Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 95(4)2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33219167

RESUMEN

Among seven coronaviruses that infect humans, three (severe acute respiratory syndrome coronavirus [SARS-CoV], Middle East respiratory syndrome coronavirus [MERS-CoV], and the newly identified severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) are associated with a severe, life-threatening respiratory infection and multiorgan failure. We previously proposed that the cationically modified chitosan N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC) is a potent inhibitor of human coronavirus NL63 (HCoV-NL63). Next, we demonstrated the broad-spectrum antiviral activity of the compound, as it inhibited all low-pathogenicity human coronaviruses (HCoV-NL63, HCoV-229E, HCoV-OC43, and HCoV-HKU1). Here, using in vitro and ex vivo models of human airway epithelia, we show that HTCC effectively blocks MERS-CoV and SARS-CoV-2 infection. We also confirmed the mechanism of action for these two viruses, showing that the polymer blocks the virus entry into the host cell by interaction with the S protein.IMPORTANCE The beginning of 2020 brought us information about the novel coronavirus emerging in China. Rapid research resulted in the characterization of the pathogen, which appeared to be a member of the SARS-like cluster, commonly seen in bats. Despite the global and local efforts, the virus escaped the health care measures and rapidly spread in China and later globally, officially causing a pandemic and global crisis in March 2020. At present, different scenarios are being written to contain the virus, but the development of novel anticoronavirals for all highly pathogenic coronaviruses remains the major challenge. Here, we describe the antiviral activity of an HTCC compound, previously developed by us, which may be used as a potential inhibitor of currently circulating highly pathogenic coronaviruses-SARS-CoV-2 and MERS-CoV.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Quitosano/análogos & derivados , Infecciones por Coronavirus/tratamiento farmacológico , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Compuestos de Amonio Cuaternario/farmacología , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , COVID-19/epidemiología , COVID-19/virología , Quitosano/farmacología , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Pandemias , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/virología , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos
2.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36012551

RESUMEN

Recombinant human bone morphogenetic protein-2 (rhBMP-2) plays a key role in the stem cell response, not only via its influence on osteogenesis, but also on cellular adhesion, migration, and proliferation. However, when applied clinically, its supra-physiological levels cause many adverse effects. Therefore, there is a need to concomitantly retain the biological activity of BMP-2 and reduce its doses. Currently, the most promising strategies involve site-specific and site-directed immobilization of rhBMP-2. This work investigated the covalent and electrostatic binding of rhBMP-2 to ultrathin-multilayers with chondroitin sulfate (CS) or diazoresin (DR) as the topmost layer. Angle-resolved X-ray photoelectron spectroscopy was used to study the exposed chemical groups. The rhBMP-2 binding efficiency and protein state were studied with time-of-flight secondary ion mass spectrometry. Quartz crystal microbalance, atomic force microscopy, and enzyme-linked immunosorbent assay were used to analyze protein-substrate interactions. The effect of the topmost layer was tested on initial cell adhesion and short-term osteogenesis marker expression. The results show the highest expression of selected osteomarkers in cells cultured on the DR-ended layer, while the cellular flattening was rather poor compared to the CS-ended system. rhBMP-2 adhesion was observed only on negatively charged layers. Cell flattening became more prominent in the presence of the protein, even though the osteogenic gene expression decreased.


Asunto(s)
Proteína Morfogenética Ósea 2 , Células Madre Mesenquimatosas , Proteína Morfogenética Ósea 2/metabolismo , Adhesión Celular , Diferenciación Celular , Células Cultivadas , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacología , Humanos , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , Células Madre/metabolismo , Factor de Crecimiento Transformador beta/farmacología
3.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34681808

RESUMEN

Uncontrolled bleeding after enoxaparin (ENX) is rare but may be life-threatening. The only registered antidote for ENX, protamine sulfate (PS), has 60% efficacy and can cause severe adverse side effects. We developed a diblock copolymer, heparin-binding copolymer (HBC), that reverses intravenously administered heparins. Here, we focused on the HBC inhibitory activity against subcutaneously administered ENX in healthy mice. BALB/c mice were subcutaneously injected with ENX at the dose of 5 mg/kg. After 110 min, vehicle, HBC (6.25 and 12.5 mg/kg), or PS (5 and 10 mg/kg) were administered into the tail vein. The blood was collected after 3, 10, 60, 120, 360, and 600 min after vehicle, HBC, or PS administration. The activities of antifactors Xa and IIa and biochemical parameters were measured. The main organs were collected for histological analysis. HBC at the lower dose reversed the effect of ENX on antifactor Xa activity for 10 min after antidote administration, whereas at the higher dose, HBC reversed the effect on antifactor Xa activity throughout the course of the experiment. Both doses of HBC completely reversed the effect of ENX on antifactor IIa activity. PS did not reverse antifactor Xa activity and partially reversed antifactor IIa activity. HBC modulated biochemical parameters. Histopathological analysis showed changes in the liver, lungs, and spleen of mice treated with HBC and in the lungs and heart of mice treated with PS. HBC administered in an appropriate dose might be an efficient substitute for PS to reverse significantly increased anticoagulant activity that may be connected with major bleeding in patients receiving ENX subcutaneously.


Asunto(s)
Enoxaparina/efectos adversos , Hemorragia/tratamiento farmacológico , Protaminas/uso terapéutico , Animales , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Pruebas de Coagulación Sanguínea , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/tratamiento farmacológico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Enoxaparina/administración & dosificación , Femenino , Hemorragia/inducido químicamente , Hemorragia/prevención & control , Heparina/metabolismo , Antagonistas de Heparina/metabolismo , Antagonistas de Heparina/farmacología , Antagonistas de Heparina/uso terapéutico , Infusiones Subcutáneas , Masculino , Ratones , Ratones Endogámicos BALB C , Polímeros/química , Polímeros/metabolismo , Polímeros/farmacología , Polímeros/uso terapéutico , Protaminas/metabolismo , Protaminas/farmacología , Unión Proteica
4.
J Pharmacol Exp Ther ; 373(1): 51-61, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31937564

RESUMEN

Bleeding resulting from the application of low-molecular-weight heparins (LMWHs) may be treated with protamine sulfate, but this treatment lacks efficiency; its action against antifactor Xa activity is limited to ∼60%. Moreover, protamine sulfate can cause life-threatening hypersensitivity reactions. We developed diblock heparin-binding copolymer (HBC), which can neutralize the anticoagulant activity of parenteral anticoagulants. In the present study, we explored the safety profile of HBC and its potential to reverse enoxaparin, nadroparin, dalteparin, and tinzaparin in human plasma and at in vivo conditions. HBC-LMWH complexes were characterized using zeta potential, isothermal titration calorimetry, and dynamic light scattering. The rat cardiomyocytes and human endothelial cells were used for the assessment of in vitro toxicity. Male Wistar rats were observed for up to 4 days after HBC administration for clinical evaluation, gross necropsy, and biochemistry and histopathological analysis. Rats were treated with LMWHs alone or followed by short-time intravenous infusion of HBC, and bleeding time and antifactor Xa activity were measured. HBC completely reversed antifactor Xa activity prolonged in vitro by all LMWHs with an optimal weight ratio of 2.5:1. The complexes of HBC-LMWHs were below 5 µm. We observed no effects on the viability of cardiovascular cells treated with HBC at concentrations up to 0.05 mg/ml. Single doses up to 20 mg/kg of HBC were well tolerated by rats. HBC completely reversed the effects of LMWHs on bleeding time and antifactor Xa activity in vivo after 20 minutes and retained ∼80% and ∼60% of reversal activity after 1 and 2 hours, respectively. Well-documented efficacy and safety of HBC both in vitro and in vivo make this polymer a promising candidate for LMWHs reversal. SIGNIFICANCE STATEMENT: Over the last decade, there has been significant progress in developing antidotes for the reversal of anticoagulants. Until now, there has been no effective and safe treatment for patients with severe bleeding under low-molecular-weight heparin therapy. Based on our in vitro and in vivo studies, heparin-binding copolymer seems to be a promising candidate for neutralizing all clinically relevant low-molecular-weight heparins.


Asunto(s)
Anticoagulantes/metabolismo , Antídotos/metabolismo , Hemorragia/metabolismo , Heparina de Bajo-Peso-Molecular/metabolismo , Animales , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Antídotos/farmacología , Antídotos/uso terapéutico , Relación Dosis-Respuesta a Droga , Factor Xa/metabolismo , Hemorragia/prevención & control , Heparina/efectos adversos , Heparina/metabolismo , Heparina de Bajo-Peso-Molecular/efectos adversos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Distribución Aleatoria , Ratas , Ratas Wistar
5.
Bioorg Med Chem ; 27(7): 1414-1420, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30808605

RESUMEN

A cationic derivative of γ-cyclodextrin (GCD) modified with propylenediamine (PDA) was synthesized. It was shown that the derivative (GCD-PDA) is mucoadhesive and resistant to the digestion with ∝-amylase indicating that it may constitute an efficient oral delivery vehicle. GCD-PDA formed an inclusion complex with berberine (BBR), an alkaloid displaying a multitude of beneficial physiological effects. The complexed BBR penetrates a lipid membrane easier than the free one. Both uncomplexed BBR and that complexed with GCD-PDA was delivered to normal (NMuMG) and cancerous (4T1) murine mammary gland cells. In the normal cells both free and complexed BBR was homogeneously dispersed in the cytoplasm and was nontoxic up to 131 µM. In the cancerous cells uncomplexed BBR was also homogeneously dispersed but it was toxic to about 25% of cells at 131 µM, while the GCD-PDA/BBR complex was preferably localized in lysosomes and its toxicity doubled at this concentration compared to that of free BBR. Moreover, free BBR and GCD-PDA/BBR showed even more efficient inhibitory effect against murine melanoma (B16-F10) cells than against 4T1 cells.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos , gamma-Ciclodextrinas/química , gamma-Ciclodextrinas/farmacología , Animales , Antineoplásicos/síntesis química , Cationes/síntesis química , Cationes/química , Cationes/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Ratones , Estructura Molecular , Relación Estructura-Actividad , gamma-Ciclodextrinas/síntesis química
6.
Mar Drugs ; 17(9)2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31533230

RESUMEN

Protamine sulfate (PS) is a polycationic protein drug obtained from the sperm of fish, and is used to reverse the anticoagulant effect of unfractionated heparin (UFH). However, the interactions between PS, UFH, and platelets are still not clear. We measured the platelet numbers and collagen-induced aggregation, P-selectin, platelet factor 4, ß-thromboglobulin, prostacyclin metabolite, D-dimers, activated partial thromboplastin time, prothrombin time, anti-factor Xa, fibrinogen, thrombus weight and megakaryocytopoiesis in blood collected from mice and rats in different time points.. All of the groups were treated intravenously with vehicle, UFH, PS, or UFH with PS. We found a short-term antiplatelet activity of PS in mice and rats, and long-term platelet-independent antithrombotic activity in rats with electrically-induced thrombosis. The antiplatelet and antithrombotic potential of PS may contribute to bleeding risk in PS-overdosed patients. The inhibitory effect of PS on the platelets was attenuated by UFH without inducing thrombocytopenia. Treatment with UFH and PS did not affect the formation, number, or activation of platelets, or the thrombosis development in rodents.


Asunto(s)
Anticoagulantes/efectos adversos , Antagonistas de Heparina/efectos adversos , Heparina/efectos adversos , Protaminas/efectos adversos , Trombocitopenia/diagnóstico , Animales , Anticoagulantes/administración & dosificación , Plaquetas/efectos de los fármacos , Modelos Animales de Enfermedad , Hemorragia/sangre , Hemorragia/inducido químicamente , Hemorragia/prevención & control , Heparina/administración & dosificación , Antagonistas de Heparina/administración & dosificación , Humanos , Masculino , Ratones , Tiempo de Tromboplastina Parcial , Agregación Plaquetaria/efectos de los fármacos , Protaminas/administración & dosificación , Ratas , Trombocitopenia/sangre , Trombocitopenia/inducido químicamente , Factores de Tiempo
7.
Biomacromolecules ; 19(7): 3104-3118, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29733637

RESUMEN

Di- and triblock copolymers with low dispersity of molecular weight were synthesized using radical addition-fragmentation chain transfer polymerization. The copolymers contained anionic poly(sodium 2-acrylamido-2-methylpropanesulfonate) (PAMPS) block as an anticoagulant component. The block added to lower the toxicity was either poly(ethylene glycol) (PEG) or poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC). The polymers prolonged clotting times both in vitro and in vivo. The influence of the polymer architecture and composition on the efficacy of anticoagulation and safety parameters was evaluated. The polymer with the optimal safety/efficacy profile was PEG47- b-PAMPS108, i.e., a block copolymer with the degrees of polymerization of PEG and PAMPS blocks equal to 47 and 108, respectively. The anticoagulant action of copolymers is probably mediated by antithrombin, but it differs from that of unfractionated heparin. PEG47- b-PAMPS108 also inhibited platelet aggregation in vitro and increased the prostacyclin production but had no antiplatelet properties in vivo. PEG47- b-PAMPS108 anticoagulant activity can be efficiently reversed with a copolymer of PEG and poly((3-(methacryloylamino)propyl)trimethylammonium chloride) (PMAPTAC) (PEG41- b-PMAPTAC53, HBC), which may be attributed to the formation of polyelectrolyte complexes with PEG shells without anticoagulant properties.


Asunto(s)
Anticoagulantes/síntesis química , Polímeros/química , Ácidos Sulfónicos/química , Animales , Anticoagulantes/farmacología , Masculino , Metacrilatos/química , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Agregación Plaquetaria/efectos de los fármacos , Polietilenglicoles/química , Polímeros/farmacología , Ratas , Ratas Wistar , Ácidos Sulfónicos/farmacología
8.
Nanotechnology ; 28(4): 045701, 2017 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-27977416

RESUMEN

Novel, highly fluorescent cadmium telluride quantum dots conjugated with thymine and stabilized with thioglycolic acid were obtained and characterized. Successful formation of the conjugate was confirmed by elemental analysis, and UV-vis, fluorescence and Fourier transform infrared spectroscopies. Crystal structure and composition of the conjugates were characterized with xray diffraction and x-ray photoelectron spectroscopy. The size of the conjugates was 4-6 nm as demonstrated using atomic force microscopy and high resolution transmission electron microscopy imaging. The plasmon resonance fluorescence band at 540 nm on excitation at 351 nm was observed for these nanoparticles. The intensity of this band increased with the increase in the amount of conjugated thymine with no shift in its position. Based on the fluorescence measurements it was found that the CdTe-thymine conjugate interacted efficiently and selectively not only with adenine, a nucleobase complementary to thymine, but also with adenine-containing modified nucleosides, i.e., 5'-deoxy-5'-(methylthio)adenosine and 2'-O-methyladenosine, the urinary tumor markers which allow monitoring of the disease progression. To the best of our knowledge, as yet, there have been no studies presented in literature on that type of the interaction with CdTe-thymine conjugates. Therefore, the system presented can be considered as a working component of a selective adenine/adenosine biosensor with potential application in cancer diagnosis.

9.
Antimicrob Agents Chemother ; 60(4): 1955-66, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26729490

RESUMEN

Novel sulfonated derivatives of poly(allylamine hydrochloride) (NSPAHs) and N-sulfonated chitosan (NSCH) have been synthesized, and their activity against influenza A and B viruses has been studied and compared with that of a series of carrageenans, marine polysaccharides of well-documented anti-influenza activity. NSPAHs were found to be nontoxic and very soluble in water, in contrast to gel-forming and thus generally poorly soluble carrageenans.In vitroandex vivostudies using susceptible cells (Madin-Darby canine kidney epithelial cells and fully differentiated human airway epithelial cultures) demonstrated the antiviral effectiveness of NSPAHs. The activity of NSPAHs was proportional to the molecular mass of the chain and the degree of substitution of amino groups with sulfonate groups. Mechanistic studies showed that the NSPAHs and carrageenans inhibit influenza A and B virus assembly in the cell.


Asunto(s)
Antivirales/farmacología , Quitosano/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Poliaminas/farmacología , Polímeros/farmacología , Ésteres del Ácido Sulfúrico/farmacología , Animales , Antivirales/síntesis química , Quitosano/síntesis química , Perros , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/crecimiento & desarrollo , Virus de la Influenza B/genética , Virus de la Influenza B/crecimiento & desarrollo , Concentración 50 Inhibidora , Células de Riñón Canino Madin Darby , Poliaminas/síntesis química , Polielectrolitos , Polímeros/síntesis química , ARN Viral/antagonistas & inhibidores , ARN Viral/biosíntesis , Relación Estructura-Actividad , Ésteres del Ácido Sulfúrico/síntesis química , Ensamble de Virus/efectos de los fármacos , Acoplamiento Viral/efectos de los fármacos , Inactivación de Virus/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
10.
J Sep Sci ; 39(15): 3072-80, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27296785

RESUMEN

Modified adenosine nucleosides have been proposed to be potential DNA-based biomarkers for early diagnosis of tumor and a promising tool for the development of noninvasive prediction systems. However, the low concentration of modified adenosine nucleosides in physiological fluids makes them challenging for both quantitative and qualitative determination. Therefore, materials, which are potentially useful for selective adsorption of nucleobase-containing compounds, were obtained. To obtain the adsorbents, the silica gel particles were coated layer-by-layer with films of the polymers with different combinations of polymers containing thymine groups. Next, the microspheres were irradiated with UV light in the presence of 2'-deoxyadenosine or 5'-deoxy-5'-(methylthio)adenosine, as template molecules, which resulted in the photodimerization of thymine moieties and molecular imprinting of adsorbed modified adenosine compounds. The selectivity of the adsorption was significantly enhanced by the photoimprinting process. Eventually, the imprinted particles have shown an improved ability to recognize mainly 2'-deoxyadenosine and 5'-deoxy-5'-(methylthio)adenosine molecules. The best performing adsorbent was obtained using modified natural polysaccharides. The studied materials could serve as promising adsorbents of biomarkers for tumor diagnostics.


Asunto(s)
Adenosina/aislamiento & purificación , Biomarcadores de Tumor/aislamiento & purificación , Impresión Molecular , Adenosina/química , Adsorción , Biomarcadores de Tumor/química , Estructura Molecular , Tamaño de la Partícula , Polímeros/síntesis química , Polímeros/química , Propiedades de Superficie
11.
Mar Drugs ; 12(7): 3953-69, 2014 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-24983639

RESUMEN

This study was performed to evaluate the ability of N-(2-hydroxypropyl)-3-tri methylammonium chitosan chloride (HTCC), the cationically modified chitosan, to form biologically inactive complexes with unfractionated heparin and thereby blocking its anticoagulant activity. Experiments were carried out in rats in vivo and in vitro using the activated partial thromboplastin time (APTT) and prothrombin time (PT) tests for evaluation of heparin anticoagulant activity. For the first time we have found that HTCC effectively neutralizes anticoagulant action of heparin in rat blood in vitro as well as in rats in vivo. The effect of HTCC on suppression of heparin activity is dose-dependent and its efficacy can be comparable to that of protamine-the only agent used in clinic for heparin neutralization. HTCC administered i.v. alone had no direct effect on any of the coagulation tests used. The potential adverse effects of HTCC were further explored using rat experimental model of acute toxicity. When administered i.p. at high doses (250 and 500 mg/kg body weight), HTCC induced some significant dose-dependent structural abnormalities in the liver. However, when HTCC was administered at low doses, comparable to those used for neutralization of anticoagulant effect of heparin, no histopathological abnormalities in liver were observed.


Asunto(s)
Quitosano/análogos & derivados , Antagonistas de Heparina/farmacología , Animales , Quitosano/farmacología , Relación Dosis-Respuesta a Droga , Antagonistas de Heparina/toxicidad , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Tiempo de Tromboplastina Parcial , Ratas , Ratas Wistar
12.
ACS Appl Mater Interfaces ; 16(5): 5426-5437, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38277775

RESUMEN

Curcumin, a natural product with recognized antiviral properties, is limited in its application largely due to its poor solubility. This study presents the synthesis of water-soluble curcumin-poly(sodium 4-styrenesulfonate) (Cur-PSSNan) covalent conjugates. The antiflaviviral activity of conjugates was validated in vitro by using the Zika virus as a model. In the development of these water-soluble curcumin-containing derivatives, we used the macromolecules reported by us to also hamper viral infections. Mechanistic investigations indicated that the conjugates exhibited excellent stability and bioavailability. The curcumin and macromolecules in concerted action interact directly with virus particles and block their attachment to host cells, hampering the infection process.


Asunto(s)
Curcumina , Infección por el Virus Zika , Virus Zika , Humanos , Curcumina/farmacología , Internalización del Virus , Infección por el Virus Zika/tratamiento farmacológico , Solubilidad , Agua
13.
ACS Omega ; 8(7): 6875-6883, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36844524

RESUMEN

A series of poly(ethylene glycol)-block-poly(sodium 4-styrenesulfonate) (PEG-b-PSSNa) copolymers were synthesized, and their antiviral activity against Zika virus (ZIKV) was determined. The polymers inhibit ZIKV replication in vitro in mammalian cells at nontoxic concentrations. The mechanistic analysis revealed that the PEG-b-PSSNa copolymers interact directly with viral particles in a zipper-like mechanism, hindering their interaction with the permissive cell. The antiviral activity of the copolymers is well-correlated with the length of the PSSNa block, indicating that the copolymers' ionic blocks are biologically active. The blocks of PEG present in copolymers studied do not hinder that interaction. Considering the practical application of PEG-b-PSSNa and the electrostatic nature of the inhibition, the interaction between the copolymers and human serum albumin (HSA) was evaluated. The formation of PEG-b-PSSNa-HSA complexes in the form of negatively charged nanoparticles well-dispersed in buffer solution was observed. That observation is promising, given the possible practical application of the copolymers.

14.
J Med Chem ; 66(3): 1778-1789, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36657057

RESUMEN

Unfractionated heparin (UFH) and enoxaparin (Enox) were substituted with a photoswitch (PS) showing quantitative trans-cis and cis-trans photoisomerizations. Long half-life of the cis photoisomer enabled comparison of the properties of heparins substituted with both PS photoisomers. Hydrodynamic diameter, Dh, of UFH-PS decreased upon trans-cis photoisomerization, the change being more pronounced for UFH-PS with a higher degree of substitution (DS), while Dh of Enox-PS did not significantly change. The anticoagulative properties of substituted heparins were significantly attenuated compared to non-substituted compounds. The interaction of UFH-PS with HSA, lysozyme, and protamine was studied with ITC. Under serum-free conditions, UFH-PS-trans with a high DS stimulated proliferation of murine fibroblasts, while UFH-PS-cis decreased the viability of these cells. Under serum conditions, both UFH-PS-cis and UFH-PS-trans decreased cell viability, the reduction for UFH-PS-cis being higher than that for UFH-PS-trans. Neither Enox-PS-trans nor Enox-PS-cis influenced the viability at concentrations prolonging aPTT, while at higher concentrations their cytotoxicity did not differ.


Asunto(s)
Enoxaparina , Heparina , Animales , Ratones , Heparina/farmacología , Resultado del Tratamiento , Enoxaparina/farmacología , Anticoagulantes
15.
Biomolecules ; 13(5)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37238712

RESUMEN

Despite the plethora of research that exists on recombinant human bone morphogenetic protein-2 and -7 (rhBMP-2 and rhBMP-7) and has been clinically approved, there is still a need to gain information that would allow for their more rational use in bone implantology. The clinical application of supra-physiological dosages of these superactive molecules causes many serious adverse effects. At the cellular level, they play a role in osteogenesis and cellular adhesion, migration, and proliferation around the implant. Therefore, in this work, we investigated the role of the covalent binding of rhBMP-2 and rhBMP-7 separately and in combination with ultrathin multilayers composed of heparin and diazoresin in stem cells. In the first step, we optimized the protein deposition conditions via quartz crystal microbalance (QCM). Then, atomic force microscopy (AFM) and enzyme-linked immunosorbent assay (ELISA) were used to analyze protein-substrate interactions. The effect of the protein binding on the initial cell adhesion, migration, and short-term expression of osteogenesis markers was tested. In the presence of both proteins, cell flattening and adhesion became more prominent, resulting in limited motility. However, the early osteogenic marker expression significantly increased compared to the single protein systems. The presence of single proteins resulted in the elongation of cells, which promoted their migration activity.


Asunto(s)
Heparina , Factor de Crecimiento Transformador beta , Humanos , Heparina/farmacología , Proteína Morfogenética Ósea 2/metabolismo , Compuestos Azo/farmacología , Osteogénesis , Proteínas Recombinantes/metabolismo , Diferenciación Celular
16.
Mater Today Bio ; 22: 100763, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37600352

RESUMEN

The battle against emerging viral infections has been uneven, as there is currently no broad-spectrum drug available to contain the spread of novel pathogens throughout the population. Consequently, the pandemic outbreak that occurred in early 2020 laid bare the almost empty state of the pandemic box. Therefore, the development of novel treatments with broad specificity has become a paramount concern in this post-pandemic era. Here, we propose copolymers of poly (sodium 2-(acrylamido)-2-methyl-1-propanesulfonate) (PAMPS) and poly (sodium 11-(acrylamido)undecanoate (AaU), both block (PAMPS75-b-PAaUn) and random (P(AMPSm-co-AaUn)) that show efficacy against a broad range of alpha and betacoronaviruses. Owing to their intricate architecture, these polymers exhibit a highly distinctive mode of action, modulating nano-mechanical properties of cells and thereby influencing viral replication. Through the employment of confocal and atomic force microscopy techniques, we discerned perturbations in actin and vimentin filaments, which correlated with modification of cellular elasticity and reduction of glycocalyx layer. Intriguingly, this process was reversible upon polymer removal from the cells. To ascertain the applicability of our findings, we assessed the efficacy and underlying mechanism of the inhibitors using fully differentiated human airway epithelial cultures, wherein near-complete abrogation of viral replication was documented. Given their mode of action, these polymers can be classified as biologically active nanomaterials that exploit a highly conserved molecular target-cellular plasticity-proffering the potential for truly broad-spectrum activity while concurrently for drug resistance development is minimal.

17.
Antiviral Res ; 213: 105604, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37054954

RESUMEN

Herpes simplex virus type 1 (HSV-1) is a widespread human pathogen known to cause infections of diverse severity, ranging from mild ulceration of mucosal and dermal tissues to life-threatening viral encephalitis. In most cases, standard treatment with acyclovir is sufficient to manage the disease progression. However, the emergence of ACV-resistant strains drives the need for new therapeutics and molecular targets. HSV-1 VP24 is a protease indispensable for the assembly of mature virions and, as such, constitutes an interesting target for the therapy. In this study, we present novel compounds, KI207M and EWDI/39/55BF, that block the activity of VP24 protease and consequently inhibit HSV-1 infection in vitro and in vivo. The inhibitors were shown to prevent the egress of viral capsids from the cell nucleus and suppress the cell-to-cell spread of the infection. They were also proven effective against ACV-resistant HSV-1 strains. Considering their low toxicity and high antiviral potency, the novel VP24 inhibitors could provide an alternative for treating ACV-resistant infections or a drug to be used in combined, highly effective therapy.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Humanos , Péptido Hidrolasas , Antivirales/uso terapéutico , Aciclovir/farmacología , Herpes Simple/tratamiento farmacológico , Farmacorresistencia Viral
18.
J Mater Sci Mater Med ; 23(8): 1991-2000, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22569736

RESUMEN

Novel polymeric hydrogel scaffolds for corneal epithelium cell culturing based on blends of chitosan with some other biopolymers such as hydroxypropylcellulose, collagen and elastin crosslinked with genipin, a natural substance, were prepared. Physicochemical and biomechanical properties of these materials were determined. The in vitro cell culture experiments with corneal epithelium cells have indicated that a membrane prepared from chitosan-collagen blend (Ch-Col) provided the regular stratified growth of the epithelium cells, good surface covering and increased number of the cell layers. Ch-Col membranes are therefore the most promising material among those studied. The performance of Ch-Col membranes is comparable with that of the amniotic membrane which is currently recommended for clinical applications.


Asunto(s)
Quitosano/química , Epitelio Corneal/citología , Epitelio Corneal/crecimiento & desarrollo , Hidrogeles/química , Iridoides/química , Membranas Artificiales , Andamios del Tejido , Células Cultivadas , Reactivos de Enlaces Cruzados , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Ingeniería de Tejidos/instrumentación
19.
Przegl Lek ; 69(10): 992-7, 2012.
Artículo en Polaco | MEDLINE | ID: mdl-23421077

RESUMEN

The cornea is a transparent front layer of the eye. It functions like a window that controls and focuses the light entering into the eye. The cornea contributes to 65-75% of the eye's total focusing power and it acts as a physical barrier against pathogenic microorganisms, dirt and other noxious physical factors. The corneal tissue is arranged in five basic layers. The outermost layer (epithelium) is made up of highly regenerative cells that allow for quick healing of superficial injuries. Eye infections, diseases, or mechanical injury can harm corneal epithelium and cause blindness. Under certain circumstances, to prevent that, it is recommended to perform complete corneal transplantation. However, due to lack of sufficient number of donors, researchers are searching for alternative solutions.. Regeneration of epidermal tissue can restore and ensure normal functioning of cornea. For that purpose proper grafts are needed. The goal of current research was to develop the material for scaffold preparation providing optimal conditions for the epithelium cornea cell culturing and to determine its chemical, physical, and biological properties. The scaffolds, which could be applied in ophthalmology should fulfill a lot of requirements, among them such as biocompatibility, biodegradability, restorability, non-toxicity. They should also have adequate mechanical strength, flexibility and porosity. The aim of this work was to synthesize and to determine the properties of polymeric material for ophthalmic surgery applications. A hydrogel scaffold in the form of membrane was obtained from chitosan - natural, biocompatible, biologically inert, stable in the natural environmental and antibacterial polysaccharide derived from chitin. Biodegradable chitosan films containing keratin were crosslinked with genipin - a naturally occurring and nontoxic agent. In this study we present physicochemical characterization of the scaffolds. Porosity, contact angle and swelling ratio (at different pH) were determined. The optical microscope technique was used to visualize the microstructure of the scaffolds. Atomic force microscopy (AFM) measurements revealed the topography of the surfaces of membranes. The biological tests have shown that epithelial cells seeded on the membranes proliferated efficiently.


Asunto(s)
Quitosano/química , Epitelio Corneal/citología , Regeneración Tisular Dirigida/métodos , Queratinas/química , Membranas Artificiales , Ingeniería de Tejidos/métodos , Andamios del Tejido , Materiales Biocompatibles , Reactivos de Enlaces Cruzados , Epitelio Corneal/fisiología , Epitelio Corneal/cirugía , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Ensayo de Materiales , Modelos Biológicos , Regeneración
20.
J Clin Med ; 11(8)2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35456329

RESUMEN

The routine monitoring of direct oral anticoagulants (DOACs) may be considered in patients with renal impairment, patients who are heavily obese, or patients requiring elective surgery. Using the heparin-binding copolymer (HBC) and polybrene, we aimed to develop a solution for monitoring the anticoagulant activity of DOACs in human plasma in the interfering presence of unfractionated heparin (UFH) and enoxaparin. The thrombin time (TT) and anti-factor Xa activity were monitored in pooled plasma from healthy volunteers. In these tests, plasma with dabigatran or rivaroxaban was mixed with UFH or enoxaparin and then incubated with HBC or polybrene, respectively. HBC and polybrene neutralized heparins and enabled monitoring of anticoagulant activity of dabigatran in the TT test. Both agents allowed for accurate measurement of anti-factor Xa activity in the plasma containing rivaroxaban and heparins in the concentration range reached in patients' blood. Here, we present diagnostic tools that may improve the control of anticoagulation by eliminating the contamination of blood samples with heparins and enabling the monitoring of DOACs' activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA