Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Plant Biol ; 22(1): 26, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35016604

RESUMEN

BACKGROUND: Chilling temperature reduces the rate of photosynthesis in plants, which is more pronounced in association with phosphate (Pi) starvation. Previous studies showed that Pi resupply improves recovery of the rate of photosynthesis in plants much better under combination of dual stresses than in non-chilled samples. However, the underlying mechanism remains poorly understood. RESULTS: In this study, RNA-seq analysis showed the expression level of 41 photosynthetic genes in plant roots increased under phosphate starvation associated with 4 °C (-P 4 °C) compared to -P 23 °C. Moreover, iron uptake increased significantly in the stem cell niche (SCN) of wild type (WT) roots in -P 4 °C. In contrast, lower iron concentrations were found in SCN of aluminum activated malate transporter 1 (almt1) and its transcription factor, sensitive to protein rhizotoxicity 1 (stop1) mutants under -P 4 °C. The Fe content examined by ICP-MS analysis in -P 4 °C treated almt1 was 98.5 ng/µg, which was only 17% of that of seedlings grown under -P 23 °C. Average plastid number in almt1 root cells under -P 4 °C was less than -P 23 °C. Furthermore, stop1 and almt1 single mutants both exhibited increased primary root elongation than WT under combined stresses. In addition, dark treatment blocked the root elongation phenotype of stop1 and almt1. CONCLUSIONS: Induction of photosynthetic gene expression and increased iron accumulation in roots is required for plant adjustment to chilling in association with phosphate starvation.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/genética , Respuesta al Choque por Frío/genética , Respuesta al Choque por Frío/fisiología , Fosfatos/deficiencia , Fosfatos/metabolismo , Adaptación Fisiológica/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
2.
Planta ; 251(5): 103, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32372252

RESUMEN

MAIN CONCLUSION: To compensate for the lack of capacity for external salt storage in the epidermal bladder cells, quinoa plants employ tissue-tolerance traits, to confer salinity stress tolerance. Our previous studies indicated that sequestration of toxic Na+ and Cl- ions into epidermal bladder cells (EBCs) is an efficient mechanism conferring salinity tolerance in quinoa. However, some halophytes do not develop EBCs but still possess superior salinity tolerance. To elucidate the possible compensation mechanism(s) underlying superior salinity tolerance in the absence of the external salt storage capacity, we have selected four quinoa accessions with contrasting patterns of EBC development. Whole-plant physiological and electrophysiological characteristics were assessed after 2 days and 3 weeks of 400 mM NaCl stress. Both accessions with low EBC volume utilised Na+ exclusion at the root level and could maintain low Na+ concentration in leaves to compensate for the inability to sequester Na+ load in EBC. These conclusions were further confirmed by electrophysiological experiments showing higher Na+ efflux from roots of these varieties (measured by a non-invasive microelectrode MIFE technique) as compared to accessions with high EBC volume. Furthermore, accessions with low EBC volume had significantly higher K+ concentration in their leaves upon long-term salinity exposures compared to plants with high EBC sequestration ability, suggesting that the ability to maintain high K+ content in the leaf mesophyll was as another important compensation mechanism.


Asunto(s)
Chenopodium quinoa/fisiología , Cloruro de Sodio/efectos adversos , Chenopodium quinoa/crecimiento & desarrollo , Iones/metabolismo , Fenotipo , Desarrollo de la Planta , Epidermis de la Planta/crecimiento & desarrollo , Epidermis de la Planta/fisiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Salinidad , Tolerancia a la Sal , Plantas Tolerantes a la Sal , Estrés Fisiológico
3.
BMC Plant Biol ; 19(1): 466, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31684880

RESUMEN

BACKGROUND: Sesame (Sesame indicum L.) is well-known as a versatile industrial crop having various usages and contains 50-55% oil, 20% protein, 14-20% carbohydrate and 2-3% fiber. Several environmental factors are known to adversely affect yield and productivity of sesame. Our overall aim was to improve the growth, yield and quality of sesame cv. TS-3 using plant growth promoting rhizobacteria (PGPR) and saving the nitrogen and phosphate fertilizers (NP) by 50%. Field experiment (randomized complete block design) was conducted during the months of July to October of two consecutive years 2012-2013. Azospirillum (AL) and Azotobacter (AV) were applied as seed inoculation alone as well as along with half of the recommended dose of nitrogen (N) and phosphate (P) fertilizers (urea and diammonium phosphate) at the rate of 25 kg/ha and 30 kg/ha respectively. RESULTS: Here we report that A. lipoferum along with half dose of NP fertilizers (ALCF) were highly effective in increasing the agronomic and yield traits of sesame as compared to the control. A. vinelandii plus NP fertilizers (AVCF) exhibited higher seed oil content. Minimum acid value, optimum specific gravity and modified fatty acid composition were observed in ALCF treatment. Increase in oleic acid by ALCF is directly linked with improved oil quality for health benefits as oleic acid is the fatty acid which creates a balance between saturation and unsaturation of oil and for the hypotensive (blood pressure reducing) effects. CONCLUSION: It is inferred that ALCF treatment improved plant growth, seed yield and oil quality of sesame pertaining to good quality edible oil production.


Asunto(s)
Azospirillum lipoferum/química , Azotobacter vinelandii/química , Valor Nutritivo , Aceite de Sésamo/análisis , Sesamum/química , Sesamum/crecimiento & desarrollo , Fertilizantes/análisis , Fosfatos/análisis , Distribución Aleatoria , Urea/análisis
4.
Physiol Plant ; 166(2): 612-627, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30069883

RESUMEN

Five TERMINAL FLOWER 1 (TFL1)/CENTRORADIALIS (CEN)-like genes were isolated and characterized from rubber tree (Hevea brasiliensis). All genes, except HbCEN1, were found to have conserved genomic organization, characteristic of the phosphatidyl ethanolamine-binding protein (PEBP) family. Overexpression of all of them delayed flowering and altered flower architecture compared with the wild-type (wt) counterpart. In addition, as premature-flowering of the terminal bud was successfully overcome in the tfl1-1 mutant of Arabidopsis, all these genes have a potential function similar to TFL1. Quantitative reverse transcriptase-polymerase chain reaction analysis showed higher expressions of HbCEN1 and HbCEN2 in the shoot apices and stems of both immature and mature rubber trees than in reproductive organs. HbTFL1-1 and HbTFL1-2 expression was confined to roots of 3-month-old seedlings and HbTFL1-3 was significantly higher in the shoot apices of these seedlings. These results suggested that HbCEN1 and HbCEN2 could be associated with the development of vegetative growth, whereas HbTFL1-1, HbTFL1-2 and HbTFL1-3 seem to be mainly related with maintenance of juvenility. In addition, four of the five genes displayed variable diurnal expression, HbTFL1-1 and HbTFL1-3 being mainly expressed during the night whereas HbCEN1 and HbCEN2 showed irregular diurnal rhythms.


Asunto(s)
Flores/metabolismo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Hevea/metabolismo , Hevea/fisiología , Proteínas de Plantas/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Hevea/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología , Plantones/genética , Plantones/metabolismo , Plantones/fisiología
5.
Chin Herb Med ; 15(3): 407-420, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37538856

RESUMEN

Objective: Identifying novel strategies to prevent particulate matter (PM)-induced lung injury is crucial for the reduction of the morbidity of chronic respiratory diseases. The combined intervention represented by herbal formulae for simultaneously targeting multiple pathological processes can provide a more beneficial effect than the single intervention. The aim of this paper is therefore to design a safe and effective medicinal and edible Chinese herbs (MECHs) formula against PM-induced lung injury. Methods: PM-induced oxidative stress, inflammatory response and apoptosis A549 cell model were used to screen anti-oxidant, anti-inflammatory and anti-apoptotic MECHs, respectively. A network pharmacology method was utilized to rationally design a novel herbal formula. Ultra performance liquid chromatography-mass spectrometer was utilized to assess the quality control of MECHs formula. The excretion of magnetic iron oxide nanospheres of the MECHs formula was estimated in zebrafish. The MECH formula against PM-induced lung injury was investigated with mice experiments. Results: Five selected herbs were rationally designed to form a new MECH formula, including Citri Exocarpium Rubrum (Juhong), Lablab Semen Album (Baibiandou), Atractylodis Macrocephalae Rhizoma (Baizhu), Mori Folium (Sangye) and Polygonati Odorati Rhizoma (Yuzhu). The formula effectively promoted the magnetic iron oxide nanospheres excretion in zebrafish. The mid/high dose formula significantly prevented PM-induced lung damage in mice by enhancing the activity of SOD and GSH-Px, reducing the MDA and ROS level and attenuating the upregulation of pro-inflammatory cytokine (IL-6, IL-8, IL-1ß and TNF-α), down regulating the protein expression of NF-κB, STAT3 and Caspase-3. Conclusion: Our findings suggest that the effective MECHs formula will become a novel strategy for preventing PM-induced lung injury and provide a paradigm for the development of functional foods using MECHs.

6.
PLoS One ; 13(8): e0201738, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30096207

RESUMEN

Safflower is an important industrial oil seed and bioenergy crop in semi-arid subtropical regions due to its potential to grow on marginal land and having good percentage of seed oil contents which is an important parameter for biofuel production. However, it is an ignored crop in Pakistan. In order to improve the crop productivity and reduce the use of agrochemicals for sustainable biodiesel feedstock production, an experiment was conducted for two years to improve the fatty acid composition and oil quality of Carthamus tinctorius L. (safflower) by the inoculation of Azospirillum and Azotobacter alone as well as in combined application with nitrogen and phosphate (NP) fertilizers on cultivars Thori and Saif-32 under field conditions. Separation and quantification of fatty acids were done on precise comprehensive two-dimensional gas chromatography (GC×GC). The results showed that fatty acid profile specifically monounsaturated fatty acids i-e oleic acid (C18:1) was significantly improved by Azospirillum supplemented with the quarter dose of NP fertilizers (SPQ) with concomitant decrease in polyunsaturated fatty acids by the respective treatment. Oil quality attributes such as acid value, saponification number, iodine value, refractive index and free fatty acid contents were reduced by the application of Azotobacter and Azospirillum in combination with half and quarter doses of NP fertilizers treatments (BTH, SPH, BTQ and SPQ). The reduction in these variables is positively linked with improved biodiesel yield and quality. It can be concluded that application of Azospirillum and Azotobacter not only reduced the use of NP fertilizers up to 50%-75% but also improved the oil quality in order to obtain environment friendly, sustainable and green fuel.


Asunto(s)
Agricultura/métodos , Biocombustibles/análisis , Fertilizantes , Aceite de Cártamo/análisis , Microbiología del Suelo , Azospirillum , Azotobacter , Carthamus tinctorius/química , Carthamus tinctorius/crecimiento & desarrollo , Carthamus tinctorius/microbiología , Ácidos Grasos/análisis , Nitrógeno , Fosfatos , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA