Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nano Lett ; 23(14): 6776-6783, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37343942

RESUMEN

Spin waves represent the collective excitations of the magnetization field within a magnetic material, providing dispersion curves that can be manipulated by material design and external stimuli. Bulk and surface spin waves can be excited in a thin film with positive or negative group velocities and, by incorporating a symmetry-breaking mechanism, magnetochiral features arise. Here we study the band diagram of a chiral magnonic crystal consisting of a ferromagnetic film incorporating a periodic Dzyaloshinskii-Moriya coupling via interfacial contact with an array of heavy-metal nanowires. We provide experimental evidence for a strong asymmetry of the spin wave amplitude induced by the modulated interfacial Dzyaloshinskii-Moriya interaction, which generates a nonreciprocal propagation. Moreover, we observe the formation of flat spin-wave bands at low frequencies in the band diagram. Calculations reveal that depending on the perpendicular anisotropy, the spin-wave localization associated with the flat modes occurs in the zones with or without Dzyaloshinskii-Moriya interaction.

2.
Phys Rev Lett ; 124(21): 217202, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32530667

RESUMEN

We report on the study of both perpendicular magnetic anisotropy (PMA) and Dzyaloshinskii-Moriya interaction (DMI) at an oxide/ferromagnetic metal (FM) interface, i.e., BaTiO_{3} (BTO)/CoFeB. Thanks to the functional properties of the BTO film and the capability to precisely control its growth, we are able to distinguish the dominant role of the oxide termination (TiO_{2} vs BaO) from the moderate effect of ferroelectric polarization in the BTO film, on the PMA and DMI at an oxide/FM interface. We find that the interfacial magnetic anisotropy energy of the BaO-BTO/CoFeB structure is 2 times larger than that of the TiO_{2}-BTO/CoFeB, while the DMI of the TiO_{2}-BTO/CoFeB interface is larger. We explain the observed phenomena by first principles calculations, which ascribe them to the different electronic states around the Fermi level at oxide/ferromagnetic metal interfaces and the different spin-flip process. This study paves the way for further investigation of the PMA and DMI at various oxide/FM structures and thus their applications in the promising field of energy-efficient devices.

3.
ACS Omega ; 9(16): 17977-17988, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38680339

RESUMEN

Despite the technological importance of semiconductor black phosphorus (BP) in materials science, maintaining the stability of BP crystals in organic media and protecting them from environmental oxidation remains challenging. In this study, we present the synthesis of bulk BP and the exploitation of the viscoelastic properties of a regenerated silk fibroin (SF) film as a biocompatible substrate to transfer BP flakes, thereby preventing oxidation. A model based on the flow of polymers revealed that the applied flow-induced stresses exceed the yield stress of the BP aggregate. Raman spectroscopy was used to investigate the exfoliation efficiency as well as the environmental stability of BP transferred on the SF substrate. Notably, BP flakes transferred to the SF substrate demonstrated improved stability when SF was dissolved in a phosphate-buffered saline medium, and in vitro cancer cell viability experiments demonstrate the tumor ablation efficiency under visible to near-infrared (Vis-nIR) radiation. Moreover, the SF and BP-enriched SF (SF/BP) solution was shown to be processable via extrusion-based three-dimensional (3D) printing. Therefore, this work paves the way for a general method for the transferring of BP on natural biodegradable polymers and processing them via 3D printing toward novel functionalities and complex shapes for biomedical purposes.

4.
ACS Nano ; 16(9): 14168-14177, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36043881

RESUMEN

Reconfigurable magnetization textures offer control of spin waves with promising properties for future low-power beyond-CMOS systems. However, materials with perpendicular magnetic anisotropy (PMA) suitable for stable magnetization-texture formation are characterized by high damping, which limits their applicability in magnonic devices. Here, we propose to overcome this limitation by using hybrid structures, i.e., a PMA layer magnetostatically coupled to a low-damping soft ferromagnetic film. We experimentally show that a periodic stripe-domain texture from a PMA layer is imprinted upon the soft layer and induces a nonreciprocal dispersion relation of the spin waves confined to the low-damping film. Moreover, an asymmetric bandgap features the spin-wave band diagram, which is a clear demonstration of collective spin-wave dynamics, a property characteristic for magnonic crystals with broken time-reversal symmetry. The composite character of the hybrid structure allows for stabilization of two magnetic states at remanence, with parallel and antiparallel orientation of net magnetization in hard and soft layers. The states can be switched using a low external magnetic field; therefore, the proposed system obtains an additional functionality of state reconfigurability. This study offers a link between reconfigurable magnetization textures and low-damping spin-wave dynamics, providing an opportunity to create miniaturized, programmable, and energy-efficient signal processing devices operating at high frequencies.

5.
Artículo en Inglés | MEDLINE | ID: mdl-35830277

RESUMEN

The development of skyrmionic devices requires a suitable tuning of material parameters to stabilize skyrmions and control their density. It has been demonstrated recently that different skyrmion types can be simultaneously stabilized at room temperature in heterostructures involving ferromagnets, ferrimagnets, and heavy metals, offering a new platform of coding binary information in the type of skyrmion instead of the presence/absence of skyrmions. Here, we tune the energy landscape of the two skyrmion types in such heterostructures by engineering the geometrical and material parameters of the individual layers. We find that a fine adjustment of the ferromagnetic layer thickness, and thus its magnetic anisotropy, allows the trilayer system to support either one of the skyrmion types or the coexistence of both and with varying densities.

6.
Nanomaterials (Basel) ; 12(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36234601

RESUMEN

In this paper, by means of high-resolution photoemission, soft X-ray absorption and atomic force microscopy, we investigate, for the first time, the mechanisms of damaging, induced by neutron source, and recovering (after annealing) of p-i-n detector devices based on hydrogenated amorphous silicon (a-Si:H). This investigation will be performed by mean of high-resolution photoemission, soft X-Ray absorption and atomic force microscopy. Due to dangling bonds, the amorphous silicon is a highly defective material. However, by hydrogenation it is possible to reduce the density of the defect by several orders of magnitude, using hydrogenation and this will allow its usage in radiation detector devices. The investigation of the damage induced by exposure to high energy irradiation and its microscopic origin is fundamental since the amount of defects determine the electronic properties of the a-Si:H. The comparison of the spectroscopic results on bare and irradiated samples shows an increased degree of disorder and a strong reduction of the Si-H bonds after irradiation. After annealing we observe a partial recovering of the Si-H bonds, reducing the disorder in the Si (possibly due to the lowering of the radiation-induced dangling bonds). Moreover, effects in the uppermost coating are also observed by spectroscopies.

7.
Adv Mater ; 32(9): e1906439, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31944413

RESUMEN

Integrated optically inspired wave-based processing is envisioned to outperform digital architectures in specific tasks, such as image processing and speech recognition. In this view, spin waves represent a promising route due to their nanoscale wavelength in the gigahertz frequency range and rich phenomenology. Here, a versatile, optically inspired platform using spin waves is realized, demonstrating the wavefront engineering, focusing, and robust interference of spin waves with nanoscale wavelength. In particular, magnonic nanoantennas based on tailored spin textures are used for launching spatially shaped coherent wavefronts, diffraction-limited spin-wave beams, and generating robust multi-beam interference patterns, which spatially extend for several times the spin-wave wavelength. Furthermore, it is shown that intriguing features, such as resilience to back reflection, naturally arise from the spin-wave nonreciprocity in synthetic antiferromagnets, preserving the high quality of the interference patterns from spurious counterpropagating modes. This work represents a fundamental step toward the realization of nanoscale optically inspired devices based on spin waves.

8.
Sci Rep ; 8(1): 7180, 2018 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-29739995

RESUMEN

Recently discovered exotic magnetic configurations, namely magnetic solitons appearing in the presence of bulk or interfacial Dzyaloshinskii-Moriya Interaction (i-DMI), have excited scientists to explore their potential applications in emerging spintronic technologies such as race-track magnetic memory, spin logic, radio frequency nano-oscillators and sensors. Such studies are motivated by their foreseeable advantages over conventional micro-magnetic structures due to their small size, topological stability and easy spin-torque driven manipulation with much lower threshold current densities giving way to improved storage capacity, and faster operation with efficient use of energy. In this work, we show that in the presence of i-DMI in Pt/CoFeB/Ti multilayers by tuning the magnetic anisotropy (both in-plane and perpendicular-to-plane) via interface engineering and postproduction treatments, we can stabilize a variety of magnetic configurations such as Néel skyrmions, horseshoes and most importantly, the recently predicted isolated radial vortices at room temperature and under zero bias field. Especially, the radial vortex state with its absolute convergence to or divergence from a single point can potentially offer exciting new applications such as particle trapping/detrapping in addition to magnetoresistive memories with efficient switching, where the radial vortex state can act as a source of spin-polarized current with radial polarization.

9.
FASEB J ; 20(2): 346-7, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16317065

RESUMEN

A significant number of fatal diseases are classified as protein deposition disorders, in which a normally soluble protein is deposited in an insoluble amyloid form. It has been reported that tetracycline exhibits anti-amyloidogenic activity by inhibiting aggregate formation and disaggregating preformed fibrils. In this work, we examined the effect induced by the presence of tetracycline on the fibrillogenesis and cytotoxicity of the amyloid-forming apomyoglobin mutant W7FW14F. Like other amyloid-forming proteins, early prefibrillar aggregates formed by this protein are highly cytotoxic, whereas insoluble mature fibrils are not. The effect induced by tetracycline on the fibrillation process has been examined by atomic force microscopy, light scattering, DPH staining, and thioflavin T fluorescence. The cytotoxicity of the amyloid aggregates was estimated by measuring cell viability using MTT assay. The results show that tetracycline acts as anti-aggregating agent, which inhibits the fibril elongation process but not the early aggregation steps leading to the formation of soluble oligomeric aggregates. Thus, this inhibition keeps the W7FW14F mutant in a prefibrillar, highly cytotoxic state. In this respect, a careful usage of tetracycline as fibril inhibitor is indicated.


Asunto(s)
Amiloide/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Mioglobina/química , Mioglobina/metabolismo , Tetraciclina/farmacología , Animales , Apoproteínas/genética , Supervivencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Ratones , Mutación , Mioglobina/genética , Células 3T3 NIH , Inhibidores de la Síntesis de la Proteína/farmacología
10.
J Phys Condens Matter ; 25(33): 336002, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23880987

RESUMEN

Soft magnonic modes in permalloy antidot lattices with a fixed lattice constant a = 420 nm and circular hole diameters ranging between 140 and 260 nm are investigated both experimentally and theoretically. The frequency dependence of magnonic modes on the magnetic field intensity, applied along the vertical rows of holes, was measured by Brillouin light scattering from thermally excited spin waves. All the detected modes exhibit a monotonic frequency evolution with respect to the applied magnetic field, with the exception of the two lowest frequency modes which become soft at a given critical field and exhibit a finite frequency gap. It has been shown, by means of micromagnetic simulations based on the dynamical matrix method, that the mode softening is strictly related to the rotation of the static magnetization from the hard to the easy axis marking a reorientational and continuous phase transition. In addition, the different frequency trend of the fundamental mode and of the corresponding mode localized along the horizontal rows of holes as a function of the aspect ratio is explained in terms of the opposite demagnetizing field experienced by the two modes.

11.
Langmuir ; 23(26): 13007-12, 2007 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-18020378

RESUMEN

The adsorption of myoglobin (Mb) onto phosphate grafted-zirconia (ZrO2-P) nanoparticles was studied in terms of conformational studies and thermal stability, determined by circular dichroism (CD), differential scanning calorimetry (DSC), and atomic force microscopy (AFM). The changes in protein structure have been correlated with the catalytic activity of free and adsorbed Mb. CD and DSC studies indicate marked rearrangements in Mb structure upon adsorption onto phosphate-grafted zirconia nanoparticles. These structural rearrangements of Mb could be responsible for the loss of catalytic activity observed for the adsorbed Mb. In particular, the conformational changes due to the adsorption process induced a reduction of kcat and KM. AFM measurements indicate that the interaction with the grafted-zirconia nanoparticles also affects the morphology of the bound protein, inducing the nucleation of prefibrillar-like aggregates.


Asunto(s)
Nanopartículas del Metal , Mioglobina/química , Fosfatos/química , Circonio/química , Adsorción , Rastreo Diferencial de Calorimetría , Dicroismo Circular , Microscopía de Fuerza Atómica , Conformación Proteica , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA