Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Clin Exp Allergy ; 53(4): 429-442, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36453463

RESUMEN

BACKGROUND: Although children can frequently experience a cough that affects their quality of life, few epidemiological studies have explored cough without a cold during childhood. OBJECTIVES: The objective of the study was to describe the latent class trajectories of cough from one to 10 years old and analyse their association with wheezing, atopy and allergic diseases. METHODS: Questions about cough, wheeze and allergic diseases were asked at 1, 1.5, 2, 3, 4, 5, 6 and 10 years of age in the European prospective cohort of Protection against Allergy: STUdy in Rural Environment (PASTURE). Specific IgE assays were performed at 10 years of age. Questions regarding a cough without a cold were used to build a latent class model of cough over time. RESULTS: Among the 961 children included in the study, apart from the never/infrequent trajectory (59.9%), eight trajectories of cough without a cold were identified: five grouped acute transient classes (24.1%), moderate transient (6.8%), late persistent (4.8%) and early persistent (4.4%). Compared with the never/infrequent trajectory, the other trajectories were significantly associated with wheezing, asthma and allergic rhinitis. For asthma, the strongest association was with the early persistent trajectory (ORa  = 31.00 [14.03-68.51]), which was inversely associated with farm environment (ORa  = 0.39 [0.19-0.77]) and had a high prevalence of cough triggers and unremitting wheeze. Late and early persistent trajectories were also associated with food allergy. Atopic sensitization was only associated with the late persistent trajectory. CONCLUSION: Late and early persistent coughs without a cold are positively associated with atopic respiratory diseases and food allergy. Children having recurrent cough without a cold with night cough and triggers would benefit from an asthma and allergy assessment. Growing up on a farm is associated with reduced early persistent cough.


Asunto(s)
Asma , Hipersensibilidad a los Alimentos , Hipersensibilidad Inmediata , Niño , Preescolar , Humanos , Lactante , Tos/epidemiología , Tos/etiología , Estudios Prospectivos , Ruidos Respiratorios/etiología , Calidad de Vida , Asma/epidemiología , Asma/etiología , Hipersensibilidad a los Alimentos/epidemiología , Factores de Riesgo
2.
Pediatr Allergy Immunol ; 34(4): e13945, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37102387

RESUMEN

BACKGROUND: Urban-related nature exposures are suggested to contribute to the rising prevalence of allergic diseases despite little supporting evidence. Our aim was to evaluate the impact of 12 land cover classes and two greenness indices around homes at birth on the development of doctor-diagnosed eczema by the age of 2 years, and the influence of birth season. METHODS: Data from 5085 children were obtained from six Finnish birth cohorts. Exposures were provided by the Coordination of Information on the Environment in three predefined grid sizes. Adjusted logistic regression was run in each cohort, and pooled effects across cohorts were estimated using fixed or random effect meta-analyses. RESULTS: In meta-analyses, neither greenness indices (NDVI or VCDI, 250 m × 250 m grid size) nor residential or industrial/commercial areas were associated with eczema by age of 2 years. Coniferous forest (adjusted odds ratio 1.19; 95% confidence interval 1.01-1.39 for the middle and 1.16; 0.98-1.28 for the highest vs. lowest tertile) and mixed forest (1.21; 1.02-1.42 middle vs. lowest tertile) were associated with elevated eczema risk. Higher coverage with agricultural areas tended to associate with elevated eczema risk (1.20; 0.98-1.48 vs. none). In contrast, transport infrastructure was inversely associated with eczema (0.77; 0.65-0.91 highest vs. lowest tertile). CONCLUSION: Greenness around the home during early childhood does not seem to protect from eczema. In contrast, nearby coniferous and mixed forests may increase eczema risk, as well as being born in spring close to forest or high-green areas.


Asunto(s)
Eccema , Hipersensibilidad , Niño , Recién Nacido , Femenino , Humanos , Preescolar , Cohorte de Nacimiento , Finlandia/epidemiología , Eccema/epidemiología , Hipersensibilidad/epidemiología , Estaciones del Año
3.
Pediatr Allergy Immunol ; 33(10): e13864, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36282133

RESUMEN

BACKGROUND AND AIMS: Moisture damage increases the risk for respiratory disorders in childhood. Our aim was to determine whether early age residential exposure to inspector-observed moisture damage or mold is associated with different wheezing phenotypes later in childhood. METHODS: Building inspections were performed by civil engineers, in a standardized manner, in the children's homes-mostly single family and row houses (N = 344)-in the first year of life. The children were followed up with repeated questionnaires until the age of 6 years and wheezing phenotypes-never/infrequent, transient, intermediate, late onset, and persistent-were defined using latent class analyses. The multinomial logistic regression model was used for statistical analysis. RESULTS: A total of 63% (n = 218) had infrequent or no wheeze, 23% (n = 80) had transient and 9.6% (n = 21) had a persistent wheeze. Due to the low prevalence, results for intermediate (3.8%, n = 13) and late-onset wheeze (3.5%, n = 12) were not further evaluated. Most consistent associations were observed with the persistent wheeze phenotype with an adjusted odds ratio (95% confidence intervals) 2.04 (0.67-6.18) for minor moisture damage with or without mold spots (present in 23.8% of homes) and 3.68 (1.04-13.05) for major damage or any moisture damage with visible mold in a child's main living areas (present in 13.4% of homes). Early-age moisture damage or mold in the kitchen was associated with transient wheezing. CONCLUSION: At an early age, residential exposure to moisture damage or mold, can be dose-dependently associated especially with persistent wheezing phenotype later in childhood.


Asunto(s)
Cohorte de Nacimiento , Ruidos Respiratorios , Humanos , Finlandia/epidemiología , Fenotipo , Hongos , Factores de Riesgo
4.
Indoor Air ; 32(3): e13011, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35347789

RESUMEN

Little is known about the potential role of indoor plants in shaping the indoor microbiota. Within the ENVIRONAGE birth cohort, we collected settled dust and performed 16S and ITS amplicon sequencing and qPCR measurements to characterize the indoor microbiota, including bacterial and fungal loads and Chao1 richness, Shannon, and Simpson diversity indices. For 155 households, we obtained information on the number of indoor plants. We performed linear regression models adjusted for several a priori chosen covariables. Overall, an increase in indoor plants and density was associated with increased microbial diversity, but not load. For example, we found an increase of 64 (95%CI:3;125) and 26 (95%CI:4;48) units of bacterial and fungal taxa richness, respectively, in households with more than three plants compared to no plants. Our results support the hypothesis that indoor plants can enrich indoor microbial diversity, while impacts on microbial loads are not obvious.


Asunto(s)
Contaminación del Aire Interior , Microbiota , Contaminación del Aire Interior/análisis , Bacterias , Polvo/análisis , Hongos , Humanos
5.
Environ Sci Technol ; 55(3): 1864-1875, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33450149

RESUMEN

Carpet dust contains microbial and chemical material that can impact early childhood health. Infants may be exposed to greater quantities of resuspended dust, given their close proximity to floor surfaces. Chamber experiments with a robotic infant were integrated with a material balance model to provide new fundamental insights into the size-dependency of infant crawling-induced particle resuspension and exposure. The robotic infant was exposed to resuspended particle concentrations from 105 to 106 m-3 in the near-floor (NF) microzone during crawling, with concentrations generally decreasing following vacuum cleaning of the carpets. A pronounced vertical variation in particle concentrations was observed between the NF microzone and bulk air. Resuspension fractions for crawling are similar to those for adult walking, with values ranging from 10-6 to 10-1 and increasing with particle size. Meaningful amounts of dust are resuspended during crawling, with emission rates of 0.1 to 2 × 104 µg h-1. Size-resolved inhalation intake fractions ranged from 5 to 8 × 103 inhaled particles per million resuspended particles, demonstrating that a significant fraction of resuspended particles can be inhaled. A new exposure metric, the dust-to-breathing zone transport efficiency, was introduced to characterize the overall probability of a settled particle being resuspended and delivered to the respiratory airways. Values ranged from less than 0.1 to over 200 inhaled particles per million settled particles, increased with particle size, and varied by over 2 orders of magnitude among 12 carpet types.


Asunto(s)
Contaminación del Aire Interior , Pisos y Cubiertas de Piso , Niño , Preescolar , Polvo , Humanos , Lactante , Tamaño de la Partícula
6.
Environ Res ; 201: 111543, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34157273

RESUMEN

BACKGROUND: The influence of outdoor green space on microbial communities indoors has scarcely been investigated. Here, we study the associations between nearby residential green space and residential indoor microbiota. METHODS: We collected settled dust from 176 living rooms of participants of the ENVIRONAGE birth cohort. We performed 16S and ITS amplicon sequencing, and quantitative PCR measurements of total bacterial and fungal loads to calculate bacterial and fungal diversity measures (Chao1 richness, Shannon and Simpson diversity indices) and relative abundance of individual taxa. Green spaces were estimated within 50m and 100m buffers around the residential address. We defined total residential green space using high-resolution land-cover data, further stratified in low-growing (height<3m) and high-growing green (height>3m). We used land-use data to calculate the residential nature. We ran linear regression models, adjusting for confounders and other potential determinants. Results are expressed as units change for an interquartile range (IQR) increase in residential green space and their 95% confidence intervals (CI). RESULTS: After adjustment, we observed statistically significant associations between the indoor microbial diversity indices and nearby residential green space. For bacteria, the Shannon index was directly associated with residential nature (e.g. 0.08 units increase (CI:0.02,0.13) per IQR increase in nature within a 50m buffer). Fungal diversity was directly associated with high-growing residential green and inversely with low-growing green. For example, an IQR increase in high-growing green within a 50m buffer was associated with increases in 0.14 (CI:0.01,0.27) and 0.02 (CI:0.008,0.04) units in the Shannon and Simpson indices, respectively. CONCLUSIONS: Nearby green space determines the diversity of indoor environment microbiota, and the type of green differently impacts bacterial and fungal diversity. Further research is needed to investigate in more detail possible microbial taxa compositions underlying the observed changes in indoor microbiota diversity and to explore their contribution to beneficial health effects associated with green space exposure.


Asunto(s)
Microbiota , Parques Recreativos , Bacterias/genética , Polvo/análisis , Hongos/genética , Humanos
7.
Environ Res ; 196: 110835, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33582132

RESUMEN

BACKGROUND: Microbial exposures in early childhood direct the development of the immune system and their diversity may influence the risk of allergy development. We aimed to determine whether the indoor microbial diversity at early-life is associated with the development of allergic rhinitis and inhalant atopy. METHODS: The study population included children within two birth cohorts: Finnish rural-suburban LUKAS (N = 312), and German urban LISA from Munich and Leipzig study centers (N = 248). The indoor microbiota diversity (Chao1 richness and Shannon entropy) was characterized from floor dust samples collected at the child age of 2-3 months by Illumina MiSeq sequencing of bacterial and fungal DNA amplicons. Allergic rhinitis and inhalant atopy were determined at the age of 10 years and analyzed using logistic regression models. RESULTS: High bacterial richness (aOR 0.19, 95%CI 0.09-0.42 for middle and aOR 0.12, 95%CI 0.05-0.29 for highest vs. lowest tertile) and Shannon entropy were associated with lower risk of allergic rhinitis in LISA, and similar trend was seen in LUKAS. We observed some significant associations between bacterial and fungal diversity measured and the risk of inhalant atopy, but the associations were inconsistent between the two cohorts. High bacterial diversity tended to be associated with increased risk of inhalant atopy in rural areas, but lower risk in more urban areas. Fungal diversity tended to be associated with increased risk of inhalant atopy only in LISA. CONCLUSIONS: Our study suggests that a higher bacterial diversity may reduce the risk of allergic rhinitis later in childhood. The environment-dependent heterogeneity in the associations with inhalant atopy - visible here as inconsistent results between two differing cohorts - suggests that specific constituents of the diversity may be relevant.


Asunto(s)
Hipersensibilidad Inmediata , Microbiota , Rinitis Alérgica , Alérgenos , Niño , Preescolar , Polvo/análisis , Hongos , Humanos , Lactante , Rinitis Alérgica/epidemiología
8.
Indoor Air ; 31(6): 1952-1966, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34151461

RESUMEN

Moisture-damaged buildings are associated with respiratory symptoms and underlying diseases among building occupants, but the causative agent(s) remain a mystery. We first identified specific fungal and bacterial taxa in classrooms with moisture damage in Finnish and Dutch primary schools. We then investigated associations of the identified moisture damage indicators with respiratory symptoms in more than 2700 students. Finally, we explored whether exposure to specific taxa within the indoor microbiota may explain the association between moisture damage and respiratory health. Schools were assessed for moisture damage through detailed inspections, and the microbial composition of settled dust in electrostatic dustfall collectors was determined using marker-gene analysis. In Finland, there were several positive associations between particular microbial indicators (diversity, richness, individual taxa) and a respiratory symptom score, while in the Netherlands, the associations tended to be mostly inverse and statistically non-significant. In Finland, abundance of the Sphingomonas bacterial genus and endotoxin levels partially explained the associations between moisture damage and symptom score. A few microbial taxa explained part of the associations with health, but overall, the observed associations between damage-associated individual taxa and respiratory health were limited.


Asunto(s)
Contaminación del Aire Interior , Polvo , Exposición a Riesgos Ambientales/estadística & datos numéricos , Hongos , Humanos , Instituciones Académicas , Estudiantes
9.
Indoor Air ; 30(3): 433-444, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31883508

RESUMEN

In vitro models mimicking the human respiratory system are essential when investigating the toxicological effects of inhaled indoor air particulate matter (PM). We present a pulmonary cell culture model for studying indoor air PM toxicity. We exposed normal human bronchial epithelial cells, grown on semi-permeable cell culture membranes, to four doses of indoor air PM in the air-liquid interface. We analyzed the chemokine interleukin-8 concentration from the cell culture medium, protein concentration from the apical wash, measured tissue electrical resistance, and imaged airway constructs using light and transmission electron microscopy. We sequenced RNA using a targeted RNA toxicology panel for 386 genes associated with toxicological responses. PM was collected from a non-complaint residential environment over 1 week. Sample collection was concomitant with monitoring size-segregated PM counts and determination of microbial levels and diversity. PM exposure was not acutely toxic for the cells, and we observed up-regulation of 34 genes and down-regulation of 17 genes when compared to blank sampler control exposure. The five most up-regulated genes were related to immunotoxicity. Despite indications of incomplete cell differentiation, this model enabled the comparison of a toxicological transcriptome associated with indoor air PM exposure.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Contaminación del Aire Interior , Modelos Biológicos , Material Particulado/toxicidad , Humanos , Transcriptoma
10.
J Allergy Clin Immunol ; 144(5): 1402-1410, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31415782

RESUMEN

BACKGROUND: Early-life indoor bacterial exposure is associated with the risk of asthma, but the roles of specific bacterial genera are poorly understood. OBJECTIVE: We sought to determine whether individual bacterial genera in indoor microbiota predict the development of asthma. METHODS: Dust samples from living rooms were collected at 2 months of age. The dust microbiota was characterized by using Illumina MiSeq sequencing amplicons of the bacterial 16S ribosomal RNA gene. Children (n = 373) were followed up for ever asthma until the age of 10.5 years. RESULTS: Richness was inversely associated with asthma after adjustments (P = .03). The phylogenetic microbiota composition in asthmatics patients' homes was characteristically different from that in nonasthmatic subjects' homes (P = .02, weighted UniFrac, adjusted association, permutational multivariate analysis of variance, PERMANOVA-S). The first 2 axis scores of principal coordinate analysis of the weighted UniFrac distance matrix were inversely associated with asthma. Of 658 genera detected in the dust samples, the relative abundances of 41 genera correlated (r > |0.4|) with one of these axes. Lactococcus genus was a risk factor for asthma (adjusted odds ratio, 1.36 [95% CI, 1.13-1.63] per interquartile range change). The abundance of 12 bacterial genera (mostly from the Actinomycetales order) was associated with lower asthma risk (P < .10), although not independently of each other. The sum relative abundance of these 12 intercorrelated genera was significantly protective and explained the majority of the association of richness with less asthma. CONCLUSION: Our data confirm that phylogenetic differences in the microbiota of infants' homes are associated with subsequent asthma risk and suggest that communities of selected bacteria are more strongly linked to asthma protection than individual bacterial taxa or mere richness.


Asunto(s)
Actinomycetales/genética , Asma/microbiología , Lactococcus/genética , Microbiota/genética , ARN Ribosómico 16S/genética , Contaminación del Aire Interior/efectos adversos , Asma/epidemiología , Niño , Preescolar , Polvo/análisis , Femenino , Finlandia/epidemiología , Estudios de Seguimiento , Humanos , Masculino , Riesgo
11.
Indoor Air ; 29(4): 686-697, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30921480

RESUMEN

We assessed 45 multifamily buildings (240 apartments) from Finland and 20 (96 apartments) from Lithuania, out of which 37 buildings in Finland and 15 buildings in Lithuania underwent energy retrofits. Building characteristics, retrofit activities, and energy consumption data were collected, and Indoor Air Quality (IAQ) parameters, including carbon monoxide (CO), nitrogen dioxide (NO2 ), formaldehyde (CH2 O), selected volatile organic compounds (benzene, toluene, ethylbenzene, and xylenes (BTEX), radon, and microbial content in settled dust were measured before and after the retrofits. After the retrofits, heating energy consumption decreased by an average of 24% and 49% in Finnish and Lithuanian buildings, respectively. After the retrofits of Finnish buildings, there was a significant increase in BTEX concentrations (estimated mean increase of 2.5 µg/m3 ), whereas significant reductions were seen in fungal (0.6-log reduction in cells/m2 /d) and bacterial (0.6-log reduction in gram-positive and 0.9-log reduction in gram-negative bacterial cells/m2 /d) concentrations. In Lithuanian buildings, radon concentrations were significantly increased (estimated mean increase of 13.8 Bq/m3 ) after the retrofits. Mechanical ventilation was associated with significantly lower CH2 O concentrations in Finnish buildings. The results and recommendations presented in this paper can inform building retrofit studies and other programs and policies aimed to improve indoor environment and health.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/prevención & control , Conservación de los Recursos Energéticos/métodos , Ventilación , Microbiología del Aire , Polvo/análisis , Ambiente Controlado , Monitoreo del Ambiente , Finlandia , Vivienda , Humanos , Lituania , Ventilación/métodos
12.
Indoor Air ; 29(2): 299-307, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30575131

RESUMEN

Exposure to moisture-damaged indoor environments is associated with adverse respiratory health effects, but responsible factors remain unidentified. In order to explore possible mechanisms behind these effects, the oxidative capacity and hemolytic activity of settled dust samples (n = 25) collected from moisture-damaged and non-damaged schools in Spain, the Netherlands, and Finland were evaluated and matched against the microbial content of the sample. Oxidative capacity was determined with plasmid scission assay and hemolytic activity by assessing the damage to isolated human red blood cells. The microbial content of the samples was measured with quantitative PCR assays for selected microbial groups and by analyzing the cell wall markers ergosterol, muramic acid, endotoxins, and glucans. The moisture observations in the schools were associated with some of the microbial components in the dust, and microbial determinants grouped together increased the oxidative capacity. Oxidative capacity was also affected by particle concentration and country of origin. Two out of 14 studied dust samples from moisture-damaged schools demonstrated some hemolytic activity. The results indicate that the microbial component connected with moisture damage is associated with increased oxidative stress and that hemolysis should be studied further as one possible mechanism contributing to the adverse health effects of moisture-damaged buildings.


Asunto(s)
Microbiología del Aire , Contaminación del Aire Interior/efectos adversos , Hemólisis , Humedad/efectos adversos , Estrés Oxidativo , Contaminación del Aire Interior/análisis , Estudios Transversales , Polvo/análisis , Endotoxinas/análisis , Monitoreo del Ambiente , Finlandia , Hongos/aislamiento & purificación , Bacterias Grampositivas/aislamiento & purificación , Humanos , Países Bajos , Reacción en Cadena de la Polimerasa , Instituciones Académicas , España
13.
Eur Respir J ; 51(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29437937

RESUMEN

Both protective and adverse effects of indoor microbial exposure on asthma have been reported, but mostly in children. To date, no study in adults has used non-targeted methods for detection of indoor bacteria followed by quantitative confirmation.A cross-sectional study of 198 asthmatic and 199 controls was conducted within the European Community Respiratory Health Survey (ECRHS) II. DNA was extracted from mattress dust for bacterial analysis using denaturing gradient gel electrophoresis (DGGE). Selected bands were sequenced and associations with asthma confirmed with four quantitative PCR (qPCR) assays.15 out of 37 bands detected with DGGE, which had at least a suggestive association (p<0.25) with asthma, were sequenced. Of the four targeted qPCRs, Clostridium cluster XI confirmed the protective association with asthma. The association was dose dependent (aOR 0.43 (95% CI 0.22-0.84) for the fourth versus first quartile, p for trend 0.009) and independent of other microbial markers. Few significant associations were observed for the three other qPCRs used.In this large international study, the level of Clostridium cluster XI was independently associated with a lower risk of prevalent asthma. Results suggest the importance of environmental bacteria also in adult asthma, but need to be confirmed in future studies.


Asunto(s)
Contaminación del Aire Interior/efectos adversos , Asma/microbiología , Clostridioides difficile/genética , Polvo/análisis , Adulto , Asma/etiología , Estudios de Casos y Controles , Estudios Transversales , ADN Bacteriano/análisis , Unión Europea , Femenino , Encuestas Epidemiológicas , Humanos , Inmunoglobulina E/sangre , Modelos Logísticos , Masculino , Persona de Mediana Edad , Análisis Multivariante
14.
Pediatr Allergy Immunol ; 29(8): 815-822, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30152886

RESUMEN

BACKGROUND: Studies conducted in farm environments suggest that diverse microbial exposure promotes children's lung health. The underlying mechanisms are unclear, and the development of asthma-preventive strategies has been delayed. More comprehensive investigation of the environment-induced immunoregulation is required for better understanding of asthma pathogenesis and prevention. Exposure to air pollution, including particulate matter (PM), is a risk factor for asthma, thus providing an excellent counterpoint for the farm-effect research. Lack of comparable data, however, complicates interpretation of the existing information. We aimed to explore the immunoregulatory effects of cattle farm dust (protective, Finland) and urban air PM (high-risk, China) for the first time using identical research methods. METHODS: We stimulated PBMCs of 4-year-old children (N = 18) with farm dust and size-segregated PM and assessed the expression of immune receptors CD80 and ILT4 on dendritic cells and monocytes as well as cytokine production of PBMCs. Environmental samples were analysed for their composition. RESULTS: Farm dust increased the percentage of cells expressing CD80 and the cytokine production of children's immune cells, whereas PM inhibited the expression of important receptors and the production of soluble mediators. Although PM samples induced parallel immune reactions, the size-fraction determined the strength of the effects. CONCLUSIONS: Our study demonstrates the significance of using the same research framework when disentangling shared and distinctive immune pathways operating in different environments. Observed stimulatory effects of farm dust and inhibitory effects of PM could shape responses towards respiratory pathogens and allergens, and partly explain differences in asthma prevalence between studied environments.


Asunto(s)
Contaminantes Atmosféricos/inmunología , Contaminación del Aire/efectos adversos , Antígeno B7-1/metabolismo , Exposición a Riesgos Ambientales/efectos adversos , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Alérgenos/inmunología , Técnicas de Cultivo de Célula , Preescolar , Citocinas/metabolismo , Granjas/estadística & datos numéricos , Femenino , Humanos , Inmunofenotipificación , Leucocitos Mononucleares/metabolismo , Masculino , Material Particulado/inmunología , Factores de Riesgo
15.
Environ Sci Technol ; 52(1): 237-247, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29144737

RESUMEN

Human-induced resuspension of floor dust is a dynamic process that can serve as a major indoor source of biological particulate matter (bioPM). Inhalation exposure to the microbial and allergenic content of indoor dust is associated with adverse and protective health effects. This study evaluates infant and adult inhalation exposures and respiratory tract deposited dose rates of resuspended bioPM from carpets. Chamber experiments were conducted with a robotic crawling infant and an adult performing a walking sequence. Breathing zone (BZ) size distributions of resuspended fluorescent biological aerosol particles (FBAPs), a bioPM proxy, were monitored in real-time. FBAP exposures were highly transient during periods of locomotion. Both crawling and walking delivered a significant number of resuspended FBAPs to the BZ, with concentrations ranging from 0.5 to 2 cm-3 (mass range: ∼50 to 600 µg/m3). Infants and adults are primarily exposed to a unimodal FBAP size distribution between 2 and 6 µm, with infants receiving greater exposures to super-10 µm FBAPs. In just 1 min of crawling or walking, 103-104 resuspended FBAPs can deposit in the respiratory tract, with an infant receiving much of their respiratory tract deposited dose in their lower airways. Per kg body mass, an infant will receive a nearly four times greater respiratory tract deposited dose of resuspended FBAPs compared to an adult.


Asunto(s)
Contaminación del Aire Interior , Exposición por Inhalación , Polvo , Humanos , Lactante , Tamaño de la Partícula , Material Particulado
16.
Indoor Air ; 28(1): 6-15, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28779500

RESUMEN

Evidence is accumulating that indoor dampness and mold are associated with the development of asthma. The underlying mechanisms remain unknown. New Zealand has high rates of both asthma and indoor mold and is ideally placed to investigate this. We conducted an incident case-control study involving 150 children with new-onset wheeze, aged between 1 and 7 years, each matched to two control children with no history of wheezing. Each participant's home was assessed for moisture damage, condensation, and mold growth by researchers, an independent building assessor and parents. Repeated measures of temperature and humidity were made, and electrostatic dust cloths were used to collect airborne microbes. Cloths were analyzed using qPCR. Children were skin prick tested for aeroallergens to establish atopy. Strong positive associations were found between observations of visible mold and new-onset wheezing in children (adjusted odds ratios ranged between 1.30 and 3.56; P ≤ .05). Visible mold and mold odor were consistently associated with new-onset wheezing in a dose-dependent manner. Measurements of qPCR microbial levels, temperature, and humidity were not associated with new-onset wheezing. The association between mold and new-onset wheeze was not modified by atopic status, suggesting a non-allergic association.


Asunto(s)
Microbiología del Aire , Hongos , Ruidos Respiratorios/etiología , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Vivienda , Humanos , Lactante , Masculino , Padres
17.
Inhal Toxicol ; 29(2): 75-81, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28330428

RESUMEN

Moisture-damaged indoor environments are thought to increase the toxicity of indoor air particulate matter (PM), indicating that a toxicological assay could be used as a method for recognizing buildings with indoor air problems. We aimed to test if our approach of analyzing the toxicity of actively collected indoor air PM in vitro differentiates moisture-damaged from non-damaged school buildings. We collected active air samples with NIOSH Bioaerosol Cyclone Samplers from moisture-damaged (index) and non-damaged (reference) school buildings (4 + 4). The teachers and pupils of the schools were administered a symptom questionnaire. Five samples of two size fractions [Stage 1 (>1.9 µm) and Stage 2 (1-1.9 µm)] were collected from each school. Mouse RAW264.7 macrophages were exposed to the collected PM for 24 h and subsequently analyzed for changes in cell metabolic activity, production of nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-6. The teachers working in the moisture-damaged schools reported respiratory symptoms such as cough (p = 0.01) and shortness of breath (p = 0.01) more often than teachers from reference schools. Toxicity of the PM sample as such did not differentiate index from reference building,s but the toxicity adjusted for the amount of the particles tended to be higher in moisture-damaged schools. Further development of the method will require identification of other confounding factors in addition to the necessity to adjust for differences in particle counts between samples.


Asunto(s)
Contaminación del Aire Interior/efectos adversos , Polvo , Humedad , Material Particulado/efectos adversos , Instituciones Académicas , Contaminación del Aire Interior/análisis , Animales , Monitoreo del Ambiente , Femenino , Estado de Salud , Humanos , Interleucina-6/metabolismo , Masculino , Ratones , Óxido Nítrico/metabolismo , Material Particulado/análisis , Células RAW 264.7 , Maestros , Estudiantes , Factor de Necrosis Tumoral alfa/metabolismo
18.
Microbiology (Reading) ; 162(11): 1895-1903, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27655355

RESUMEN

Fungal growth on indoor surfaces can decay building materials and release hazardous substances that affect indoor air quality. Despite the numerous methods available for growth determination, there is no commonly accepted standard. The goal of this study was to compare five different assay methods for the measurement of fungal growth: cultivation, MS-based determination of ergosterol, beta-N-acetylhexosaminidase activity, quantitative PCR and microscopic spore counting. Three fungal species (Aspergillus puulaauensis, Cladosporium montecillanum and Penicillium polonicum) were grown on three different building materials (two types of acoustic board and wood). Fungal load was determined at different time points. Results from all of the methods, except the spore count, showed good correlation between each other (r=0.6-0.8). Results obtained with the cultivation method had the highest variability among replicate samples (65 %), making it the least reproducible in repeated measurements. However, it also displayed the highest variability in incubation times (149 %), indicating its suitability for detecting transient changes in the physiological state of cells. Similar to the cultivation method, quantitative PCR correlated well with the other methods and had high variability in incubation times but had lower variability among replicate samples. Ergosterol and beta-N-acetylhexosaminidase enzyme activity seemed to be the methods least dependent on the physiological state of the cells. Varying growth dynamics were observed for different species over time with the different assay methods. Each one of the tests provides a different perspective on fungal quantification due to its specific responses to the various stages of fungal growth.


Asunto(s)
Materiales de Construcción/microbiología , Hongos/crecimiento & desarrollo , Micología/métodos , Supervivencia Celular , Recuento de Colonia Microbiana , Materiales de Construcción/análisis , Hongos/genética , Micología/instrumentación , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo
19.
Appl Environ Microbiol ; 82(2): 578-84, 2016 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-26546428

RESUMEN

The environmental relative moldiness index (ERMI) metric was previously developed to quantify mold contamination in U.S. homes. This study determined the applicability of the ERMI for quantifying mold and moisture damage in Finnish residences. Homes of the LUKAS2 birth cohort in Finland were visually inspected for moisture damage and mold, and vacuumed floor dust samples were collected. An ERMI analysis including 36 mold-specific quantitative PCR assays was performed on the dust samples (n = 144), and the ERMI metric was analyzed against inspection-based observations of moisture damage and mold. Our results show that the ERMI was significantly associated with certain observations of visible mold in Finnish homes but not with moisture damage. Several mold species occurred more frequently and at higher levels in Finnish than in U.S. homes. Modification of the ERMI toward Finnish conditions, using a subsample of LUKAS2 homes with and without moisture damage, resulted in a simplified metric based on 10 mold species. The Finnish ERMI (FERMI) performed substantially better in quantifying moisture and mold damage in Finnish homes, showing significant associations with various observations of visible mold, strongest when the damage was located in the child's main living area, as well as with mold odor and moisture damage. As shown in Finland, the ERMI as such is not equally well usable in different climates and geographic regions but may be remodeled to account for local outdoor and indoor fungal conditions as well as for moisture damage characteristics in a given country.


Asunto(s)
Monitoreo del Ambiente , Hongos/crecimiento & desarrollo , Hongos/aislamiento & purificación , Vivienda/normas , Estudios de Cohortes , Polvo/análisis , Finlandia , Hongos/genética , Odorantes/análisis
20.
Inhal Toxicol ; 28(11): 500-7, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27569522

RESUMEN

There is a need for toxicity tests capable of recognizing indoor environments with compromised air quality, especially in the context of moisture damage. One of the key issues is sampling, which should both provide meaningful material for analyses and fulfill requirements imposed by practitioners using toxicity tests for health risk assessment. We aimed to evaluate different existing methods of sampling indoor particulate matter (PM) to develop a suitable sampling strategy for a toxicological assay. During three sampling campaigns in moisture-damaged and non-damaged school buildings, we evaluated one passive and three active sampling methods: the Settled Dust Box (SDB), the Button Aerosol Sampler, the Harvard Impactor and the National Institute for Occupational Safety and Health (NIOSH) Bioaerosol Cyclone Sampler. Mouse RAW264.7 macrophages were exposed to particle suspensions and cell metabolic activity (CMA), production of nitric oxide (NO) and tumor necrosis factor (TNFα) were determined after 24 h of exposure. The repeatability of the toxicological analyses was very good for all tested sampler types. Variability within the schools was found to be high especially between different classrooms in the moisture-damaged school. Passively collected settled dust and PM collected actively with the NIOSH Sampler (Stage 1) caused a clear response in exposed cells. The results suggested the higher relative immunotoxicological activity of dust from the moisture-damaged school. The NIOSH Sampler is a promising candidate for the collection of size-fractionated PM to be used in toxicity testing. The applicability of such sampling strategy in grading moisture damage severity in buildings needs to be developed further in a larger cohort of buildings.


Asunto(s)
Contaminación del Aire Interior/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Contaminación del Aire Interior/efectos adversos , Animales , Monitoreo del Ambiente/instrumentación , Ratones , Óxido Nítrico/metabolismo , Material Particulado/toxicidad , Células RAW 264.7 , Instituciones Académicas , Pruebas de Toxicidad/métodos , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA