Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(9): e1011673, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37721955

RESUMEN

The cellular protein GBF1, an activator of Arf GTPases (ArfGEF: Arf guanine nucleotide exchange factor), is recruited to the replication organelles of enteroviruses through interaction with the viral protein 3A, and its ArfGEF activity is required for viral replication, however how GBF1-dependent Arf activation supports the infection remains enigmatic. Here, we investigated the development of resistance of poliovirus, a prototype enterovirus, to increasing concentrations of brefeldin A (BFA), an inhibitor of GBF1. High level of resistance required a gradual accumulation of multiple mutations in the viral protein 2C. The 2C mutations conferred BFA resistance even in the context of a 3A mutant previously shown to be defective in the recruitment of GBF1 to replication organelles, and in cells depleted of GBF1, suggesting a GBF1-independent replication mechanism. Still, activated Arfs accumulated on the replication organelles of this mutant even in the presence of BFA, its replication was inhibited by a pan-ArfGEF inhibitor LM11, and the BFA-resistant phenotype was compromised in Arf1-knockout cells. Importantly, the mutations strongly increased the interaction of 2C with the activated form of Arf1. Analysis of other enteroviruses revealed a particularly strong interaction of 2C of human rhinovirus 1A with activated Arf1. Accordingly, the replication of this virus was significantly less sensitive to BFA than that of poliovirus. Thus, our data demonstrate that enterovirus 2Cs may behave like Arf1 effector proteins and that GBF1 but not Arf activation can be dispensable for enterovirus replication. These findings have important implications for the development of host-targeted anti-viral therapeutics.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Proteínas de Unión al GTP Monoméricas , Poliovirus , Humanos , Enterovirus/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Factor 1 de Ribosilacion-ADP/metabolismo , Células HeLa , Poliovirus/genética , Proteínas Virales/metabolismo , Antígenos Virales/metabolismo , Brefeldino A/farmacología , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo
2.
Dev Dyn ; 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39003620

RESUMEN

BACKGROUND: The gene cAMP-Responsive Element Binding protein 3-like-1 (CREB3L1) has been implicated in bone development in mice, with CREB3L1 knock-out mice exhibiting fragile bones, and in humans, with CREB3L1 mutations linked to osteogenesis imperfecta. However, the mechanism through which Creb3l1 regulates bone development is not fully understood. RESULTS: To probe the role of Creb3l1 in organismal physiology, we used CRISPR-Cas9 genome editing to generate a Danio rerio (zebrafish) model of Creb3l1 deficiency. In contrast to mammalian phenotypes, the Creb3l1 deficient fish do not display abnormalities in osteogenesis, except for a decrease in the bifurcation pattern of caudal fin. Both, skeletal morphology and overall bone density appear normal in the mutant fish. However, the regeneration of caudal fin postamputation is significantly affected, with decreased overall regenerate and mineralized bone area. Moreover, the mutant fish exhibit a severe patterning defect during regeneration, with a significant decrease in bifurcation complexity of the fin rays and distalization of the bifurcation sites. Analysis of genes implicated in bone development showed aberrant patterning of shha and ptch2 in Creb3l1 deficient fish, linking Creb3l1 with Sonic Hedgehog signaling during fin regeneration. CONCLUSIONS: Our results uncover a novel role for Creb3l1 in regulating tissue growth and patterning during regeneration.

3.
Biophys J ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38853434

RESUMEN

Endothelial cells (ECs) experience a variety of highly dynamic mechanical stresses. Among others, cyclic stretch and increased plasma membrane tension inhibit clathrin-mediated endocytosis (CME) in non-ECs. It remains elusive how ECs maintain CME in these biophysically unfavorable conditions. Previously, we have used simultaneous two-wavelength axial ratiometry (STAR) microscopy to show that endocytic dynamics are similar between statically cultured human umbilical vein endothelial cells (HUVECs) and fibroblast-like Cos-7 cells. Here, we asked whether biophysical stresses generated by blood flow influence CME. We used our data processing platform-DrSTAR-to examine if clathrin dynamics are altered in HUVECs after experiencing fluidic shear stress (FSS). We found that HUVECs cultivated under a physiological level of FSS had increased clathrin dynamics compared with static controls. FSS increased both clathrin-coated vesicle formation and nonproductive flat clathrin lattices by 2.3-fold and 1.9-fold, respectively. The curvature-positive events had significantly delayed curvature initiation relative to clathrin recruitment in flow-stimulated cells, highlighting a shift toward flat-to-curved clathrin transitions in vesicle formation. Overall, our findings indicate that clathrin dynamics and clathrin-coated vesicle formation can be modulated by the local physiological environment and represent an important regulatory mechanism.

4.
PLoS Pathog ; 18(10): e1010906, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36306280

RESUMEN

As ultimate parasites, viruses depend on host factors for every step of their life cycle. On the other hand, cells evolved multiple mechanisms of detecting and interfering with viral replication. Yet, our understanding of the complex ensembles of pro- and anti-viral factors is very limited in virtually every virus-cell system. Here we investigated the proteins recruited to the replication organelles of poliovirus, a representative of the genus Enterovirus of the Picornaviridae family. We took advantage of a strict dependence of enterovirus replication on a host protein GBF1, and established a stable cell line expressing a truncated GBF1 fused to APEX2 peroxidase that effectively supported viral replication upon inhibition of the endogenous GBF1. This construct biotinylated multiple host and viral proteins on the replication organelles. Among the viral proteins, the polyprotein cleavage intermediates were overrepresented, suggesting that the GBF1 environment is linked to viral polyprotein processing. The proteomics characterization of biotinylated host proteins identified multiple proteins previously associated with enterovirus replication, as well as more than 200 new factors recruited to the replication organelles. RNA metabolism proteins, many of which normally localize in the nucleus, constituted the largest group, underscoring the massive release of nuclear factors into the cytoplasm of infected cells and their involvement in viral replication. Functional analysis of several newly identified proteins revealed both pro- and anti-viral factors, including a novel component of infection-induced stress granules. Depletion of these proteins similarly affected the replication of diverse enteroviruses indicating broad conservation of the replication mechanisms. Thus, our data significantly expand the knowledge of the composition of enterovirus replication organelles, provide new insights into viral replication, and offer a novel resource for identifying targets for anti-viral interventions.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Poliovirus , Humanos , Enterovirus/metabolismo , Biotinilación , Poliovirus/fisiología , Replicación Viral , Proteínas Virales/metabolismo , Poliproteínas/metabolismo , Antivirales/farmacología , Factores de Intercambio de Guanina Nucleótido/metabolismo
5.
Arch Biochem Biophys ; 758: 110049, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38879142

RESUMEN

Formation of transport vesicles requires the coordinate activity of the coating machinery that selects cargo into the nascent vesicle and the membrane bending machinery that imparts curvature to the forming bud. Vesicle coating at the trans-Golgi Network (TGN) involves AP1, GGA2 and clathrin, which are recruited to membranes by activated ARF GTPases. The ARF activation at the TGN is mediated by the BIG1 and BIG2 guanine nucleotide exchange factors (GEFs). Membrane deformation at the TGN has been shown to be mediated by lipid flippases, including ATP8A1, that moves phospholipids from the inner to the outer leaflet of the TGN membrane. We probed a possible coupling between the coating and deformation machineries by testing for an interaction between BIG1, BIG2 and ATP8A1, and by assessing whether such an interaction may influence coating efficiency. Herein, we document that BIG1 and BIG2 co-localize with ATP8A1 in both, static and highly mobile TGN elements, and that BIG1 and BIG2 bind ATP8A1. We show that the interaction involves the catalytic Sec7 domain of the GEFs and the cytosolic C-terminal tail of ATP8A1. Moreover, we report that the expression of ATP8A1, but not ATP8A1 lacking the GEF-binding cytosolic tail, increases the generation of activated ARFs at the TGN and increases the selective recruitment of AP1, GGA2 and clathrin to TGN membranes. This occurs without increasing BIG1 or BIG2 levels at the TGN, suggesting that the binding of the ATP8A1 flippase tail to the Sec7 domain of BIG1/BIG2 increases their catalytic activity. Our results support a model in which a flippase component of the deformation machinery impacts the activity of the GEF component of the coating machinery.


Asunto(s)
Factores de Ribosilacion-ADP , Factores de Intercambio de Guanina Nucleótido , Red trans-Golgi , Red trans-Golgi/metabolismo , Humanos , Factores de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Adenosina Trifosfatasas/metabolismo , Células HeLa , Unión Proteica , Proteínas de la Membrana , Proteínas de Transferencia de Fosfolípidos
6.
FASEB J ; 37(7): e23008, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37318790

RESUMEN

Autosomal recessive polycystic kidney disease (ARPKD) is caused primarily by mutations in PKHD1, encoding fibrocystin (FPC), but Pkhd1 mutant mice failed to reproduce the human phenotype. In contrast, the renal lesion in congenital polycystic kidney (cpk) mice, with a mutation in Cys1 and cystin protein loss, closely phenocopies ARPKD. Although the nonhomologous mutation diminished the translational relevance of the cpk model, recent identification of patients with CYS1 mutations and ARPKD prompted the investigations described herein. We examined cystin and FPC expression in mouse models (cpk, rescued-cpk (r-cpk), Pkhd1 mutants) and mouse cortical collecting duct (CCD) cell lines (wild type (wt), cpk). We found that cystin deficiency caused FPC loss in both cpk kidneys and CCD cells. FPC levels increased in r-cpk kidneys and siRNA of Cys1 in wt cells reduced FPC. However, FPC deficiency in Pkhd1 mutants did not affect cystin levels. Cystin deficiency and associated FPC loss impacted the architecture of the primary cilium, but not ciliogenesis. No reduction in Pkhd1 mRNA levels in cpk kidneys and CCD cells suggested posttranslational FPC loss. Studies of cellular protein degradation systems suggested selective autophagy as a mechanism. In support of the previously described function of FPC in E3 ubiquitin ligase complexes, we demonstrated reduced polyubiquitination and elevated levels of functional epithelial sodium channel in cpk cells. Therefore, our studies expand the function of cystin in mice to include inhibition of Myc expression via interaction with necdin and maintenance of FPC as functional component of the NEDD4 E3 ligase complexes. Loss of FPC from E3 ligases may alter the cellular proteome, contributing to cystogenesis through multiple, yet to be defined, mechanisms.


Asunto(s)
Riñón Poliquístico Autosómico Recesivo , Humanos , Ratones , Animales , Riñón Poliquístico Autosómico Recesivo/genética , Riñón Poliquístico Autosómico Recesivo/metabolismo , Riñón Poliquístico Autosómico Recesivo/patología , Proteoma/metabolismo , Receptores de Superficie Celular/metabolismo , Riñón/metabolismo , Factores de Transcripción/metabolismo , Células Epiteliales/metabolismo
7.
Cells Tissues Organs ; : 1-19, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38964305

RESUMEN

INTRODUCTION: The formation of normal bone and bone healing requires the cAMP-responsive element binding protein 3-like-1 (Creb3l1) transmembrane transcription factor, as deletion of the murine CREB3L1 results in osteopenic animals with limited capacity to repair bone after a fracture. Creb3l1 undergoes regulated intramembrane proteolysis (RIP) to release the N-terminal transcription activating (TA) fragment that enters the nucleus and regulates the expression of target genes. METHODS: To expand our understanding of Creb3l1's role in skeletal development and skeletal patterning, we aimed to generate animals expressing only the TA fragment of Creb3l1 lacking the transmembrane domain and thereby not regulated through RIP. However, the CRISPR/Cas9-mediated genome editing in zebrafish Danio rerio caused a frameshift mutation that added 56 random amino acids at the C-terminus of the TA fragment (TA+), making it unable to enter the nucleus. Thus, TA+ does not regulate transcription, and the creb3l1TA+/TA+ fish do not mediate creb3l1-dependent transcription. RESULTS: We document that the creb3l1TA+/TA+ fish exhibit defects in the patterning of caudal fin lepidotrichia, with significantly distalized points of proximal bifurcation and decreased secondary bifurcations. Moreover, using the caudal fin amputation model, we show that creb3l1TA+/TA+ fish have decreased regeneration and that their regenerates replicate the distalization and bifurcation defects observed in intact fins of creb3l1TA+/TA+ animals. These defects correlate with altered expression of the shha and ptch2 components of the Sonic Hedgehog signaling pathway in creb3l1TA+/TA+ regenerates. CONCLUSION: Together, our results uncover a previously unknown intersection between Creb3l1 and the Sonic Hedgehog pathway and document a novel role of Creb3l1 in tissue patterning.

8.
J Virol ; 95(2)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33087467

RESUMEN

Enterovirus replication requires the cellular protein GBF1, a guanine nucleotide exchange factor for small Arf GTPases. When activated, Arfs associate with membranes, where they regulate numerous steps of membrane homeostasis. The requirement for GBF1 implies that Arfs are important for replication, but which of the different Arfs function(s) during replication remains poorly understood. Here, we established cell lines expressing each of the human Arfs fused to a fluorescent tag and investigated their behavior during enterovirus infection. Arf1 was the first to be recruited to the replication organelles, where it strongly colocalized with the viral antigen 2B and mature virions but not double-stranded RNA. By the end of the infectious cycle, Arf3, Arf4, Arf5, and Arf6 were also concentrated on the replication organelles. Once on the replication membranes, all Arfs except Arf3 were no longer sensitive to inhibition of GBF1, suggesting that in infected cells they do not actively cycle between GTP- and GDP-bound states. Only the depletion of Arf1, but not other class 1 and 2 Arfs, significantly increased the sensitivity of replication to GBF1 inhibition. Surprisingly, depletion of Arf6, a class 3 Arf, normally implicated in plasma membrane events, also increased the sensitivity to GBF1 inhibition. Together, our results suggest that GBF1-dependent Arf1 activation directly supports the development and/or functioning of the replication complexes and that Arf6 plays a previously unappreciated role in viral replication. Our data reveal a complex pattern of Arf activation in enterovirus-infected cells that may contribute to the resilience of viral replication in different cellular environments.IMPORTANCE Enteroviruses include many known and emerging pathogens, such as poliovirus, enteroviruses 71 and D68, and others. However, licensed vaccines are available only against poliovirus and enterovirus 71, and specific anti-enterovirus therapeutics are lacking. Enterovirus infection induces the massive remodeling of intracellular membranes and the development of specialized domains harboring viral replication complexes, replication organelles. Here, we investigated the roles of small Arf GTPases during enterovirus infection. Arfs control distinct steps in intracellular membrane traffic, and one of the Arf-activating proteins, GBF1, is a cellular factor required for enterovirus replication. We found that all Arfs expressed in human cells, including Arf6, normally associated with the plasma membrane, are recruited to the replication organelles and that Arf1 appears to be the most important Arf for enterovirus replication. These results document the rewiring of the cellular membrane pathways in infected cells and may provide new ways of controlling enterovirus infections.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Infecciones por Enterovirus/metabolismo , Enterovirus/fisiología , Compartimentos de Replicación Viral/metabolismo , Factores de Ribosilacion-ADP/genética , Antígenos Virales/metabolismo , Enterovirus/clasificación , Infecciones por Enterovirus/virología , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Viral/metabolismo , Replicación Viral
9.
Am J Physiol Cell Physiol ; 319(4): C667-C674, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32783652

RESUMEN

The endoplasmic reticulum protein Jagunal (JAGN1) was first identified as a requirement for Drosophila melanogaster oocyte development. Subsequent studies in human patients linked mutations in JAGN1 to severe congenital neutropenia, as well as a broad range of additional symptoms, suggesting that JAGN1 function is required in many tissues. Moreover, JAGN1 orthologs are found throughout animal and plant phylogeny, suggesting that JAGN1 supports fundamental cellular processes not restricted to egg development or neutrophil function. JAGN1 lacks sequence similarity or recognizable domains other than a coatomer protein complex I-binding motif, and its cellular function is currently unknown. JAGN1 shares a tetraspanning membrane topology with two families of known cargo transporters: the tetraspanins and the endoplasmic reticulum vesicle (Erv) proteins. Herein, we discuss the similarities between JAGN1, tetraspanins, and Ervs and, based on those, suggest a role for JAGN1 in facilitating the traffic of cell-restricted and ubiquitously expressed proteins at the endoplasmic reticulum-Golgi interface.


Asunto(s)
Proteínas de Drosophila/genética , Retículo Endoplásmico/genética , Proteínas de la Membrana/genética , Oocitos/crecimiento & desarrollo , Animales , Proteína Coatómero/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Aparato de Golgi/genética , Humanos , Complejos Multiproteicos/genética , Oocitos/metabolismo , Filogenia , Dominios Proteicos/genética , Tetraspaninas/genética
10.
Am J Physiol Cell Physiol ; 319(2): C404-C418, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32520609

RESUMEN

The ADP-ribosylation factor (ARF) superfamily of regulatory GTPases, including both the ARF and ARF-like (ARL) proteins, control a multitude of cellular functions, including aspects of vesicular traffic, lipid metabolism, mitochondrial architecture, the assembly and dynamics of the microtubule and actin cytoskeletons, and other pathways in cell biology. Considering their general utility, it is perhaps not surprising that increasingly ARF/ARLs have been found in connection to primary cilia. Here, we critically evaluate the current knowledge of the roles four ARF/ARLs (ARF4, ARL3, ARL6, ARL13B) play in cilia and highlight key missing information that would help move our understanding forward. Importantly, these GTPases are themselves regulated by guanine nucleotide exchange factors (GEFs) that activate them and by GTPase-activating proteins (GAPs) that act as both effectors and terminators of signaling. We believe that the identification of the GEFs and GAPs and better models of the actions of these GTPases and their regulators will provide a much deeper understanding and appreciation of the mechanisms that underly ciliary functions and the causes of a number of human ciliopathies.


Asunto(s)
Factores de Ribosilacion-ADP/genética , Cilios/genética , Ciliopatías/genética , GTP Fosfohidrolasas/genética , Factores de Ribosilacion-ADP/clasificación , Cilios/metabolismo , Ciliopatías/patología , Citoesqueleto/genética , GTP Fosfohidrolasas/clasificación , Proteínas Activadoras de GTPasa/genética , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Microtúbulos/genética , Transducción de Señal/genética
11.
J Cell Sci ; 131(3)2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29361542

RESUMEN

ADP-ribosylation factors (ARF) GTPases are activated by guanine nucleotide exchange factors (GEFs) to support cellular homeostasis. Key to understanding spatio-temporal regulation of ARF signaling is the mechanism of GEF recruitment to membranes. Small GEFs are recruited through phosphoinositide (PIP) binding by a pleckstrin homology (PH) domain downstream from the catalytic Sec7 domain (Sec7d). The large GEFs lack PH domains, and their recruitment mechanisms are poorly understood. We probed Golgi recruitment of GBF1, a GEF catalyzing ARF activation required for Golgi homeostasis. We show that the homology downstream of Sec7d-1 (HDS1) regulates Golgi recruitment of GBF1. We document that GBF1 binds phosphoinositides, preferentially PI3P, PI4P and PI(4,5)P2, and that lipid binding requires the HDS1 domain. Mutations within HDS1 that reduce GBF1 binding to specific PIPs in vitro inhibit GBF1 targeting to Golgi membranes in cells. Our data imply that HDS1 and PH domains are functionally analogous in that each uses lipid-based membrane information to regulate GEF recruitment. Lipid-based recruitment of GBF1 extends the paradigm of lipid regulation to small and large GEFs and suggests that lipid-based mechanisms evolved early during GEF diversification. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Membranas Intracelulares/metabolismo , Fosfatidilinositoles/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Células HeLa , Homeostasis , Humanos , Unión Proteica , Dominios Proteicos
12.
J Virol ; 93(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31375590

RESUMEN

The replication of many positive-strand RNA viruses [(+)RNA viruses] depends on the cellular protein GBF1, but its role in the replication process is not clear. In uninfected cells, GBF1 activates small GTPases of the Arf family and coordinates multiple steps of membrane metabolism, including functioning of the cellular secretory pathway. The nonstructural protein 3A of poliovirus and related viruses has been shown to directly interact with GBF1, likely mediating its recruitment to the replication complexes. Surprisingly, viral mutants with a severely reduced level of 3A-GBF1 interaction demonstrate minimal replication defects in cell culture. Here, we systematically investigated the conserved elements of GBF1 to understand which determinants are important to support poliovirus replication. We demonstrate that multiple GBF1 mutants inactive in cellular metabolism could still be fully functional in the replication complexes. Our results show that the Arf-activating property, but not the primary structure of the Sec7 domain, is indispensable for viral replication. They also suggest a redundant mechanism of recruitment of GBF1 to the replication sites, which is dependent not only on direct interaction of the protein with the viral protein 3A but also on determinants located in the noncatalytic C-terminal domains of GBF1. Such a double-targeting mechanism explains the previous observations of the remarkable tolerance of different levels of GBF1-3A interaction by the virus and likely constitutes an important element of the resilience of viral replication.IMPORTANCE Enteroviruses are a vast group of viruses associated with diverse human diseases, but only two of them could be controlled with vaccines, and effective antiviral therapeutics are lacking. Here, we investigated in detail the contribution of a cellular protein, GBF1, in the replication of poliovirus, a representative enterovirus. GBF1 supports the functioning of cellular membrane metabolism and is recruited to viral replication complexes upon infection. Our results demonstrate that the virus requires a limited subset of the normal GBF1 functions and reveal the elements of GBF1 essential to support viral replication under different conditions. Since diverse viruses often rely on the same cellular proteins for replication, understanding the mechanisms by which these proteins support infection is essential for the development of broad-spectrum antiviral therapeutics.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Poliovirus/fisiología , Replicación Viral , Factor 1 de Ribosilacion-ADP/metabolismo , Proteínas Activadoras de GTPasa/genética , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Mutación , Poliomielitis/metabolismo , Poliomielitis/virología , Poliovirus/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas del Núcleo Viral/metabolismo
13.
J Virol ; 93(19)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31270230

RESUMEN

Cellular and viral factors participate in the replication cycle of rotavirus. We report that the guanine nucleotide exchange factor GBF1, which activates the small GTPase Arf1 to induce COPI transport processes, is required for rotavirus replication since knocking down GBF1 expression by RNA interference or inhibiting its activity by treatment with brefeldin A (BFA) or Golgicide A (GCA) significantly reduces the yield of infectious viral progeny. This reduction in virus yield was related to a block in virus assembly, since in the presence of either BFA or GCA, the assembly of infectious mature triple-layered virions was significantly prevented and only double-layered particles were detected. We report that the catalytic activity of GBF1, but not the activation of Arf1, is essential for the assembly of the outer capsid of rotavirus. We show that both BFA and GCA, as well as interfering with the synthesis of GBF1, alter the electrophoretic mobility of glycoproteins VP7 and NSP4 and block the trimerization of the virus surface protein VP7, a step required for its incorporation into virus particles. Although a posttranslational modification of VP7 (other than glycosylation) could be related to the lack of trimerization, we found that NSP4 might also be involved in this process, since knocking down its expression reduces VP7 trimerization. In support, recombinant VP7 protein overexpressed in transfected cells formed trimers only when cotransfected with NSP4.IMPORTANCE Rotavirus, a member of the family Reoviridae, is the major cause of severe diarrhea in children and young animals worldwide. Despite significant advances in the characterization of the biology of this virus, the mechanisms involved in morphogenesis of the virus particle are still poorly understood. In this work, we show that the guanine nucleotide exchange factor GBF1, relevant for COPI/Arf1-mediated cellular vesicular transport, participates in the replication cycle of the virus, influencing the correct processing of viral glycoproteins VP7 and NSP4 and the assembly of the virus surface proteins VP7 and VP4.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Interacciones Huésped-Patógeno , Rotavirus/crecimiento & desarrollo , Ensamble de Virus , Replicación Viral , Factor 1 de Ribosilacion-ADP/metabolismo , Animales , Línea Celular , Inhibidores Enzimáticos/metabolismo , Técnicas de Silenciamiento del Gen , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Humanos , Macaca mulatta , Carga Viral , Proteínas Virales/metabolismo
14.
J Cell Sci ; 130(24): 4155-4167, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29093023

RESUMEN

Many secretory cells increase the synthesis and secretion of cargo proteins in response to specific stimuli. How cells couple increased cargo load with a coordinate rise in secretory capacity to ensure efficient transport is not well understood. We used thyroid cells stimulated with thyrotropin (TSH) to demonstrate a coordinate increase in the production of thyroid-specific cargo proteins and ER-Golgi transport factors, and a parallel expansion of the Golgi complex. TSH also increased expression of the CREB3L1 transcription factor, which alone caused amplified transport factor levels and Golgi enlargement. Furthermore, CREB3L1 potentiated the TSH-induced increase in Golgi volume. A dominant-negative CREB3L1 construct hampered the ability of TSH to induce Golgi expansion, implying that this transcription factor contributes to Golgi expansion. Our findings support a model in which CREB3L1 acts as a downstream effector of TSH to regulate the expression of cargo proteins, and simultaneously increases the synthesis of transport factors and the expansion of the Golgi to synchronize the rise in cargo load with the amplified capacity of the secretory pathway.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Aparato de Golgi/genética , Proteínas del Tejido Nervioso/genética , Glándula Tiroides/metabolismo , Tirotropina/genética , Línea Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica/genética , Aparato de Golgi/metabolismo , Humanos , Proteínas del Tejido Nervioso/metabolismo , Vías Secretoras/genética , Tirotropina/metabolismo
15.
Am J Physiol Cell Physiol ; 314(6): C675-C689, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29443553

RESUMEN

Cellular life requires the activation of the ADP-ribosylation factors (ARFs) by Golgi brefeldin A-resistant factor 1 (GBF1), a guanine nucleotide exchange factor (GEF) with a highly conserved catalytic Sec7 domain (Sec7d). In addition to the Sec7d, GBF1 contains other conserved domains whose functions remain unclear. Here, we focus on HDS2 (homology downstream of Sec7d 2) domain because the L1246R substitution within the HDS2 α-helix 5 of the zebrafish GBF1 ortholog causes vascular hemorrhaging and embryonic lethality (13). To dissect the structure/function relationships within HDS2, we generated six variants, in which the most conserved residues within α-helices 1, 2, 4, and 6 were mutated to alanines. Each HDS2 mutant was assessed in a cell-based "replacement" assay for its ability to support cellular functions normally supported by GBF1, such as maintaining Golgi homeostasis, facilitating COPI recruitment, supporting secretion, and sustaining cellular viability. We show that cells treated with the pharmacological GBF1 inhibitor brefeldin A (BFA) and expressing a BFA-resistant GBF1 variant with alanine substitutions of RDR1168 or LF1266 are compromised in Golgi homeostasis, impaired in ARF activation, unable to sustain secretion, and defective in maintaining cellular viability. To gain insight into the molecular mechanism of this dysfunction, we assessed the ability of each GBF1 mutant to target to Golgi membranes and found that mutations in RDR1168 and LF1266 significantly decrease targeting efficiency. Thus, these residues within α-helix 2 and α-helix 6 of the HDS2 domain in GBF1 are novel regulatory determinants that support GBF1 cellular function by impacting the Golgi-specific membrane association of GBF1.


Asunto(s)
Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Pez Cebra/metabolismo , Secuencias de Aminoácidos , Supervivencia Celular , Proteína Coat de Complejo I/metabolismo , Secuencia Conservada , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Células HeLa , Homeostasis , Humanos , Mutación , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Vías Secretoras , Relación Estructura-Actividad , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
16.
Traffic ; 16(2): 148-71, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25406594

RESUMEN

Tethering factors regulate the targeting of membrane-enclosed vesicles under the control of Rab GTPases. p115, a golgin family tether, has been shown to participate in multiple stages of ER/Golgi transport. Despite extensive study, the mechanism of action of p115 is poorly understood. SNARE proteins make up the machinery for membrane fusion, and strong evidence shows that function of p115 is directly linked to its interaction with SNAREs. Using a gel filtration binding assay, we have demonstrated that in solution p115 stably interacts with ER/Golgi SNAREs rbet1 and sec22b, but not membrin and syntaxin 5. These binding preferences stemmed from selectivity of p115 for monomeric SNARE motifs as opposed to SNARE oligomers. Soluble monomeric rbet1 can compete off p115 from coat protein II (COPII) vesicles. Furthermore, excess p115 inhibits p115 function in trafficking. We conclude that monomeric SNAREs are a major binding site for p115 on COPII vesicles, and that p115 dissociates from its SNARE partners upon SNAREpin assembly. Our results suggest a model in which p115 forms a mixed p115/SNARE helix bundle with a monomeric SNARE, facilitates the binding activity and/or concentration of the SNARE at prefusion sites and is subsequently ejected as SNARE complex formation and fusion proceed.


Asunto(s)
Proteínas Qc-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Sitios de Unión , Células CHO , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Cricetinae , Cricetulus , Proteínas de la Matriz de Golgi , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , Proteínas Qc-SNARE/química , Proteínas R-SNARE/química , Ratas
17.
Am J Respir Cell Mol Biol ; 54(3): 359-69, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26222144

RESUMEN

Proteases are important regulators of pulmonary remodeling and airway inflammation. Recently, we have characterized the enzyme prolyl endopeptidase (PE), a serine peptidase, as a critical protease in the generation of the neutrophil chemoattractant tripeptide Pro-Gly-Pro (PGP) from collagen. However, PE has been characterized as a cytosolic enzyme, and the mechanism mediating PE release extracellularly remains unknown. We examined the role of exosomes derived from airway epithelia as a mechanism for PE release and the potential extracellular signals that regulate the release of these exosomes. We demonstrate a specific regulatory pathway of exosome release from airway epithelia and identify PE as novel exosome cargo. LPS stimulation of airway epithelial cells induces release of PE-containing exosomes, which is significantly attenuated by small interfering RNA depletion of Toll-like receptor 4 (TLR4). These differences were recapitulated upon intratracheal LPS administration in mice competent versus deficient for TLR4 signaling. Finally, sputum samples from subjects with cystic fibrosis colonized with Pseudomonas aeruginosa demonstrate elevated exosome content and increased PE levels. This TLR4-based mechanism highlights the first report of nonstochastic release of exosomes in the lung and couples TLR4 activation with matrikine generation. The increased quantity of these proteolytic exosomes in the airways of subjects with chronic lung disease highlights a new mechanism of injury and inflammation in the pathogenesis of pulmonary disorders.


Asunto(s)
Bronquios/enzimología , Fibrosis Quística/enzimología , Células Epiteliales/enzimología , Exosomas/enzimología , Proteínas Mitocondriales/metabolismo , Serina Endopeptidasas/metabolismo , Receptor Toll-Like 4/metabolismo , Adulto , Animales , Bronquios/efectos de los fármacos , Bronquios/microbiología , Estudios de Casos y Controles , Línea Celular , Fibrosis Quística/genética , Fibrosis Quística/microbiología , Relación Dosis-Respuesta a Droga , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Exosomas/efectos de los fármacos , Exosomas/microbiología , Femenino , Humanos , Lipopolisacáridos/farmacología , Masculino , Ratones Endogámicos C3H , Ratones Noqueados , Prolil Oligopeptidasas , Pseudomonas aeruginosa/aislamiento & purificación , Interferencia de ARN , Transducción de Señal , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/genética , Transfección , Adulto Joven
18.
Am J Physiol Cell Physiol ; 310(6): C456-69, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26718629

RESUMEN

Members of the large Sec7 domain-containing Arf guanine nucleotide exchange factor (GEF) family have been shown to dimerize through their NH2-terminal dimerization and cyclophilin binding (DCB) and homology upstream of Sec7 (HUS) domains. However, the importance of dimerization in GEF localization and function has not been assessed. We generated a GBF1 mutant (91/130) in which two residues required for oligomerization (K91 and E130 within the DCB domain) were replaced with A and assessed the effects of these mutations on GBF1 localization and cellular functions. We show that 91/130 is compromised in oligomerization but that it targets to the Golgi in a manner indistinguishable from wild-type GBF1 and that it rapidly exchanges between the cytosolic and membrane-bound pools. The 91/130 mutant appears active as it integrates within the functional network at the Golgi, supports Arf activation and COPI recruitment, and sustains Golgi homeostasis and cargo secretion when provided as a sole copy of functional GBF1 in cells. In addition, like wild-type GBF1, the 91/130 mutant supports poliovirus RNA replication, a process requiring GBF1 but believed to be independent of GBF1 catalytic activity. However, oligomerization appears to stabilize GBF1 in cells, and the 91/130 mutant is degraded faster than the wild-type GBF1. Our data support a model in which oligomerization is not a key regulator of GBF1 activity but impacts its function by regulating the cellular levels of GBF1.


Asunto(s)
Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Línea Celular Tumoral , Proteína Coat de Complejo I/metabolismo , Citosol/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Unión Proteica/fisiología , Proteolisis
19.
J Cell Sci ; 126(Pt 23): 5313-6, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24293329

RESUMEN

A FASEB Summer Research Conference entitled 'Arf and Rab family G proteins' was held in July 2013 at Snowmass Village, Snowmass, Colorado. Arfs and Rabs are two families of GTPases that control membrane trafficking in eukaryotic cells, and increasing evidence indicates that their functions are tightly coordinated. Because many workers in this field have focused on only one family, this meeting was designed to integrate our understanding of the two families. The conference was organized by Elizabeth Sztul (University of Alabama, Birmingham, USA) and Jim Casanova (University of Virginia, Charlottesville, USA), and provided an opportunity for approximately 90 scientists to communicate their work and discuss future directions for the field. The talks highlighted the structural, functional and regulatory properties of Arf and Rab GTPases and the need to develop coordinated approaches to investigate them. Here, we present the major themes that emerged from the meeting.


Asunto(s)
Factores de Ribosilacion-ADP/genética , Proteínas de Unión al GTP rab/genética , Factores de Ribosilacion-ADP/química , Factores de Ribosilacion-ADP/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Transducción de Señal , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/metabolismo
20.
J Virol ; 88(17): 9478-89, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24920802

RESUMEN

Viruses are obligatory intracellular parasites and utilize host elements to support key viral processes, including penetration of the plasma membrane, initiation of infection, replication, and suppression of the host's antiviral defenses. In this review, we focus on picornaviruses, a family of positive-strand RNA viruses, and discuss the mechanisms by which these viruses hijack the cellular machinery to form and operate membranous replication complexes. Studies aimed at revealing factors required for the establishment of viral replication structures identified several cellular-membrane-remodeling proteins and led to the development of models in which the virus used a preexisting cellular-membrane-shaping pathway "as is" for generating its replication organelles. However, as more data accumulate, this view is being increasingly questioned, and it is becoming clearer that viruses may utilize cellular factors in ways that are distinct from the normal functions of these proteins in uninfected cells. In addition, the proteincentric view is being supplemented by important new studies showing a previously unappreciated deep remodeling of lipid homeostasis, including extreme changes to phospholipid biosynthesis and cholesterol trafficking. The data on viral modifications of lipid biosynthetic pathways are still rudimentary, but it appears once again that the viruses may rewire existing pathways to generate novel functions. Despite remarkable progress, our understanding of how a handful of viral proteins can completely overrun the multilayered, complex mechanisms that control the membrane organization of a eukaryotic cell remains very limited.


Asunto(s)
Membrana Celular/metabolismo , Membrana Celular/virología , Homeostasis , Interacciones Huésped-Patógeno , Picornaviridae/fisiología , Replicación Viral , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA