RESUMEN
Developmental studies have shown that the evolutionarily conserved Wnt Planar Cell Polarity (PCP) pathway is essential for the development of a diverse range of tissues and organs including the brain, spinal cord, heart and sensory organs, as well as establishment of the left-right body axis. Germline mutations in the highly conserved PCP gene VANGL2 in humans have only been associated with central nervous system malformations, and functional testing to understand variant impact has not been performed. Here we report three new families with missense variants in VANGL2 associated with heterotaxy and congenital heart disease p.(Arg169His), non-syndromic hearing loss p.(Glu465Ala) and congenital heart disease with brain defects p.(Arg135Trp). To test the in vivo impact of these and previously described variants, we have established clinically-relevant assays using mRNA rescue of the vangl2 mutant zebrafish. We show that all variants disrupt Vangl2 function, although to different extents and depending on the developmental process. We also begin to identify that different VANGL2 missense variants may be haploinsufficient and discuss evidence in support of pathogenicity. Together, this study demonstrates that zebrafish present a suitable pipeline to investigate variants of unknown significance and suggests new avenues for investigation of the different developmental contexts of VANGL2 function that are clinically meaningful.
Asunto(s)
Cardiopatías Congénitas , Pez Cebra , Animales , Humanos , Polaridad Celular/genética , Células Germinativas/metabolismo , Mutación de Línea Germinal/genética , Cardiopatías Congénitas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genéticaRESUMEN
BACKGROUND: Structural birth defects occur in approximately 3% of live births; most such defects lack defined genetic or environmental causes. Despite advances in surgical approaches, pharmacologic prevention remains largely out of reach. METHODS: We queried worldwide databases of 20,248 families that included children with neurodevelopmental disorders and that were enriched for parental consanguinity. Approximately one third of affected children in these families presented with structural birth defects or microcephaly. We performed exome or genome sequencing of samples obtained from the children, their parents, or both to identify genes with biallelic pathogenic or likely pathogenic mutations present in more than one family. After identifying disease-causing variants, we generated two mouse models, each with a pathogenic variant "knocked in," to study mechanisms and test candidate treatments. We administered a small-molecule Wnt agonist to pregnant animals and assessed their offspring. RESULTS: We identified homozygous mutations in WLS, which encodes the Wnt ligand secretion mediator (also known as Wntless or WLS) in 10 affected persons from 5 unrelated families. (The Wnt ligand secretion mediator is essential for the secretion of all Wnt proteins.) Patients had multiorgan defects, including microcephaly and facial dysmorphism as well as foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects. The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis. Administration of a pharmacologic Wnt agonist partially restored embryonic development. CONCLUSIONS: Genetic variations affecting a central Wnt regulator caused syndromic structural birth defects. Results from mouse models suggest that what we have named Zaki syndrome is a potentially preventable disorder. (Funded by the National Institutes of Health and others.).
Asunto(s)
Anomalías Múltiples/genética , Anomalías Congénitas/genética , Pleiotropía Genética , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Receptores Acoplados a Proteínas G/genética , Proteínas Wnt/metabolismo , Animales , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Técnicas de Sustitución del Gen , Genes Recesivos , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Transgénicos , Linaje , Fenotipo , Receptores Acoplados a Proteínas G/metabolismo , Síndrome , Vía de Señalización WntRESUMEN
The clinical diagnosis of patients with multisystem involvement including a pronounced neurologic damage is challenging. High-throughput sequencing methods remains crucial to provide an accurate diagnosis. In this study, we reported a Tunisian patient manifesting hypotonia and global developmental delay with visual and skin abnormalities. Exome sequencing was conducted followed by segregation analysis and, subsequently additional investigations. In silico analysis of non-synonymous variants (nsSNPs) described in COG5 in conserved positions was made. Results revealed a homozygous missense variant c.298 C > T (p.Leu100Phe) in the COG5 inherited from both parents. This variant altered both protein solubility and stability, in addition to a putative disruption of the COG5-COG7 interaction. This disruption has been confirmed using patient-derived cells in vitro in a COG5 co-immuno-precipitation, where interaction with binding partner COG7 was abrogated. Hence, we established the COG5-CDG diagnosis. Clinically, the patient shared common features with the already described cases with the report of the ichtyosis as a new manifestation. Conversely, the CADD scoring revealed 19 putatively pathogenic nsSNPs (Minor Allele Frequency MAF < 0.001, CADD > 30), 11 of which had a significant impact on the solubility and/or stability of COG5. These properties seem to be disrupted by six of the seven missense COG5-CDG variants. In conclusion, our study expands the genetic and phenotypic spectrum of COG5-CDG disease and highlight the utility of the next generation sequencing as a powerful tool in accurate diagnosis. Our results shed light on a likely molecular mechanism underlying the pathogenic effect of missense COG5 variants, which is the alteration of COG5 stability and solubility.
Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Mutación Missense , Humanos , Túnez , Masculino , Proteínas Adaptadoras del Transporte Vesicular/genética , Femenino , Secuenciación del Exoma , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/patología , Polimorfismo de Nucleótido Simple , LinajeRESUMEN
The four R-spondin secreted ligands (RSPO1-RSPO4) act via their cognate LGR4, LGR5 and LGR6 receptors to amplify WNT signalling1-3. Here we report an allelic series of recessive RSPO2 mutations in humans that cause tetra-amelia syndrome, which is characterized by lung aplasia and a total absence of the four limbs. Functional studies revealed impaired binding to the LGR4/5/6 receptors and the RNF43 and ZNRF3 transmembrane ligases, and reduced WNT potentiation, which correlated with allele severity. Unexpectedly, however, the triple and ubiquitous knockout of Lgr4, Lgr5 and Lgr6 in mice did not recapitulate the known Rspo2 or Rspo3 loss-of-function phenotypes. Moreover, endogenous depletion or addition of exogenous RSPO2 or RSPO3 in triple-knockout Lgr4/5/6 cells could still affect WNT responsiveness. Instead, we found that the concurrent deletion of rnf43 and znrf3 in Xenopus embryos was sufficient to trigger the outgrowth of supernumerary limbs. Our results establish that RSPO2, without the LGR4/5/6 receptors, serves as a direct antagonistic ligand to RNF43 and ZNRF3, which together constitute a master switch that governs limb specification. These findings have direct implications for regenerative medicine and WNT-associated cancers.
Asunto(s)
Proteínas de Unión al ADN/antagonistas & inhibidores , Extremidades/embriología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Deformidades Congénitas de las Extremidades/genética , Receptores Acoplados a Proteínas G/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Animales , Proteínas de Unión al ADN/metabolismo , Femenino , Fibroblastos , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Ratones , Proteínas Oncogénicas/antagonistas & inhibidores , Proteínas Oncogénicas/metabolismo , Fenotipo , Receptores Acoplados a Proteínas G/deficiencia , Ubiquitina-Proteína Ligasas/metabolismo , Xenopus/genéticaRESUMEN
In this Letter, the surname of author Lena Vlaminck was misspelled 'Vlaeminck'. In addition, author Kris Vleminckx should have been associated with affiliation 16 (Center for Medical Genetics, Ghent University, Ghent, Belgium). These have been corrected online.
RESUMEN
The development of hindlimbs in tetrapod species relies specifically on the transcription factor TBX4. In humans, heterozygous loss-of-function TBX4 mutations cause dominant small patella syndrome (SPS) due to haploinsufficiency. Here, we characterize a striking clinical entity in four fetuses with complete posterior amelia with pelvis and pulmonary hypoplasia (PAPPA). Through exome sequencing, we find that PAPPA syndrome is caused by homozygous TBX4 inactivating mutations during embryogenesis in humans. In two consanguineous couples, we uncover distinct germline TBX4 coding mutations, p.Tyr113∗ and p.Tyr127Asn, that segregated with SPS in heterozygous parents and with posterior amelia with pelvis and pulmonary hypoplasia syndrome (PAPPAS) in one available homozygous fetus. A complete absence of TBX4 transcripts in this proband with biallelic p.Tyr113∗ stop-gain mutations revealed nonsense-mediated decay of the endogenous mRNA. CRISPR/Cas9-mediated TBX4 deletion in Xenopus embryos confirmed its restricted role during leg development. We conclude that SPS and PAPPAS are allelic diseases of TBX4 deficiency and that TBX4 is an essential transcription factor for organogenesis of the lungs, pelvis, and hindlimbs in humans.
Asunto(s)
Anomalías Múltiples/etiología , Enfermedades del Desarrollo Óseo/etiología , Ectromelia/etiología , Cadera/anomalías , Homocigoto , Isquion/anomalías , Mutación con Pérdida de Función , Enfermedades Pulmonares/etiología , Pulmón/anomalías , Rótula/anomalías , Pelvis/anomalías , Proteínas de Dominio T Box/genética , Anomalías Múltiples/patología , Adolescente , Enfermedades del Desarrollo Óseo/patología , Niño , Ectromelia/patología , Femenino , Cadera/patología , Humanos , Isquion/patología , Pulmón/patología , Enfermedades Pulmonares/patología , Masculino , Rótula/patología , Linaje , Pelvis/patología , PronósticoRESUMEN
Herein, we report the screening of a large panel of genes in a series of 80 fetuses with congenital heart defects (CHDs) and/or heterotaxy and no cytogenetic anomalies. There were 49 males (61%/39%), with a family history in 28 cases (35%) and no parental consanguinity in 77 cases (96%). All fetuses had complex CHD except one who had heterotaxy and midline anomalies while 52 cases (65%) had heterotaxy in addition to CHD. Altogether, 29 cases (36%) had extracardiac and extra-heterotaxy anomalies. A pathogenic variant was found in 10/80 (12.5%) cases with a higher percentage in the heterotaxy group (8/52 cases, 15%) compared with the non-heterotaxy group (2/28 cases, 7%), and in 3 cases with extracardiac and extra-heterotaxy anomalies (3/29, 10%). The inheritance was recessive in six genes (DNAI1, GDF1, MMP21, MYH6, NEK8, and ZIC3) and dominant in two genes (SHH and TAB2). A homozygous pathogenic variant was found in three cases including only one case with known consanguinity. In conclusion, after removing fetuses with cytogenetic anomalies, next-generation sequencing discovered a causal variant in 12.5% of fetal cases with CHD and/or heterotaxy. Genetic counseling for future pregnancies was greatly improved. Surprisingly, unexpected consanguinity accounts for 20% of cases with identified pathogenic variants.
Asunto(s)
Feto/anomalías , Cardiopatías Congénitas/genética , Síndrome de Heterotaxia/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis Citogenético , Familia , Femenino , Heterocigoto , Homocigoto , Humanos , Masculino , Mutación/genética , LinajeRESUMEN
Variants in transcriptional activator Gli Kruppel Family Member 3 (GLI3) have been reported to be associated with several phenotypes including Greig cephalopolysyndactyly syndrome (MIM #175700), Pallister-Hall syndrome (PHS) (MIM #146510), postaxial polydactyly types A1 (PAPA1) and B (PAPB) (MIM #174200), and preaxial polydactyly type 4 (MIM #174700). All these disorders follow an autosomal dominant pattern of inheritance. Hypothalamic hamartomas (MIM 241800) is associated with somatic variants in GLI3. We report a related couple with parents having PAPA1 and PAPB, who had a fetus with a phenotype most compatible with PHS. Molecular analyses demonstrated homozygosity for a pathogenic GLI3 variant (c.1927C > T; p. Arg643*) in the fetus and heterozygosity in the parents. The genetic analysis in this family demonstrates that heterozygosity and homozygosity for the same GLI3 variant can cause a different phenotype. Furthermore, the occurrence of Pallister-Hall-like syndrome in a homozygous patient should be taken into account in genetic counseling of families with PAPA1/PAPB.
Asunto(s)
Anomalías Múltiples/genética , Dedos/anomalías , Proteínas del Tejido Nervioso/genética , Síndrome de Pallister-Hall/genética , Polidactilia/genética , Dedos del Pie/anomalías , Proteína Gli3 con Dedos de Zinc/genética , Anomalías Múltiples/diagnóstico por imagen , Anomalías Múltiples/patología , Feto Abortado/diagnóstico por imagen , Feto Abortado/patología , Adulto , Femenino , Dedos/diagnóstico por imagen , Dedos/patología , Heterocigoto , Homocigoto , Humanos , Masculino , Síndrome de Pallister-Hall/complicaciones , Síndrome de Pallister-Hall/diagnóstico por imagen , Síndrome de Pallister-Hall/patología , Linaje , Fenotipo , Polidactilia/complicaciones , Polidactilia/diagnóstico por imagen , Polidactilia/patología , Dedos del Pie/diagnóstico por imagen , Dedos del Pie/patologíaRESUMEN
Reduced generation of multiple motile cilia (RGMC) represents a rare variant of Primary Ciliary Dyskinesia (PCD), associated with CYCLIN-O (CCNO) mutations. We report a novel compound mutation in the CCNO gene in an adult Chinese Singaporean exhibiting chronic productive cough since childhood and recurrent sino-pulmonary infections. Low nasal nitric oxide and bronchiectasis suggests PCD. Bronchoscopy for epithelial and nasal brushings for ciliary studies were repeated after adequate treatment of lower respiratory tract infections. Demonstration of oligo-cilia via transmission electron microscopy, and detection of CCNO mutation through genetic analysis were utilized to diagnose RGMC. Repeated courses of antibiotics including nebulised antibiotics were used to treat recurrent infections and exacerbations. Airway clearance techniques, immunizations and collaboration with otorhinolaryngologist form part of the long-term management. Heightened clinical suspicion and adherence to established diagnostic algorithms are essential for timely recognition of this entity.
RESUMEN
Autosomal recessive coding variants are well-known causes of rare disorders. We quantified the contribution of these variants to developmental disorders in a large, ancestrally diverse cohort comprising 29,745 trios, of whom 20.4% had genetically inferred non-European ancestries. The estimated fraction of patients attributable to exome-wide autosomal recessive coding variants ranged from ~2-19% across genetically inferred ancestry groups and was significantly correlated with average autozygosity. Established autosomal recessive developmental disorder-associated (ARDD) genes explained 84.0% of the total autosomal recessive coding burden, and 34.4% of the burden in these established genes was explained by variants not already reported as pathogenic in ClinVar. Statistical analyses identified two novel ARDD genes: KBTBD2 and ZDHHC16. This study expands our understanding of the genetic architecture of developmental disorders across diverse genetically inferred ancestry groups and suggests that improving strategies for interpreting missense variants in known ARDD genes may help diagnose more patients than discovering the remaining genes.
Asunto(s)
Discapacidades del Desarrollo , Genes Recesivos , Humanos , Discapacidades del Desarrollo/genética , Femenino , Masculino , Exoma/genética , Predisposición Genética a la Enfermedad , Variación Genética , Aciltransferasas/genética , Estudios de Cohortes , Mutación MissenseRESUMEN
Exome sequencing has introduced a paradigm shift for the identification of germline variations responsible for Mendelian diseases. However, non-coding regions, which make up 98% of the genome, cannot be captured. The lack of functional annotation for intronic and intergenic variants makes RNA-seq a powerful companion diagnostic. Here, we illustrate this point by identifying six patients with a recessive Osteogenesis Imperfecta (OI) and neonatal progeria syndrome. By integrating homozygosity mapping and RNA-seq, we delineated a deep intronic TAPT1 mutation (c.1237-52 G>A) that segregated with the disease. Using SI-NET-seq, we document that TAPT1's nascent transcription was not affected in patients' fibroblasts, indicating instead that this variant leads to an alteration of pre-mRNA processing. Predicted to serve as an alternative splicing branchpoint, this mutation enhances TAPT1 exon 12 skipping, creating a protein-null allele. Additionally, our study reveals dysregulation of pathways involved in collagen and extracellular matrix biology in disease-relevant cells. Overall, our work highlights the power of transcriptomic approaches in deciphering the repercussions of non-coding variants, as well as in illuminating the molecular mechanisms of human diseases.
Asunto(s)
Secuenciación del Exoma , Humanos , Recién Nacido , Secuencia de Bases , Exones , Mutación , ARN Mensajero/genéticaRESUMEN
The human respiratory epithelium is derived from a progenitor cell in the distal buds of the developing lung. These "bud tip progenitors" are regulated by reciprocal signaling with surrounding mesenchyme; however, mesenchymal heterogeneity and function in the developing human lung are poorly understood. We interrogated single-cell RNA sequencing data from multiple human lung specimens and identified a mesenchymal cell population present during development that is highly enriched for expression of the WNT agonist RSPO2, and we found that the adjacent bud tip progenitors are enriched for the RSPO2 receptor LGR5. Functional experiments using organoid models, explant cultures, and FACS-isolated RSPO2+ mesenchyme show that RSPO2 is a critical niche cue that potentiates WNT signaling in bud tip progenitors to support their maintenance and multipotency.
Asunto(s)
Células Madre Mesenquimatosas , Organogénesis , Humanos , Pulmón , Organoides , Vía de Señalización WntRESUMEN
The vertebrate left-right axis is specified during embryogenesis by a transient organ: the left-right organizer (LRO). Species including fish, amphibians, rodents and humans deploy motile cilia in the LRO to break bilateral symmetry, while reptiles, birds, even-toed mammals and cetaceans are believed to have LROs without motile cilia. We searched for genes whose loss during vertebrate evolution follows this pattern and identified five genes encoding extracellular proteins, including a putative protease with hitherto unknown functions that we named ciliated left-right organizer metallopeptide (CIROP). Here, we show that CIROP is specifically expressed in ciliated LROs. In zebrafish and Xenopus, CIROP is required solely on the left side, downstream of the leftward flow, but upstream of DAND5, the first asymmetrically expressed gene. We further ascertained 21 human patients with loss-of-function CIROP mutations presenting with recessive situs anomalies. Our findings posit the existence of an ancestral genetic module that has twice disappeared during vertebrate evolution but remains essential for distinguishing left from right in humans.
Asunto(s)
Evolución Biológica , Tipificación del Cuerpo , Redes Reguladoras de Genes , Metaloproteasas , Animales , Humanos , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Cilios/genética , Mutación con Pérdida de Función , Metaloproteasas/genética , Metaloproteasas/fisiología , Proteínas/genética , Proteínas/fisiología , Vertebrados/genéticaRESUMEN
During kidney development, WNT/ß-catenin signalling has to be tightly controlled to ensure proliferation and differentiation of nephron progenitor cells. Here, we show in mice that the signalling molecules RSPO1 and RSPO3 act in a functionally redundant manner to permit WNT/ß-catenin signalling and their genetic deletion leads to a rapid decline of nephron progenitors. By contrast, tissue specific deletion in cap mesenchymal cells abolishes mesenchyme to epithelial transition (MET) that is linked to a loss of Bmp7 expression, absence of SMAD1/5 phosphorylation and a concomitant failure to activate Lef1, Fgf8 and Wnt4, thus explaining the observed phenotype on a molecular level. Surprisingly, the full knockout of LGR4/5/6, the cognate receptors of R-spondins, only mildly affects progenitor numbers, but does not interfere with MET. Taken together our data demonstrate key roles for R-spondins in permitting stem cell maintenance and differentiation and reveal Lgr-dependent and independent functions for these ligands during kidney formation.
Kidneys filter waste out of the bloodstream to produce urine. Each kidney contains many structures called nephrons which separate the waste from the blood. The number of nephrons in a kidney varies between people, and those with low numbers have a higher risk of chronic kidney disease. Nephrons are formed before birth from a specific group of so-called progenitor cells. Each of these cells can either divide to make others like itself, or it can specialize to make nephron cells. At the end of embryonic kidney development, all the progenitor cells become nephron cells. Cells that specialize to become part of a nephron first go through a change called a mesenchyme-to-epithelial transition. Epithelial cells move less than mesenchymal cells, and also develop a clear structure where the two ends of the cell adapt to different roles. Evidence suggests that a cell communication process called WNT/ß-catenin signaling controls this transition. Yet the details of how this transition is controlled are not fully understood. One way to activate WNT/ß-catenin signaling is with R-spondin proteins, which have been found in developing kidneys. Vidal et al. studied R-spondins during the embryonic development of kidneys in mice. Removing R-spondins stopped the progenitor cells from producing more of themselves and increased the number that died. The R-spondins were also needed for the progenitor cells to specialize as nephron cells through the mesenchyme-to-epithelial transition. Further results revealed that R-spondins activate WNT/ß-catenin signaling in these cells, even though the proteins that usually act as R-spondin receptors (called LGR4/5/6) could be removed without affecting the results. This suggests that R-spondins interact with different receptor proteins during kidney development. These findings highlight the role of R-spondins and WNT/ß-catenin signaling in kidney development. Future studies will seek the receptor proteins that R-spondins interact with in kidneys. They may also look to understand how R-spondins balance their different roles in progenitor cells and during cell specialization. These results in mice could also be extended to determine their relevance in human health and disease, including chronic kidney disease, which is responsible for more deaths than breast or prostate cancer.
Asunto(s)
Riñón/embriología , Nefronas/citología , Células Madre/citología , Trombospondinas/fisiología , Animales , Diferenciación Celular , Transición Epitelial-Mesenquimal , Femenino , Ratones , Nefronas/embriología , Receptores Acoplados a Proteínas G/fisiología , Transducción de Señal/fisiología , Vía de Señalización WntRESUMEN
Developmental epileptic encephalopathies are devastating disorders characterized by intractable epileptic seizures and developmental delay. Here, we report an allelic series of germline recessive mutations in UGDH in 36 cases from 25 families presenting with epileptic encephalopathy with developmental delay and hypotonia. UGDH encodes an oxidoreductase that converts UDP-glucose to UDP-glucuronic acid, a key component of specific proteoglycans and glycolipids. Consistent with being loss-of-function alleles, we show using patients' primary fibroblasts and biochemical assays, that these mutations either impair UGDH stability, oligomerization, or enzymatic activity. In vitro, patient-derived cerebral organoids are smaller with a reduced number of proliferating neuronal progenitors while mutant ugdh zebrafish do not phenocopy the human disease. Our study defines UGDH as a key player for the production of extracellular matrix components that are essential for human brain development. Based on the incidence of variants observed, UGDH mutations are likely to be a frequent cause of recessive epileptic encephalopathy.