Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Immunol ; 208(7): 1782-1789, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35256512

RESUMEN

Commensal intestinal protozoa, unlike their pathogenic relatives, are neglected members of the mammalian microbiome. These microbes have a significant impact on the host's intestinal immune homeostasis, typically by elevating anti-microbial host defense. Tritrichomonas musculis, a protozoan gut commensal, strengthens the intestinal host defense against enteric Salmonella infections through Asc- and Il1r1-dependent Th1 and Th17 cell activation. However, the underlying inflammasomes mediating this effect remain unknown. In this study, we report that colonization with T. musculis results in an increase in luminal extracellular ATP that is followed by increased caspase activity, higher cell death, elevated levels of IL-1ß, and increased numbers of IL-18 receptor-expressing Th1 and Th17 cells in the colon. Mice deficient in either Nlrp1b or Nlrp3 failed to display these protozoan-driven immune changes and lost resistance to enteric Salmonella infections even in the presence of T. musculis These findings demonstrate that T. musculis-mediated host protection requires sensors of extracellular and intracellular ATP to confer resistance to enteric Salmonella infections.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Microbiota , Proteína con Dominio Pirina 3 de la Familia NLR , Tritrichomonas , Animales , Proteínas Reguladoras de la Apoptosis/inmunología , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Mamíferos/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Simbiosis , Tritrichomonas/metabolismo
2.
Gastroenterology ; 163(3): 659-670, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35623454

RESUMEN

BACKGROUND & AIMS: Anti-granulocyte macrophage-colony stimulating factor autoantibodies (aGMAbs) are detected in patients with ileal Crohn's disease (CD). Their induction and mode of action during or before disease are not well understood. We aimed to investigate the underlying mechanisms associated with aGMAb induction, from functional orientation to recognized epitopes, for their impact on intestinal immune homeostasis and use as a predictive biomarker for complicated CD. METHODS: We characterized using enzyme-linked immunosorbent assay naturally occurring aGMAbs in longitudinal serum samples from patients archived before the diagnosis of CD (n = 220) as well as from 400 healthy individuals (matched controls) as part of the US Defense Medical Surveillance System. We used biochemical, cellular, and transcriptional analysis to uncover a mechanism that governs the impaired immune balance in CD mucosa after diagnosis. RESULTS: Neutralizing aGMAbs were found to be specific for post-translational glycosylation on granulocyte macrophage-colony stimulating factor (GM-CSF), detectable years before diagnosis, and associated with complicated CD at presentation. Glycosylation of GM-CSF was altered in patients with CD, and aGMAb affected myeloid homeostasis and promoted group 1 innate lymphoid cells. Perturbations in immune homeostasis preceded the diagnosis in the serum of patients with CD presenting with aGMAb and were detectable in the noninflamed CD mucosa. CONCLUSIONS: Anti-GMAbs predict the diagnosis of complicated CD long before the diagnosis of disease, recognize uniquely glycosylated epitopes, and impair myeloid cell and innate lymphoid cell balance associated with altered intestinal immune homeostasis.


Asunto(s)
Enfermedad de Crohn , Enfermedades del Íleon , Autoanticuerpos , Enfermedad de Crohn/complicaciones , Epítopos , Glicosilación , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Enfermedades del Íleon/complicaciones , Inmunidad Innata , Linfocitos , Macrófagos
3.
Sci Immunol ; 8(86): eabq4573, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37540734

RESUMEN

Maintaining macrophage (MΦ) heterogeneity is critical to ensure intestinal tissue homeostasis and host defense. The gut microbiota and host factors are thought to synergistically guide intestinal MΦ development, although the exact nature, regulation, and location of such collaboration remain unclear. Here, we report that microbial biochemical energy metabolism promotes colony-stimulating factor 2 (CSF2) production by group 3 innate lymphoid cells (ILC3s) within solitary isolated lymphoid tissues (SILTs) in a cell-extrinsic, NLRP3/P2X7R-dependent fashion in the steady state. Tissue-infiltrating monocytes accumulating around SILTs followed a spatially constrained, distinct developmental trajectory into SILT-associated MΦs (SAMs). CSF2 regulated the mitochondrial membrane potential and reactive oxygen species production of SAMs and contributed to the antimicrobial defense against enteric bacterial infections. Collectively, these findings identify SILTs and CSF2-producing ILC3s as a microanatomic niche for intestinal MΦ development and functional programming fueled by the integration of commensal microbial energy metabolism.


Asunto(s)
Inmunidad Innata , Linfocitos , Linfocitos/metabolismo , Intestinos , Tejido Linfoide , Macrófagos
4.
Int Rev Cell Mol Biol ; 367: 29-64, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35461659

RESUMEN

The intestinal tract is the body's largest mucosal surface and permanently exposed to microbial and environmental signals. Maintaining a healthy intestine requires the presence of sentinel grounds keeper cells, capable of controlling immunity and tissue homeostasis through specialized functions. Intestinal macrophages are such cells and important players in steady-state functions and during acute and chronic inflammation. Crohn's disease, a chronic inflammatory condition of the intestinal tract is proposed to be the consequence of an altered immune system through microbial and environmental stimulation. This hypothesis suggests an involvement of macrophages in the regulation of this pathology. Within this chapter, we will discuss intestinal macrophage development and highlight data suggesting their implication in chronic intestinal pathologies like Crohn's disease.


Asunto(s)
Enfermedad de Crohn , Homeostasis , Humanos , Inflamación/patología , Mucosa Intestinal/patología , Intestinos/patología , Macrófagos
5.
Front Immunol ; 12: 749708, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34650568

RESUMEN

The gastrointestinal tract hosts the largest compartment of macrophages in the body, where they serve as mediators of host defense and immunity. Seeded in the complex tissue-environment of the gut, an array of both hematopoietic and non-hematopoietic cells forms their immediate neighborhood. Emerging data demonstrate that the functional diversity of intestinal macrophages reaches beyond classical immunity and includes underappreciated non-immune functions. In this review, we discuss recent advances in research on intestinal macrophage heterogeneity, with a particular focus on how non-immune functions of macrophages impact tissue homeostasis and function. We delve into the strategic localization of distinct gut macrophage populations, describe the potential factors that regulate their identity and functional heterogeneity within these locations, and provide open questions that we hope will inspire research dedicated to elucidating a holistic view on macrophage-tissue cell interactions in the body's largest mucosal organ.


Asunto(s)
Intestinos/fisiología , Macrófagos/fisiología , Animales , Microbioma Gastrointestinal , Homeostasis , Humanos , Intestinos/microbiología , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA