artificial photosynthesis system for energy storage is designing catalysts that can thrive in an assembled device. Single-site catalysts have an advantage over bimolecular catalysts because they remain effective when immobilized. Hybrid water oxidation catalysts described here, combining the features of single-site bis-phosphonate catalysts and fast bimolecular bis-carboxylate catalysts, have reached turnover frequencies over 100 s-1, faster than both related catalysts under identical conditions. The new [(bpHc)Ru(L)2] (bpH2cH = 2,2'-bipyridine-6-phosphonic acid-6'-carboxylic acid, L = 4-picoline or isoquinoline) catalysts proceed through a single-site water nucleophilic attack pathway. The pendant phosphonate base mediates O-O bond formation via intramolecular atom-proton transfer with a calculated barrier of only 9.1 kcal/mol. Additionally, the labile carboxylate group allows water to bind early in the catalytic cycle, allowing intramolecular proton-coupled electron transfer to lower the potentials for oxidation steps and catalysis. That a single-site catalyst can be this fast lends credence to the possibility that the oxygen evolving complex adopts a similar mechanism.

5.
Faraday Discuss ; 198: 301-317, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28280836

RESUMEN

We prepared electron-rich derivatives of [Ir(tpy)(ppy)Cl]+ with modification of the bidentate (ppy) or tridentate (tpy) ligands in an attempt to increase the reactivity for CO2 reduction and the ability to transfer hydrides (hydricity). Density functional theory (DFT) calculations reveal that complexes with dimethyl-substituted ppy have similar hydricities to the non-substituted parent complex, and photocatalytic CO2 reduction studies show selective CO formation. Substitution of tpy by bis(benzimidazole)-phenyl or -pyridine (L3 and L4, respectively) induces changes in the physical properties that are much more pronounced than from the addition of methyl groups to ppy. Theoretical data predict [Ir(L3)(ppy)(H)] as the strongest hydride donor among complexes studied in this work, but [Ir(L3)(ppy)(NCCH3)]+ cannot be reduced photochemically because the excited state reduction potential is only 0.52 V due to the negative ground state potential of -1.91 V. The excited state of [Ir(L4)(ppy)(NCCH3)]2+ is the strongest oxidant among complexes studied in this work and the singly-reduced species is formed readily upon photolysis in the presence of tertiary amines. Both [Ir(L3)(ppy)(NCCH3)]+ and [Ir(L4)(ppy)(NCCH3)]2+ exhibit electrocatalytic current for CO2 reduction. While a significantly greater overpotential is needed for the L3 complex, a small amount of formate (5-10%) generation in addition to CO was observed as predicted by the DFT calculations.

6.
J Org Chem ; 81(8): 3313-20, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27003109

RESUMEN

A series of 2,4-disubstituted 1H-1-benzazepines, 2a-d, 4, and 6, were studied, varying both the substituents at C2 and C4 and at the nitrogen atom. The conformational inversion (ring-flip) and nitrogen-atom inversion (N-inversion) energetics were studied by variable-temperature NMR spectroscopy and computations. The steric bulk of the nitrogen-atom substituent was found to affect both the conformation of the azepine ring and the geometry around the nitrogen atom. Also affected were the Gibbs free energy barriers for the ring-flip and the N-inversion. When the nitrogen-atom substituent was alkyl, as in 2a-c, the geometry of the nitrogen atom was nearly planar and the azepine ring was highly puckered; the result was a relatively high-energy barrier to ring-flip and a low barrier to N-inversion. Conversely, when the nitrogen-atom substituent was a hydrogen atom, as in 2d, 4, and 6, the nitrogen atom was significantly pyramidalized and the azepine ring was less puckered; the result here was a relatively high energy barrier to N-inversion and a low barrier to ring-flip. In these N-unsubstituted compounds, it was found computationally that the lowest-energy stereodynamic process was ring-flip coupled with N-inversion, as N-inversion alone had a much higher energy barrier.

7.
Inorg Chem ; 55(22): 12024-12035, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-27802025

RESUMEN

In order to gain a deeper mechanistic understanding of water oxidation by [(bda)Ru(L)2] catalysts (bdaH2 = [2,2'-bipyridine]-6,6'-dicarboxylic acid; L = pyridine-type ligand), a series of modified catalysts with one and two trifluoromethyl groups in the 4 position of the bda2- ligand was synthesized and studied using stopped-flow kinetics. The additional -CF3 groups increased the oxidation potentials for the catalysts and enhanced the rate of electrocatalytic water oxidation at low pH. Stopped-flow measurements of cerium(IV)-driven water oxidation at pH 1 revealed two distinct kinetic regimes depending on catalyst concentration. At relatively high catalyst concentration (ca. ≥10-4 M), the rate-determining step (RDS) was a proton-coupled oxidation of the catalyst by cerium(IV) with direct kinetic isotope effects (KIE > 1). At low catalyst concentration (ca. ≤10-6 M), the RDS was a bimolecular step with kH/kD ≈ 0.8. The results support a catalytic mechanism involving coupling of two catalyst molecules. The rate constants for both RDSs were determined for all six catalysts studied. The presence of -CF3 groups had inverse effects on the two steps, with the oxidation step being fastest for the unsubstituted complexes and the bimolecular step being faster for the most electron-deficient complexes. Though the axial ligands studied here did not significantly affect the oxidation potentials of the catalysts, the nature of the ligand was found to be important not only in the bimolecular step but also in facilitating electron transfer from the metal center to the sacrificial oxidant.

8.
Inorg Chem ; 55(9): 4582-94, 2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-27077460

RESUMEN

Ruthenium complexes with proton-responsive ligands [Ru(tpy)(nDHBP)(NCCH3)](CF3SO3)2 (tpy = 2,2':6',2″-terpyridine; nDHBP = n,n'-dihydroxy-2,2'-bipyridine, n = 4 or 6) were examined for reductive chemistry and as catalysts for CO2 reduction. Electrochemical reduction of [Ru(tpy)(nDHBP)(NCCH3)](2+) generates deprotonated species through interligand electron transfer in which the initially formed tpy radical anion reacts with a proton source to produce singly and doubly deprotonated complexes that are identical to those obtained by base titration. A third reduction (i.e., reduction of [Ru(tpy)(nDHBP-2H(+))](0)) triggers catalysis of CO2 reduction; however, the catalytic efficiency is strikingly lower than that of unsubstituted [Ru(tpy)(bpy)(NCCH3)](2+) (bpy = 2,2'-bipyridine). Cyclic voltammetry, bulk electrolysis, and spectroelectrochemical infrared experiments suggest the reactivity of CO2 at both the Ru center and the deprotonated quinone-type ligand. The Ru carbonyl formed by the intermediacy of a metallocarboxylic acid is stable against reduction, and mass spectrometry analysis of this product indicates the presence of two carbonates formed by the reaction of DHBP-2H(+) with CO2.

9.
Inorg Chem ; 55(5): 2460-72, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26886292

RESUMEN

Electronic and photophysical characterization is presented for a series of bis-heteroleptic [Ru(bpy)2(R-CAQN)](+) complexes where CAQN is a bidentate N-(carboxyaryl)amidoquinolate ligand and the aryl substituent R = p-tolyl, p-fluorobenzene, p-trifluoromethylbenzene, 3,5-bis(trifluoromethyl)benzene, or 4-methoxy-2,3,5,6-tetrafluorobenzene. Characterized by a strong noninnocent Ru(dπ)-CAQN(π) bonding interaction, density functional theory (DFT) analysis is used to estimate the contribution of both atomic Ru(dπ) and ligand CAQN(π) manifolds to the frontier molecular orbitals of these complexes. UV-vis absorption and emission studies are presented where the noninnocent Ru(dπ)-CAQN(π) bonding scheme plays a major role in defining complex electronic and photophysical properties. Oxidation potentials are tuned over a range of 0.92 V with respect to the [Ru(bpy)3](2+) reference system, hereafter referred to as 1(2+), by varying the degree of R-CAQN fluorination while maintaining consistently strong and panchromatic visible absorption properties. Electron paramagnetic resonance (EPR) spectroscopy is employed to experimentally map delocalization of the unpaired electron/electron-hole within the delocalized Ru(dπ)-CAQN(π) singly occupied valence molecular orbital of the one-electron oxidized complexes. EPR data is complemented experimentally by UV-vis-NIR spectroelectrochemistry, and computationally by molecular orbital Mulliken contributions and spin-density analysis. It is ultimately demonstrated that the CAQN ligand framework provides a simple yet broad synthetic platform in the design of redox-active transition metal chromophores with a range of electronic and spectroscopic characteristics hinting at the diversity and potential of these complexes toward photochemical and catalytic applications.

10.
Angew Chem Int Ed Engl ; 55(28): 8067-71, 2016 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-27166584

RESUMEN

We describe herein the synthesis and characterization of ruthenium complexes with multifunctional bipyridyl diphosphonate ligands as well as initial water oxidation studies. In these complexes, the phosphonate groups provide redox-potential leveling through charge compensation and σ donation to allow facile access to high oxidation states. These complexes display unique pH-dependent electrochemistry associated with deprotonation of the phosphonic acid groups. The position of these groups allows them to shuttle protons in and out of the catalytic site and reduce activation barriers. A mechanism for water oxidation by these catalysts is proposed on the basis of experimental results and DFT calculations. The unprecedented attack of water at a neutral six-coordinate [Ru(IV) ] center to yield an anionic seven-coordinate [Ru(IV) -OH](-) intermediate is one of the key steps of a single-site mechanism in which all species are anionic or neutral. These complexes are among the fastest single-site catalysts reported to date.

11.
Angew Chem Int Ed Engl ; 54(47): 14128-32, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26427767

RESUMEN

We prepared two geometric isomers of [Ir(tpy)(ppy)H](+), previously proposed as a key intermediate in the photochemical reduction of CO2 to CO, and characterized their notably different ground- and excited-state interactions with CO2 and their hydricities using experimental and computational methods. Only one isomer, C-trans-[Ir(tpy)(ppy)H](+), reacts with CO2 to generate the formato complex in the ground state, consistent with its calculated hydricity. Under photocatalytic conditions in CH3CN/TEOA, a common reactive C-trans-[Ir(tpy)(ppy)](0) species, irrespective of the starting isomer or monodentate ligand (such as hydride or Cl), reacts with CO2 and produces CO with the same catalytic efficiency.

12.
J Org Chem ; 78(16): 8028-36, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23848431

RESUMEN

Certain 2-aryl-3H-1-benzazepines are conformationally mobile on the NMR time scale. Variable-temperature NMR experiments bolstered by calculations indicate that alkylation of the azepine ring will slow the interconversion of conformational enantiomers markedly. DFT studies show that, while the substitution patterns of the aryl groups at C2 and C4 do not exert large effects on the rate of enantiomerization, alkylation at C5 slows it appreciably. Alkylation at C3 slows enantiomerization even more, possibly to the extent that isolation of atropisomers might be attempted.


Asunto(s)
Benzazepinas/química , Teoría Cuántica , Espectroscopía de Resonancia Magnética , Conformación Molecular , Estereoisomerismo
13.
Inorg Chem ; 52(21): 12576-86, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-24131038

RESUMEN

New water-soluble pentamethylcyclopentadienyl cobalt(III) complexes with proton-responsive 4,4'- and 6,6'-dihydroxy-2,2'-bipyridine (4DHBP and 6DHBP, respectively) ligands have been prepared and were characterized by X-ray crystallography, UV-vis and NMR spectroscopy, and mass spectrometry. These cobalt(III) complexes with proton-responsive ligands predominantly exist in their deprotonated [Cp*Co(DHBP-2H(+))(OH2)] forms with stronger electron-donating properties in neutral and basic solutions, and are active catalysts for CO2 hydrogenation in aqueous bicarbonate media at moderate temperature under a total 4-5 MPa (CO2:H2 1:1) pressure. The cobalt complexes containing 4DHBP ligands ([1-OH2](2+) and [1-Cl](+), where 1 = Cp*Co(4DHBP)) display better thermal stability and exhibit notable catalytic activity for CO2 hydrogenation to formate in contrast to the catalytically inactive nonsubstituted bpy analogues [3-OH2](2+) (3 = Cp*Co(bpy)). While the catalyst Cp*Ir(6DHBP)(OH2)(2+) in which the pendent oxyanion lowers the barrier for H2 heterolysis via proton transfer through a hydrogen-bonding network involving a water molecule is remarkably effective (ACS Catal. 2013, 3, 856-860), cobalt complexes containing 6DHBP ligands ([2-OH2](2+) and [2-Cl](+), 2 = Cp*Co(6DHBP)) exhibit lower TOF and TON for CO2 hydrogenation than those with 4DHBP. The low activity is attributed to thermal instability during the hydrogenation of CO2 as corroborated by DFT calculations.


Asunto(s)
Dióxido de Carbono/química , Cobalto/química , Compuestos Organometálicos/química , Catálisis , Técnicas de Química Sintética , Cristalografía por Rayos X , Formiatos , Hidrogenación , Ligandos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Compuestos Organometálicos/síntesis química , Protones , Soluciones , Agua/química
14.
Inorg Chem ; 52(15): 8845-50, 2013 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-23837911

RESUMEN

The catalytic water oxidation mechanism proposed for many single-site ruthenium complexes proceeds via the nucleophilic attack of a water molecule on the Ru(V)═O species. In contrast, Ru(II) complexes containing 4-t-butyl-2,6-di-1',8'-(naphthyrid-2'-yl)-pyridine (and its bisbenzo-derivative), an equatorial water, and two axial 4-picolines follow the thermodynamically more favorable "direct pathway" via [Ru(IV)═O](2+), which avoids the higher oxidation state [Ru(V)═O](3+) in neutral and basic media. Our experimental and theoretical results that focus on the pH-dependent onset catalytic potentials indicative of a PCET driven low-energy pathway for the formation of products with an O-O bond (such as [Ru(III)-OOH](2+) and [Ru(IV)-OO](2+)) at an applied potential below the Ru(V)═O/Ru(IV)═O couple clearly support such a mechanism. However, in the cases of [Ru(tpy)(bpy)(OH2)](2+) and [Ru(tpy)(bpm)(OH2)](2+), the formation of the Ru(V)═O species appears to be required before O-O bond formation. The complexes under discussion provide a unique functional model for water oxidation that proceeds by four consecutive PCET steps in neutral and alkaline media.

15.
Acta Crystallogr C ; 68(Pt 4): o160-3, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22476148

RESUMEN

6-Bromoindigo (MBI) [systematic name: 6-bromo-2-(3-oxo-2,3-dihydro-1H-indol-2-ylidene)-2,3-dihydro-1H-indol-3-one], C(16)H(9)BrN(2)O(2), crystallizes with one disordered molecule in the asymmetric unit about a pseudo-inversion center, as shown by the Br-atom disorder of 0.682 (3):0.318 (3). The 18 indigo ring atoms occupy two sites which are displaced by 0.34 Šfrom each other as a result of this packing disorder. This difference in occupancy factors results in each atom in the reported model used to represent the two disordered sites being 0.08 Šfrom the higher-occupancy site and 0.26 Šfrom the lower-occupancy site. Thus, as a result of the disorder, the C-Br bond lengths in the disordered components are 0.08 and 0.26 Šshorter than those found in 6,6'-dibromoindigo (DBI) [Süsse & Krampe (1979). Naturwissenschaften, 66, 110], although the distances within the indigo ring are similar to those found in DBI. The crystals are also twinned by merohedry. Stacking interactions and hydrogen bonds are similar to those found in the structures of indigo and DBI. In MBI, an interaction of the type C-Br...C replaces the C-Br...Br interactions found in DBI. The interactions in MBI were calculated quantum mechanically using density functional theory and the quantum theory of atoms in molecules.


Asunto(s)
Colorantes/química , Indoles/química , Enlace de Hidrógeno , Modelos Moleculares , Estructura Molecular
16.
Angew Chem Int Ed Engl ; 50(52): 12600-4, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22057468

RESUMEN

Basic difference: The importance of a pendent base in promoting proton-coupled electron-transfer reactions with low activation barriers has been discussed for H(+) reduction or H(2) oxidation in acetonitrile. Investigation of the interaction between a base positioned in the second coordination sphere of a complex and a water ligand in water oxidation reactions using geometric isomers of [Ru(tpy)(pynap)(OH(2))](2+) (see picture) gave intriguing results.


Asunto(s)
Compuestos Organometálicos/química , Protones , Rutenio/química , Agua/química , Catálisis , Concentración de Iones de Hidrógeno , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Estereoisomerismo
17.
Inorg Chem ; 49(20): 9380-91, 2010 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-20857940

RESUMEN

The purpose of this work was to explore the possibility of using iron(II) hydrides in CO(2) reduction and to compare their reactivity to that of their ruthenium analogues. Fe(bpy)(P(OEt)(3))(3)H(+) and Ru(bpy)(P(OEt)(3))(3)H(+) do not react with CO(2) in acetonitrile, but the one-electron-reduction products of Ru(bpy)(P(OEt)(3))(3)H(+) and Ru(bpy)(2)(P(OEt)(3))H(+) and the two-electron-reduction product of Fe(bpy)(P(OEt)(3))(3)H(+) do. Ru(bpy)(2)(P(OEt)(3))H(+) also reacts slowly with CO(2) to give a formate complex [as reported previously by Albertin et al. (Inorg. Chem. 2004, 43, 1336)] with a second-order rate constant of ∼4 × 10(-3) M(-1) s(-1) in methanol. The structures for the hydride complexes [Fe(bpy)(P(OEt)(3))(3)H](+) and [Ru(bpy)(2)(P(OEt)(3))H](+) and for the (η(5)-Cp)bis- and -tris-PTA complexes (PTA = 1,3,5-triaza-7-phosphatricyclo[3.3.1.13.7]decane) of iron(II) are reported. These and the CpFe(CO)(bpy)(+) and Fe(II)PNNP compounds have been subjected to electrochemical and UV-vis spectroscopic characterization. Fe(bpy)(P(OEt)(3))(3)H(+) exhibits a quasi-reversible oxidation at +0.42 V vs AgCl/Ag in acetonitrile; Ru(bpy)(P(OEt)(3))(3)H(+) and Ru(bpy)(2)(P(OEt)(3))H(+) are oxidized irreversibly at +0.90 and +0.55 V, respectively, vs AgCl/Ag. The reduction site for Fe(bpy)(P(OEt)(3))(3)H(+) and Fe(bpy)(P(OEt)(3))(3)(CH(3)CN)(2+) appears to be the metal and gives rise to a two-electron process. The bpy-centered reductions are negatively shifted in the ruthenium(II) hydride complexes, compared to the acetonitrile complexes. The results of attempts to prepare other iron(II) hydrides are summarized.

18.
Inorg Chem ; 49(3): 860-9, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20038122

RESUMEN

The synthesis of complexes [Ru(II)(trpy)(2-imino-4-tert-butylquinone)(Cl)](+) and [Ru(II)(trpy)(NIL)(OAc)](+) (where trpy = 2:2',6':2''-terpyridyl, NIL = 2-imino-4-tert-butylquinone, 2-imino-4-methylquinone, 2-iminoquinone, 2-imino-4-chloroquinone, 2-imino-5-chloroquinone, 2-imino-4,6-di-tert-butyl-N-phenyl-quinone, 2-imino-4,6-di-tert-butyl-N-(2'-trifluoromethylphenyl)-quinone) is reported. The oxidation states of these complexes, as well as the previously reported [Ru(III)(trpy)(2-iminosemiquinone)(Cl)](+) complex, are investigated by spectroscopic, electrochemical and theoretical methods resulting in the latter complex being reassigned as [Ru(II)(trpy)(2-iminoquinone)(Cl)](+). Evidence for the presence of two structural isomers was found for all complexes, and crystal structures for both isomers of the [Ru(II)(trpy)(2-imino-4-tert-butylquinone)(Cl)]ClO(4) complex are reported, as well as for the cis isomer of [Ru(II)(trpy)(2-imino-4,6-di-tert-butyl-N-phenyl-quinone)(OAc)]PF(6). Redox control is also demonstrated based on the Hammett parameters of the substituents on the 2-iminoquinone ligand.


Asunto(s)
Simulación por Computador , Modelos Químicos , Compuestos Organometálicos/química , Quinonas/química , Rutenio/química , Cristalografía por Rayos X , Modelos Moleculares , Conformación Molecular , Compuestos Organometálicos/síntesis química , Oxidación-Reducción , Estereoisomerismo
19.
J Phys Chem B ; 119(24): 7457-66, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-25697424

RESUMEN

Proton responsive ligands offer control of catalytic reactions through modulation of pH-dependent properties, second coordination sphere stabilization of transition states, or by providing a local proton source for multiproton, multielectron reactions. Two fac-[Re(I)(α-diimine)(CO)3Cl] complexes with α-diimine = 4,4'- (or 6,6'-) dihydroxy-2,2'-bipyridine (4DHBP and 6DHBP) have been prepared and analyzed as electrocatalysts for the reduction of carbon dioxide. Consecutive electrochemical reduction of these complexes yields species identical to those obtained by chemical deprotonation. An energetically feasible mechanism for reductive deprotonation is proposed in which the bpy anion is doubly protonated followed by loss of H2 and 2H(+). Cyclic voltammetry reveals a two-electron, three-wave system owing to competing EEC and ECE pathways. The chemical step of the ECE pathway might be attributed to the reductive deprotonation but cannot be distinguished from chloride dissociation. The rate obtained by digital simulation is approximately 8 s(-1). Under CO2, these competing reactions generate a two-slope catalytic waveform with onset potential of -1.65 V vs Ag/AgCl. Reduction of CO2 to CO by the [Re(I)(4DHBP-2H(+))(CO)3](-) suggests the interaction of CO2 with the deprotonated species or a third reduction followed by catalysis. Conversely, the reduced form of [Re(6DHBP)(CO)3Cl] converts CO2 to CO with a single turnover.

20.
Chem Commun (Camb) ; 51(19): 4105-8, 2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-25670391

RESUMEN

We describe here a combined solution-surface-DFT calculations study for complexes of the type [Ru(bda)(L)2] including X-ray structure of intermediates and their reactivity, as well as pH-dependent electrochemistry and spectroelectrochemistry. These studies shed light on the mechanism of water oxidation by [Ru(bda)(L)2], revealing key features unavailable from solution studies with sacrificial oxidants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA