Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Toxicol Pathol ; 37(3): 127-131, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38962258

RESUMEN

Duplicate testes lined in series were observed in the right scrotum of a 6-week-old Sprague-Dawley rat in a single-dose toxicity study. Of the two right testicles, one was spherical and less than half the size of a normal testis. The other was oval-shaped, slightly smaller than a normal testis, and possessed clear, tortuous blood vessels similar to those of a normal testis. Each right testis was grossly separated but faced the intertesticular adipose tissue and was sparsely joined by thin cord-like structures. Only one epididymis covered or encompassed the two right testes. The caput epididymis was attached to the smaller spherical testis, whereas the cauda epididymis was attached to the oval testis. Histopathological examination revealed that the smaller spherical testis on the right side and the testis on the left side were normal. The oval-shaped testis on the right exhibited markedly dilated degenerative seminiferous tubules with one to two layers of Sertoli or germ cells, and almost no spermatogenesis was observed. Multinucleated germ cells were observed in the lumen of the degenerated seminiferous tubules. The right epididymis was morphologically normal and contained few sperm in the epididymal duct of the tail. The cord-like structures between duplicate testes comprised fibrous and adipose tissues. Single efferent ductules, ectopic cartilage, and skeletal muscle tissues were buried in the adipose tissue. To our knowledge, this is the first report of spontaneous polyorchidism in a rodent.

2.
J Antimicrob Chemother ; 77(11): 2984-2991, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35914182

RESUMEN

OBJECTIVES: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19) and a devastating worldwide health concern. Development of safe and effective treatments is not only important for interventions during the current pandemic, but also for providing general treatment options moving forward. We have developed ensitrelvir, an antiviral compound that targets the 3C-like protease of SARS-CoV-2. In this study, a delayed-treatment mouse model was used to clarify the potential in vivo efficacy of ensitrelvir. METHODS: Female BALB/cAJcl mice of different ages were infected with the SARS-CoV-2 gamma strain (hCoV-19/Japan/TY7-501/2021) or mouse-adapted SARS-CoV-2 MA-P10 and then 24 h post-infection orally administered various doses of ensitrelvir or vehicle. Viral titres and RNA levels in the lungs were quantified using VeroE6/TMPRSS2 cells and RT-qPCR, respectively. Body weight loss, survival, lung weight, cytokine/chemokine production, nucleocapsid protein expression and lung pathology were evaluated to investigate the in vivo efficacy of ensitrelvir. RESULTS: Based on infectious viral titres and viral RNA levels in the lungs of infected mice, ensitrelvir reduced viral loads in a dose-dependent manner. The antiviral efficacy correlated with increased survival, reduced body weight loss, reduced pulmonary lesions and suppression of inflammatory cytokine/chemokine levels. CONCLUSIONS: This was the first evaluation of the in vivo anti-SARS-CoV-2 efficacy of ensitrelvir in a delayed-treatment mouse model. In this model, ensitrelvir demonstrated high antiviral potential and suppressed lung inflammation and lethality caused by SARS-CoV-2 infection. The findings support the continued clinical development of ensitrelvir as an antiviral agent to treat patients with COVID-19.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Animales , Femenino , Ratones , Antivirales/uso terapéutico , Antivirales/farmacología , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Pulmón , SARS-CoV-2 , Pérdida de Peso
3.
Eur J Nucl Med Mol Imaging ; 49(13): 4358-4368, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35876866

RESUMEN

PURPOSE: Integrins αv are key molecules in the pathogenesis of fibrosis in multiple organs. To assess the potential utility of integrin αvß3 imaging for idiopathic pulmonary fibrosis (IPF), we evaluated an 18F-FPP-RGD2 PET probe in a rat model of bleomycin-induced lung fibrosis. METHODS: Pulmonary fibrosis was induced by single intratracheal instillation of bleomycin (3 mg/rat). Positron emission tomography (PET)/computerized tomography scans were performed 4 weeks after bleomycin administration using 18F-FPP-RGD2. Total distribution volume (VT) was estimated using one-tissue/two-compartment, two-tissue/three-compartment models, and Logan graphical analysis (Logan plot; t* = 30 min). Plasma-free fractions were estimated from images of the left ventricle. Correlation between Logan VT and lung pathology was assessed by Spearman's rank correlation. RESULTS: Histopathological evaluation demonstrated the development of fibrosis in IPF-model group. Integrin αv protein expression and lung radioactivity were higher in IPF-model group compared with control group. The lung radioactivity of 18F-FPP-RGD2 rapidly reached the peak after administration and then gradually decreased, whereas left ventricular radioactivity rapidly disappeared. Logan graphical analysis was found to be suitable for 18F-FPP-RGD2 kinetic analysis in the IPF-model lung. Logan VT values for 18F-FPP-RGD2 were significantly higher in IPF rats compared with control rats and strongly correlated with lung fibrosis, pathology, integrin αv protein expression, and oxygen partial pressure. CONCLUSION: Our findings demonstrate that the integrin αvß3 PET probe 18F-FPP-RGD2 can detect pathophysiological changes in lungs, including fibrosis accompanying upregulated integrin αv of IPF-model rats. These findings support the utility of 18F-FPP-RGD2 PET imaging for the pathophysiological evaluation of pulmonary fibrosis.


Asunto(s)
Bleomicina , Fibrosis Pulmonar Idiopática , Animales , Ratas , Cinética , Tomografía de Emisión de Positrones/métodos , Integrina alfaVbeta3/metabolismo , Pulmón/diagnóstico por imagen , Pulmón/patología , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Fibrosis , Oligopéptidos/metabolismo , Oxígeno
4.
J Toxicol Pathol ; 34(3): 261-267, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34290482

RESUMEN

A 6-month-old female beagle dog, assigned to the low-dose group in a toxicity study, was evaluated for compound toxicity, and spontaneous hyperadrenocorticism was suspected. The animal had an externally apparent distended abdomen on clinical examination upon arrival. Pre-dose clinical pathology showed slightly higher erythroid parameters and stress leukogram on hematology; plasma biochemistry showed higher total protein, gamma-glutamyl transferase, total cholesterol, and triglyceride levels than the reference data. On necropsy, a prominent increase in adipose tissues of the subcutis and abdomen and increased weight of the adrenal gland and liver were observed. Histopathology revealed diffuse hyperplasia of adrenocortical cells in the zona fasciculata and reticularis, cortical atrophy of the thymus, and abundant glycogen accumulation in the hepatocytes. These findings were incidental and not test-substance-related. Electron microscopy of the adrenocortical cells in the zona fasciculata revealed decreased typical translucent lipid droplets, increased electron-dense lipid droplets, and abundant smooth endoplasmic reticulum and lysosomes. Additionally, increased numbers of various sizes and forms of mitochondria with tubular, vesicular, or lamellar cristae compared to that of normal animals were observed. These ultrastructural characteristics of the adrenocortical cells suggested hyperfunction. The pre-dose plasma cortisol levels were slightly higher than those of other females assigned to the toxicity study, while plasma adrenocorticotropic hormone levels were within the normal range. These findings indicate that hyperadrenocorticism is a possible cause of the systemic changes in this case.

6.
Front Immunol ; 14: 1116238, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36891311

RESUMEN

Background: Adjuvants are chemical or biological materials that enhance the efficacy of vaccines. A-910823 is a squalene-based emulsion adjuvant used for S-268019-b, a novel vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that is currently in clinical development. Published evidence has demonstrated that A-910823 can enhance the induction of neutralizing antibodies against SARS-CoV-2 in humans and animal models. However, the characteristics and mechanisms of the immune responses induced by A-910823 are not yet known. Methods and Results: To characterize A-910823, we compared the adaptive immune response profile enhanced by A-910823 with that of other adjuvants (AddaVax, QS21, aluminum salt-based adjuvants, and empty lipid nanoparticle [eLNP]) in a murine model. Compared with other adjuvants, A-910823 enhanced humoral immune responses to an equal or greater extent following potent T follicular helper (Tfh) and germinal center B (GCB) cell induction, without inducing a strong systemic inflammatory cytokine response. Furthermore, S-268019-b containing A-910823 adjuvant produced similar results even when given as a booster dose following primary administration of a lipid nanoparticle-encapsulated messenger RNA (mRNA-LNP) vaccine. Preparation of modified A-910823 adjuvants to identify which components of A-910823 play a role in driving the adjuvant effect and detailed evaluation of the immunological characteristics induced by each adjuvant showed that the induction of humoral immunity and Tfh and GCB cell induction in A-910823 were dependent on α-tocopherol. Finally, we revealed that the recruitment of inflammatory cells to the draining lymph nodes and induction of serum cytokines and chemokines by A-910823 were also dependent on the α-tocopherol component. Conclusions: This study demonstrates that the novel adjuvant A-910823 is capable of robust Tfh cell induction and humoral immune responses, even when given as a booster dose. The findings also emphasize that α-tocopherol drives the potent Tfh-inducing adjuvant function of A-910823. Overall, our data provide key information that may inform the future production of improved adjuvants.


Asunto(s)
COVID-19 , Inmunidad Humoral , Humanos , Animales , Ratones , Células T Auxiliares Foliculares , alfa-Tocoferol/farmacología , Escualeno/farmacología , Emulsiones , SARS-CoV-2 , Adyuvantes Inmunológicos/farmacología , Adyuvantes Farmacéuticos
7.
Stress ; 14(4): 368-75, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21438773

RESUMEN

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide widely distributed in the nervous system. Recently, PACAP was shown to be involved in restraint stress-induced corticosterone release and concomitant expression of the genes involved in hypothalamic-pituitary-adrenal (HPA) axis activation. Therefore, in this study, we have addressed the types of stressors and the levels of the HPA axis in which PACAP signaling is involved using mice lacking PACAP (PACAP⁻/⁻). Among four different types of stressors, open-field exposure, cold exposure, ether inhalation, and restraint, the corticosterone response to open-field exposure and restraint, which are categorized as emotional stressors, but not the other two, was markedly attenuated in PACAP⁻/⁻ mice. Peripheral administration of corticotropin releasing factor (CRF) or adrenocorticotropic hormone induced corticosterone increase similarly in PACAP⁻/⁻ and wild-type mice. In addition, the restraint stress-induced c-Fos expression was significantly decreased in the paraventricular nucleus (PVN) and medial amygdala (MeA), but not the medial prefrontal cortex, in PACAP⁻/⁻ mice. In the PVN of PACAP⁻/⁻ mice, the stress-induced c-Fos expression was blunted in the CRF neurons. These results suggest that PACAP is critically involved in activation of the MeA and PVN CRF neurons to centrally regulate the HPA axis response to emotional stressors.


Asunto(s)
Corticosterona/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Estrés Psicológico/metabolismo , Hormona Adrenocorticotrópica/farmacología , Amígdala del Cerebelo/fisiología , Animales , Hormona Liberadora de Corticotropina , Ratones , Núcleo Hipotalámico Paraventricular/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/deficiencia , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Restricción Física/fisiología
9.
J Mol Neurosci ; 48(3): 473-81, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22843252

RESUMEN

The serotonin 5-HT(7) receptor has been linked to various psychiatric disorders, including schizophrenia, anxiety and depression, and is antagonized by antipsychotics such as risperidone, clozapine and lurasidone. In this study, we examined whether inhibiting the 5-HT(7) receptor could reverse behavioral abnormalities in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP), an experimental mouse model for psychiatric disorders such as schizophrenia. The selective 5-HT(7) antagonist SB-269970 effectively suppressed abnormal jumping behavior in PACAP-deficient mice. SB-269970 tended to alleviate the higher immobility in the forced swim test in PACAP-deficient mice, although SB-269970 reduced the immobility also in wild-type mice. In addition, we found that mutant mice had impaired performance in the Y-maze test, which was reversed by SB-269970. In the mutant mouse brain, 5-HT(7) protein expression did not differ from wild-type mice. In primary embryonic hippocampal neurons, the 5-HT(7) agonist AS19 increased neurite length and number. Furthermore, SB-269970 significantly inhibited the increase in neurite extension mediated by the 5-HT(1A/7) agonist 8-OH-DPAT. These results indicate that 5-HT(7) receptor blockade ameliorates psychomotor and cognitive deficits in PACAP-deficient mice, providing additional evidence that the 5-HT(7) receptor is a rational target for the treatment of psychiatric disorders.


Asunto(s)
Antipsicóticos/uso terapéutico , Hipocampo/citología , Proteínas del Tejido Nervioso/fisiología , Neuritas/efectos de los fármacos , Fenoles/uso terapéutico , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/deficiencia , Receptores de Serotonina/fisiología , Antagonistas de la Serotonina/uso terapéutico , Sulfonamidas/uso terapéutico , 8-Hidroxi-2-(di-n-propilamino)tetralin/antagonistas & inhibidores , 8-Hidroxi-2-(di-n-propilamino)tetralin/toxicidad , Animales , Antipsicóticos/farmacología , Recuento de Células , Células Cultivadas/efectos de los fármacos , Células Cultivadas/ultraestructura , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Conducta Exploratoria/efectos de los fármacos , Reacción Cataléptica de Congelación/efectos de los fármacos , Hipocampo/embriología , Hipercinesia/tratamiento farmacológico , Hipercinesia/fisiopatología , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Ratones Mutantes Neurológicos , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas del Tejido Nervioso/genética , Neuritas/ultraestructura , Fenoles/farmacología , Resistencia Física/efectos de los fármacos , Pirazoles/farmacología , Pirazoles/uso terapéutico , Receptores de Serotonina/biosíntesis , Receptores de Serotonina/efectos de los fármacos , Receptores de Serotonina/genética , Serotonina/fisiología , Antagonistas de la Serotonina/farmacología , Agonistas de Receptores de Serotonina/farmacología , Agonistas de Receptores de Serotonina/toxicidad , Sulfonamidas/farmacología , Tetrahidronaftalenos/farmacología , Tetrahidronaftalenos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA