Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Mol Sci ; 24(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37833975

RESUMEN

Continuous microwave-assisted flow synthesis has been used as a simple, more efficient, and low-cost route to fabricate a range of nanosized (<100 nm) strontium-substituted calcium phosphates. In this study, fine nanopowder was synthesized via a continuous flow synthesis with microwave assistance from the solutions of calcium nitrate tetrahydrate (with strontium nitrate as Sr2+ ion source) and diammonium hydrogen phosphate at pH 10 with a time duration of 5 min. The morphological characterization of the obtained powder has been carried out by employing techniques such as transmission electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller surface area analysis. The chemical structural analysis to evaluate the surface properties was made by using X-ray photoelectron spectroscopy. Zeta potential analysis was performed to evaluate the colloidal stability of the particles. Antimicrobial studies were performed for all the compositions using four bacterial strains and an opportunistic human fungal pathogen Macrophomina phaseolina. It was found that the nanoproduct with high strontium content (15 wt% of strontium) showed pronounced antibacterial potential against M. luteus while it completely arrested the fungal growth after 48 h by all of its concentrations. Thus the synthesis strategy described herein facilitated the rapid production of nanosized Sr-substituted CaPs with excellent biological performance suitable for a bone replacement application.


Asunto(s)
Antiinfecciosos , Nanoestructuras , Humanos , Calcio/química , Fosfatos de Calcio/farmacología , Fosfatos de Calcio/química , Regeneración Ósea , Calcio de la Dieta , Estroncio/farmacología , Estroncio/química , Antiinfecciosos/farmacología , Difracción de Rayos X
2.
Sensors (Basel) ; 22(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35957478

RESUMEN

Nowadays, in a world full of uncertainties and the threat of digital and cyber-attacks, blockchain technology is one of the major critical developments playing a vital role in the creative professional world. Along with energy, finance, governance, etc., the healthcare sector is one of the most prominent areas where blockchain technology is being used. We all are aware that data constitute our wealth and our currency; vulnerability and security become even more significant and a vital point of concern for healthcare. Recent cyberattacks have raised the questions of planning, requirement, and implementation to develop more cyber-secure models. This paper is based on a blockchain that classifies network participants into clusters and preserves a single copy of the blockchain for every cluster. The paper introduces a novel blockchain mechanism for secure healthcare sector data management, which reduces the communicational and computational overhead costs compared to the existing bitcoin network and the lightweight blockchain architecture. The paper also discusses how the proposed design can be utilized to address the recognized threats. The experimental results show that, as the number of nodes rises, the suggested architecture speeds up ledger updates by 63% and reduces network traffic by 10 times.


Asunto(s)
Cadena de Bloques , Seguridad Computacional , Atención a la Salud/métodos , Humanos , Privacidad , Tecnología
3.
Sensors (Basel) ; 22(11)2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35684840

RESUMEN

The measurement of a power frequency current including low- and high-order harmonics is of great importance in calibration as well as in testing processes. Therefore, this paper presents the measurement of the power frequency current of light-emitting diode (LED) luminaires. LED luminaires were chosen as their input current includes both low- and high-order harmonics. The measurement process depends on reconstructing an LED luminaire current without using the coil parameters. Hence, the current reconstruction process is designed to be dependent on the measured characteristics of the Rogowski coil itself considering the frequency range at which the measurement process is required. An evaluation of the proposed measurement process was theoretically and experimentally carried out. A theoretical evaluation was carried out using MATALB SIMULINK software. However, the experimental evaluation was performed by building a Rogowski coil to measure the input currents of different LED luminaires having different power ratings of 300 W, 400 W, and 600 W. The currents measured using the Rogowski coil were compared with reference currents measured using a standard measurement technique. The obtained results show the efficacy of the proposed measurement method.

4.
Int J Biol Macromol ; 256(Pt 2): 128518, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042322

RESUMEN

Chemical modification of guar gum was done by graft copolymerization of monomer hydroxyethyl methacrylate (HEMA) using azobisisobutyronitrile (AIBN) as initiator. Optimal reaction parameters were settled by varying one reaction condition and keeping the other constant. The optimum reaction conditions worked out were solvent system: binary, [H2O] = 15.00 mL, [acetone] = 5.00 mL, [HEMA] = 82.217× 10-2 mol/L, [AIBN] = 3.333 × 10-2 mol/L, reaction time = 3 h, reaction temperature = 60 °C on to 1.00 g guar gum with Pg = 1694.6 and %GE = 68,704.152. Pure guar gum polymer and grafts were analyzed by several physicochemical investigation techniques like FTIR, SEM, XRD, EDX, and swelling studies. Percent swelling of the guar gum polymer and grafts was investigated at pH 2.2, 7.0, 7.4 and 9.4 concerning time. The finest yield of Ps was recorded at pH 9.4 with time 24 h for graft copolymer. Guar gum and grafted samples were explored for the sorption of toxic dye Bismarck brown Y from the aqueous solution with respect to variable contact time, pH, temperature and dye concentration so as to investigate the stimuli responsive sorption behaviour. Graft copolymers showed better results than guar gum with percent dye uptake (Du) of 97.588 % in 24 h contact time, 35 °C temperature, 9.4 pH at 150.00 ppm dye feed concentration as compared to Guar gum which only showed 85.260 % dye uptake at alike dye fed concentration. The kinetic behaviour of the polymeric samples was evaluated by applying many adsorption isotherms and kinetic models. The value of 1/n was between 0 â†’ 1 showing that there was physisorption of the BB dye that took place on the surface of the polymers. Thermodynamics of BB Y adsorption onto hydrogels was investigated concerning the Van't Hoff equation. -∆G° values obtained from the curve proved the spontanity of the process. Within the context of adsorption efficiency, an investigation was conducted to examine the process of sorption of Bismarck brown Y dye from aqueous solutions. The graft copolymers demonstrated remarkable adsorption abilities, achieving a dye uptake (Du) of 97.588 % over a 24-h period at a temperature of 35 °C, pH level of 9.4, and a dye concentration of 150.00 ppm. The raised adsorption capacity was additionally corroborated by the application of several adsorption isotherms and kinetic models, which indicated that physisorption is the prevailing process/mechanism. Additionally, the thermodynamic research, utilising the Van't Hoff equation, validated the spontaneity of the adsorption phenomenon, as evidenced by the presence of a negative ∆G° values. The thermodynamic analysis revealed herein establishes a strong scientific foundation for the effectiveness of adsorbent composed of graft copolymers based on guar gum. The research conclude the efficiency of the guar gum based grafted copolymers for the water remediation as efficient adsorbents. The captured dye can be re-utilised and the hydrogels can be used for the same purpose in number of cycles.


Asunto(s)
Galactanos , Hidrogeles , Mananos , Metacrilatos , Nitrilos , Contaminantes Químicos del Agua , Hidrogeles/química , Gomas de Plantas/química , Colorantes/química , Agua/química , Termodinámica , Polímeros/química , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Contaminantes Químicos del Agua/química
5.
Heliyon ; 9(7): e17788, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37424599

RESUMEN

Blood is indeed a suspension of the different type of cells along with shear thinning, yield stress and viscoelastic characteristics, which can be expressed by Newtonian and a lot of non-Newtonian models. Choosing Newtonian fluid as a sample, an unsteady solver for Newtonian fluid is constructed to determine the transient flow of blood in the obscure region. In this probe, the computational unsteady flow of blood in artery with aneurysm and symmetric stenosis has been considered, which is novelty of current research. The results of this investigation can be applied to detect stenotic-aneurysmal diseases and enhance knowledge of the stenotic-aneurysmal artery, which may increase the understanding of medical science. The blood artery is modeled as a circular tube having a 0.3-m radius and a 2-m length along the horizontal axis. The velocity of blood is taken at 0.12 ms-1 so that the geometry satisfies the characteristics of the blood vessel. The governing mass and momentum equations are then solved by finite difference technique of discretization. In this research, important variations in blood pressure and velocity at stenosis and aneurysms in the artery are found. The significant influences on blood flow of the stenotic-aneurysmal artery for pressure and velocity profiles of blood are displayed graphically for the Newtonian model.

6.
Math Biosci Eng ; 20(1): 337-364, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36650769

RESUMEN

Statistical methodologies have broader applications in almost every sector of life including education, hydrology, reliability, management, and healthcare sciences. Among these sectors, statistical modeling and predicting data in the healthcare sector is very crucial. In this paper, we introduce a new method, namely, a new extended exponential family to update the distributional flexibility of the existing models. Based on this approach, a new version of the Weibull model, namely, a new extended exponential Weibull model is introduced. The applicability of the new extended exponential Weibull model is shown by considering two data sets taken from the health sciences. The first data set represents the mortality rate of the patients infected by the coronavirus disease 2019 (COVID-19) in Mexico. Whereas, the second set represents the mortality rate of COVID-19 patients in Holland. Utilizing the same data sets, we carry out forecasting using three machine learning (ML) methods including support vector regression (SVR), random forest (RF), and neural network autoregression (NNAR). To assess their forecasting performances, two statistical accuracy measures, namely, root mean square error (RMSE) and mean absolute error (MAE) are considered. Based on our findings, it is observed that the RF algorithm is very effective in predicting the death rate of the COVID-19 data in Mexico. Whereas, for the second data, the SVR performs better as compared to the other methods.


Asunto(s)
COVID-19 , Humanos , Reproducibilidad de los Resultados , COVID-19/epidemiología , Modelos Estadísticos , Redes Neurales de la Computación , Aprendizaje Automático
7.
Results Phys ; 50: 106557, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37229503

RESUMEN

We propose a mathematical model to analyze the monkeypox disease in the context of the known cases of the USA epidemic. We formulate the model and obtain their essential properties. The equilibrium points are found and their stability is demonstrated. We prove that the model is locally asymptotical stable (LAS) at disease free equilibrium (DFE) under R0<1. The presence of an endemic equilibrium is demonstrated, and the phenomena of backward bifurcation is discovered in the monkeypox disease model. In the monkeypox infectious disease model, the parameters that lead to backward bifurcation are θr, τ1, and ξr. When R0>1, we determine the model's global asymptotical stability (GAS). To parameterize the model using real data, we obtain the real value of the model parameters and compute R1=0.5905. Additionally, we do a sensitivity analysis on the parameters in R0. We conclude by presenting specific numerical findings.

8.
ACS Omega ; 8(22): 19926-19938, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37305249

RESUMEN

Applications: Flow-through permeable media have a wide range of applications in biomedical engineering, geophysical fluid dynamics, and recovery and refinement of underground reservoirs and large-scale chemical applications such as filters, catalysts, and adsorbents. Therefore, this study on a nanoliquid in a permeable channel is conducted under physical constraints. Purpose and Methodology: The key purpose of this research is to introduce a new biohybrid nanofluid model (BHNFM) with (Ag-G)hybridnanoparticles with additional significant physical effects of quadratic radiation, resistive heating, and magnetic field. The flow configuration is set between the expanding/contracting channels, which has broad applications, especially in biomedical engineering. The modified BHNFM was achieved after the implementation of the bitransformative scheme, and then to obtain physical results of the model, the variational iteration method was applied. Core Findings: Based on a thorough observation of the presented results, it is determined that the biohybrid nanofluid (BHNF) is more effective than mono-nano BHNFs in controlling fluid movement. The desired fluid movement for practical purposes can be achieved by varying the wall contraction number (α1 = -0.5, -1.0, -1.5, -2.0) and with stronger magnetic effects (M = 1.0,9.0,17.0,25.0). Furthermore, increasing the number of pores on the surface of the wall causes the BHNF particles to move very slowly. The temperature of the BHNF is affected by the quadratic radiation (Rd), heating source (Q1), and temperature ratio number (θr), and this is a dependable approach to acquire a significant amount of heat. The findings of the current study can aid in a better understanding of parametric predictions in order to produce exceptional heat transfer in BHNFs and suitable parametric ranges to control fluid flow inside the working area. The model results would also be useful for individuals working in the fields of blood dynamics and biomedical engineering.

9.
Sci Rep ; 13(1): 4190, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918657

RESUMEN

The prime motive to conduct this communication is to explicate hydrothermal attributes of water by inducing new composition of nanoparticles termed as ternary particles. For this purpose, two differently natured groups one with lesser densities (Carbon nanotubes, Graphene and Aluminium oxide) and with higher densities (Copper oxide, Copper and Silver) are accounted. A 3D permeable surface is considered as a physical configuration of problem by providing dual stretching. Initially, mathematical structuring in dimensional representation expressing the constitutive relations for mass, momentum and energy conservation is manifested. Later on, a set of similar variables are executed to express attained coupled system into ordinary form. Numerical simulations are performed to find solution by employing shooting and RK-4 methods in conjunction. Description about change is displayed through graphical visualization. Subsequently, temperature distribution and heat flux coefficient against sundry variables are also measured and comprehensively discussed in pictorial and tabular format. Wall drag coefficients along (x, y) directions are also computed. It is inferred from the outcomes that velocity, temperature and concentration of base fluid is higher for ternary group 1 containing particles of low densities than for group 2 with more denser particles. It is also deduced that elevation in temperature of fluid is revealed against Soret number whereas contrary aspects is observed in view of concentration distribution. Dufour number has declining impact on temperature profile whereas it upsurges the mass distribution. It is depicted that skin friction in case of group containing particles with less densities are more than other group.

10.
ACS Omega ; 8(10): 9121-9136, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36936325

RESUMEN

Hydromagnetic flow and heat transport have sustainable importance in conventional system design along with high-performance thermal equipment and geothermal energy structures. The current computational study investigates the energy transport and entropy production due to the pressure-driven flow of non-Newtonian fluid filled inside the wedge-shaped channel. The nonlinear radiation flux and uniform magnetic field are incorporated into the flow analysis. To be more precise, non-Newtonian fluid initiates from an inlet with the bound of the parabolic profile and leaves at outlet of a convergent/divergent channel. We assume that the channel flow is adiabatic and influenced by the wall friction. The leading flow equations are modeled via the Carreau fluid model using fundamental conservation laws. The thermodynamical aspect of the system is visualized using a two-phase model and analyses of the entropy equation due to fluid friction, ohmic heating, and diffusion of heat and mass fluxes. The modeled system of equations is normalized using a dimensionless variable mechanism. The system was elevated for the significant variation of controlling parameters. The outcomes obtained from the computational investigation are validated with the theoretical results that are available in the literature. An increasing semivertex angle and Reynolds number increase the converging channel flow. In the core flow zone, an increase in the divergent semiangle causes the flow to decelerate, while near and at the channel wall it causes a slight acceleration. Outcomes designate that the main contribution to the irreversibility is due to ohmic loss, frictional loss, and heat loss. The thermal performance and entropy production is dominant for a diverging flow. The outcomes of this research will assist in comprehending the process of entropy minimization in conjunction with the flow of nanomaterials in a nonuniform channel, which is essential in engineering processes such as the creation of micro machines, supersonic Jets, nozzles, and clean energy.

11.
ACS Omega ; 8(13): 12028-12038, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37033817

RESUMEN

Atmospheric pressure plasma jets are gaining a lot of attention due to their widespread applications in the field of bio-decontamination, polymer modification, material processing, deposition of thin film, and nanoparticle fabrication. Herein, we are reporting the disinfection of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli bacteria using plasma jet. In this regard, Ar-O2, Ar-N2, and Ar-O2-N2 mixture plasma is generated and characterized using optical and electrical characterization. Variation in plasma parameters like electron temperature, electron density, and reactive species production is monitored with discharge parameters such as applied voltage and feed gas concentration. Results show that the peak average power consumed in Ar-O2, Ar-N2, and Ar-O2-N2 mixture plasma is found to be 4.45, 2.93, and 4.35 W respectively, at 8 kV. Moreover, it is noted that by increasing applied voltage, the electron temperature, electron density, and reactive species production also increases. It is worth noting that electron temperature increases with increase in oxygen concentration in the mixture (, while it decreases with increase in nitrogen concentration in the mixture (Ar-N2). Similarly, a decreasing trend in electron temperature is noted for Ar-O2-N2 mixture plasma. On the other hand, a decreasing trend in electron density is noted for all the mixtures. Reduction in viable colonies of Pseudomonas aeruginosa, Staphylococcus Aureus, and Escherichia coli were confirmed by the serial dilution method. The inactivation efficiency of pulsed DC plasma generated, in the Ar-N2 mixture at 8 kV and 6 KHz, was evaluated against P. aeruginosa, S. aureus and E. coli bacteria by measuring the number of surviving cells versus plasma treatment time. Results showed that after 240 s of plasma treatment, the number of survival colonies of the mentioned bacteria was reduced to less than 30 CFU/mL.

12.
Micromachines (Basel) ; 13(9)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36144124

RESUMEN

The optimization of heating or cooling during an industrial system may result in power savings, reduced processing time, enhanced thermal efficiency, and increased equipment operating lifespan. The advancement of high-efficiency thermal systems for heat and mass transport improvement has become increasingly popular in recent years. The analysis of aligned magnetohydrodynamics (MHD) on engine oil-based Casson nanofluid with carbon nanotubes (single and multi-wall) passing a shrinking sheet following the thermal radiation and wall mass transport phenomena is carried out in this aspect. The dynamic model is utilized to reduce difficult ordinary differential equations into nondimensional forms, which are then analytically assessed. To study the repercussions of a physical parameter on the velocity field, skin friction at the wall, the stream pattern, the temperature distribution, isotherm, and the local Nusselt, numeric data and visualizations are generated. When the value of ϕ increases, the velocity field decelerates, and the velocity pattern of multi-walled CNTs drops considerably when compared to single-walled CNTs. The local Nusselt number is a decreasing function of N and ϕ and the opposite trend is shown for Pr. The local Nusselt number is a decreasing function of N and ϕ and the opposite trend is shown for Pr. The single-walled CNTs have a higher degradation rate as compared to multi-walled CNTs. It is found that higher temperature distribution occurs in the case of multi-walled CNT-based fluid as compared to single-walled CNT-based fluid.

13.
Micromachines (Basel) ; 13(12)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36557380

RESUMEN

BACKGROUND AND PURPOSE: Nanofluids are a new class of heat transfer fluids that are used for different heat transfer applications. The transport characteristics of these fluids not only depend upon flow conditions but also strongly depend on operating temperature. In respect of these facts, the properties of these fluids are modified to measure the temperature effects and used in the governing equations to see the heat and mass flow behavior. Design of Model: Consider the nanofluids which are synthesized by dispersing metallic oxides (SiO2, Al2O3), carbon nanostructures (PEG-TGr, PEG-GnP), and nanoparticles in deionized water (DIW), with (0.025-0.1%) particle concentration over (30-50 °C) temperature range. The thermophysical properties of these fluids are modeled theoretically with the help of experimental data as a function of a temperature and volume fraction. These models are further used in transport equations for fluid flow over both wedge and plate. To get the solution, the equations are simplified in the shape of ordinary differential equations by applying the boundary layer and similarity transformations and then solved by the RK method. RESULTS: The solution of the governing equation is found in the form of velocity and temperature expressions for both geometries and displayed graphically for discussion. Moreover, momentum and thermal boundary layer thicknesses, displacement, momentum thicknesses, the coefficient of skin friction, and Nusselt number are calculated numerically in tabular form. FINDING: The maximum reduction and enhancement in velocity and temperature profile is found in the case of flow over the plate as compared to the wedge. The boundary layer parameters are increased in the case of flow over the plate than the wedge.

14.
Math Biosci Eng ; 19(10): 10474-10492, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-36032003

RESUMEN

Statistical methods are frequently used in numerous healthcare and other related sectors. One of the possible applications of the statistical methods is to provide the best description of the data sets in the healthcare sector. Keeping in view the applicability of statistical methods in the medical sector, numerous models have been introduced. In this paper, we also introduce a novel statistical method called, a new modified-G family of distributions. Several mathematical properties of the new modified-G family are derived. Based on the new modified-G method, a new updated version of the Weibull model called, a new modified-Weibull distribution is introduced. Furthermore, the estimators of the parameters of the new modified-G distributions are also obtained. Finally, the applicability of the new modified-Weibull distribution is illustrated by analyzing two medical sets. Using certain analytical tools, it is observed that the new modified-Weibull distribution is the best choice to deal with the medical data sets.


Asunto(s)
Leucemia , Neoplasias de la Vejiga Urinaria , Humanos , Modelos Estadísticos , Proyectos de Investigación , Distribuciones Estadísticas
15.
Materials (Basel) ; 15(16)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36013715

RESUMEN

Two-dimensional (2D) SnO is a p-type semiconductor that has received research and industrial attention for device-grade applications due to its bipolar conductivity and transparent semiconductor nature. The first-principles investigations based on the generalized gradient approximation (GGA) level of theory often failed to accurately model its structure due to interlayer Van der Waals interactions. This study is carried out to calculate structural and electronic properties of bulk and layered structures of SnO using dispersion correction scheme DFT+D3 with GGA-PBE to deal with the interactions which revealed good agreement of the results with reported data. The material in three-dimensional bulk happened to be an indirect gap semiconductor with a band gap of 0.6 eV which is increased to 2.85 eV for a two-dimensional monolayer structure. The detailed analysis of the properties demonstrated that the SnO monolayer is a promising candidate for future optoelectronics and spintronics devices, especially thin film transistors.

16.
Micromachines (Basel) ; 13(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36295977

RESUMEN

Convection in fluids produced by temperature and solute concentration differences is known as thermosolutal convection. It has valuable utilization in wide industrial and technological procedures such as electronic cooling, cleaning, and dying processes, oxidation of surface materials, storage components, heat exchangers, and thermal storage systems. In view of such prominent physical significance, focus is made to explicate double (thermal and solutal)-diffusive transport in viscoelastic fluid characterized by the Casson model enclosed in a curved enclosure with corrugations. An incliningly directed magnetic field is employed to the flow domain. A uniformly thermalized and concentrated circular cylinder is installed at the center of the enclosure to measure transport changes. Dimensionally balanced governing equations are formulated in 2D, representing governed phenomenon. Finite element-based open-sourced software known as COMSOL is utilized. The domain of the problem is distributed in the form of triangular and quadrilateral elements. Transport distributions are interpolated by linear and quadratic polynomials. The attained non-linear system is solved by a less time and computation cost consuming package known as PARDISO. Convergence tests for grid generation and validation of results are executed to assure credibility of work. The influence of involved physical parameters on concerned fields are revealed in graphical and tabular manner. Additionally, heat and mass fluxes, along with, kinetic energy variation are also evaluated.

17.
Front Chem ; 10: 960369, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092669

RESUMEN

Heat transfer and energy storage remain a core problem for industrialists and engineers. So, the concept of new heat transfer fluids, namely, nanofluids and hybrid nanofluids, has been introduced so far. Recently, a new third generation of heat transfer fluids has been developed known as modified hybrid nanofluids (MHNs), synthesized by ternary nanomaterials and the host fluid. Therefore, the study was conducted to investigate the energy storage efficiency between (Al2O3-CuO-Cu/H2O)mhnf and (Al2O3-CuO/H2O)hnf in the presence of novel viscous dissipation effects. The problem is developed for a channel with stretchable walls via thermophysical attributes of binary and ternary guest nanomaterials and the host liquid. The model is tackled numerically and furnished results for the dynamics, most specifically energy storage efficiency in (Al2O3-CuO-Cu/H2O)mhnf. It is examined that the third generation of heat transfer fluids (Al2O3-CuO-Cu/H2O)mhnf has high thermal energy storage efficiency than traditional nano and hybrid nanofluids. Therefore, these new insights in heat transfer would be beneficial and cope with the problems of energy storage in the modern technological world.

18.
Nanomaterials (Basel) ; 12(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36144888

RESUMEN

This article analyzes the significance of linear and quadratic convection on the dynamics of micropolar fluid due to a stretching surface in the presence of magnetic force and a rotational frame. Modern technological implementations have attracted researchers to inquire about non-Newtonian fluids, so the effect of linear and nonlinear convection conditions is accounted for in the dynamics of non-Newtonian fluid. The highly nonlinear governing equations are converted into a system of dimensionless ODEs by using suitable similarity transformations. The bvp4c technique is applied in MATLAB software to obtain a numerical solution. This investigation examines the behavior of various parameters with and without quadratic convection on the micro-rotation, velocity, and temperature profiles via graphical consequences. The velocity profile decreases with a higher input by magnetic and rotating parameters, and fluid velocity is more elevated in the nonlinear convection case. However, the temperature profile shows increasing behavior for these parameters and quadratic convection increases the velocity profile but has an opposite tendency for the temperature distribution. The micro-rotation distribution is augmented for higher magnetic inputs in linear convection but reduces against thermal buoyancy.

19.
Front Chem ; 10: 1010591, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36226115

RESUMEN

The topic of two-dimensional steady laminar MHD boundary layer flow across a wedge with non-Newtonian hybrid nanoliquid (CuO-TiO2/C2H6O2) with viscous dissipation and radiation is taken into consideration. The controlling partial differential equations have been converted to non-linear higher-order ordinary differential equations using the appropriate similarity transformations. It is demonstrated that a number of thermo-physical characteristics govern the transmuted model. The issue is then mathematically resolved. When the method's accuracy is compared to results that have already been published, an excellent agreement is found. While the thermal distribution increases with an increase in Eckert number, radiation and porosity parameters, the velocity distribution decreases as porosity increases.

20.
Sci Rep ; 12(1): 19374, 2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371535

RESUMEN

The important feature of the current work is to consider the pressure variation, heat transport, and friction drag in the hydromagnetic radiative two-dimensional flow of a hybrid nanofluid depending on the viscous dissipation and Joule heating across a curved surface. The curved surface has been considered with the binary heating process called as prescribed heat flux and surface temperature. The basic partial differential equation (PDEs) has been converted into the non-dimensional ordinary differential equations (ODEs) by applying some specified dimensionless transformations. The bvp4c built-in package in MATLAB has been considered to find the numerical solution of the consequential equations. The graphical results have been plotted in terms of pressure, friction drag, velocity, temperature, and heat transport. Several important results have also been plotted for the plan level surface [Formula: see text]The condition of [Formula: see text]. It is found that the heat transport rate respectively reduces and enhances with the enhancement of radiation parameter and Hartmann number as well as the friction drag is enhancing with the high-volume fraction of nanoparticles and Hartmann number. Moreover, enhancing curvature parameter, enhances the friction drag and declines the heat transport rate. The current work renders uncountable applications in several engineering and industrial systems like electronic bulbs, electric ovens, geysers, soil pollution, electric kettle, fibrous insulation, etc. Moreover, the heating as well as the cooling systems of electrical, digital, and industrial instruments, are controlled by the heat transport in fluids. Thus, it is important to use such flows in these types of instruments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA