Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(16): 4154-4167.e12, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34324837

RESUMEN

Environmental light cycles entrain circadian feeding behaviors in animals that produce rhythms in exposure to foodborne bacteria. Here, we show that the intestinal microbiota generates diurnal rhythms in innate immunity that synchronize with feeding rhythms to anticipate microbial exposure. Rhythmic expression of antimicrobial proteins was driven by daily rhythms in epithelial attachment by segmented filamentous bacteria (SFB), members of the mouse intestinal microbiota. Rhythmic SFB attachment was driven by the circadian clock through control of feeding rhythms. Mechanistically, rhythmic SFB attachment activated an immunological circuit involving group 3 innate lymphoid cells. This circuit triggered oscillations in epithelial STAT3 expression and activation that produced rhythmic antimicrobial protein expression and caused resistance to Salmonella Typhimurium infection to vary across the day-night cycle. Thus, host feeding rhythms synchronize with the microbiota to promote rhythms in intestinal innate immunity that anticipate exogenous microbial exposure.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Microbioma Gastrointestinal , Inmunidad Innata , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Adhesión Bacteriana , Adhesión Celular , Células Epiteliales/microbiología , Conducta Alimentaria , Intestino Delgado/microbiología , Intestino Delgado/ultraestructura , Linfocitos/metabolismo , Ratones Endogámicos C57BL , Muramidasa/metabolismo , Proteínas Asociadas a Pancreatitis/metabolismo , Factor de Transcripción STAT3/metabolismo , Salmonelosis Animal/microbiología , Transducción de Señal
2.
Genes Dev ; 35(11-12): 899-913, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34016691

RESUMEN

In mammals, a set of core clock genes form transcription-translation feedback loops to generate circadian oscillations. We and others recently identified a novel transcript at the Period2 (Per2) locus that is transcribed from the antisense strand of Per2 This transcript, Per2AS, is expressed rhythmically and antiphasic to Per2 mRNA, leading to our hypothesis that Per2AS and Per2 mutually inhibit each other's expression and form a double negative feedback loop. By perturbing the expression of Per2AS, we found that Per2AS transcription, but not transcript, represses Per2 However, Per2 does not repress Per2AS, as Per2 knockdown led to a decrease in the Per2AS level, indicating that Per2AS forms a single negative feedback loop with Per2 and maintains the level of Per2 within the oscillatory range. Per2AS also regulates the amplitude of the circadian clock, and this function cannot be solely explained through its interaction with Per2, as Per2 knockdown does not recapitulate the phenotypes of Per2AS perturbation. Overall, our data indicate that Per2AS is an important regulatory molecule in the mammalian circadian clock machinery. Our work also supports the idea that antisense transcripts of core clock genes constitute a common feature of circadian clocks, as they are found in other organisms.


Asunto(s)
Relojes Circadianos/genética , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , Animales , Retroalimentación Fisiológica , Técnicas de Silenciamiento del Gen , Ratones , Proteínas Circadianas Period/genética
3.
Cell ; 152(5): 1091-105, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23452855

RESUMEN

Period determination in the mammalian circadian clock involves the turnover rate of the repressors CRY and PER. We show that CRY ubiquitination engages two competing E3 ligase complexes that either lengthen or shorten circadian period in mice. Cloning of a short-period circadian mutant, Past-time, revealed a glycine to glutamate missense mutation in Fbxl21, an F-box protein gene that is a paralog of Fbxl3 that targets the CRY proteins for degradation. While loss of function of FBXL3 leads to period lengthening, mutation of Fbxl21 causes period shortening. FBXL21 forms an SCF E3 ligase complex that slowly degrades CRY in the cytoplasm but antagonizes the stronger E3 ligase activity of FBXL3 in the nucleus. FBXL21 plays a dual role: protecting CRY from FBXL3 degradation in the nucleus and promoting CRY degradation within the cytoplasm. Thus, the balance and cellular compartmentalization of competing E3 ligases for CRY determine circadian period of the clock in mammals.


Asunto(s)
Criptocromos/metabolismo , Proteínas F-Box/metabolismo , Animales , Proteínas CLOCK/genética , Núcleo Celular/metabolismo , Cruzamientos Genéticos , Citoplasma/metabolismo , Proteínas F-Box/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Proteolisis
4.
PLoS Biol ; 22(3): e3002535, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38470868

RESUMEN

Light enables vision and exerts widespread effects on physiology and behavior, including regulating circadian rhythms, sleep, hormone synthesis, affective state, and cognitive processes. Appropriate lighting in animal facilities may support welfare and ensure that animals enter experiments in an appropriate physiological and behavioral state. Furthermore, proper consideration of light during experimentation is important both when it is explicitly employed as an independent variable and as a general feature of the environment. This Consensus View discusses metrics to use for the quantification of light appropriate for nonhuman mammals and their application to improve animal welfare and the quality of animal research. It provides methods for measuring these metrics, practical guidance for their implementation in husbandry and experimentation, and quantitative guidance on appropriate light exposure for laboratory mammals. The guidance provided has the potential to improve data quality and contribute to reduction and refinement, helping to ensure more ethical animal use.


Asunto(s)
Experimentación Animal , Animales de Laboratorio , Animales , Reproducibilidad de los Resultados , Ritmo Circadiano/fisiología , Mamíferos
5.
Nature ; 594(7864): 535-540, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34163056

RESUMEN

Night-migratory songbirds are remarkably proficient navigators1. Flying alone and often over great distances, they use various directional cues including, crucially, a light-dependent magnetic compass2,3. The mechanism of this compass has been suggested to rely on the quantum spin dynamics of photoinduced radical pairs in cryptochrome flavoproteins located in the retinas of the birds4-7. Here we show that the photochemistry of cryptochrome 4 (CRY4) from the night-migratory European robin (Erithacus rubecula) is magnetically sensitive in vitro, and more so than CRY4 from two non-migratory bird species, chicken (Gallus gallus) and pigeon (Columba livia). Site-specific mutations of ErCRY4 reveal the roles of four successive flavin-tryptophan radical pairs in generating magnetic field effects and in stabilizing potential signalling states in a way that could enable sensing and signalling functions to be independently optimized in night-migratory birds.


Asunto(s)
Migración Animal , Criptocromos/genética , Campos Magnéticos , Pájaros Cantores , Animales , Proteínas Aviares/genética , Pollos , Columbidae , Retina
6.
Proc Natl Acad Sci U S A ; 121(13): e2316841121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38502706

RESUMEN

We show that nocturnal aversive stimuli presented to mice while they are eating and drinking outside of their safe nest can entrain circadian behaviors, leading to a shift toward daytime activity. We also show that the canonical molecular circadian clock is necessary for fear entrainment and that an intact molecular clockwork in the suprachiasmatic nucleus, the site of the central circadian pacemaker, is necessary but not sufficient to sustain fear entrainment of circadian rhythms. Our results demonstrate that entrainment of a circadian clock by cyclic fearful stimuli can lead to severely mistimed circadian behavior that persists even after the aversive stimulus is removed. Together, our findings support the interpretation that circadian and sleep symptoms associated with fear and anxiety disorders are, in part, the output of a fear-entrained clock, and provide a mechanistic insight into this clock.


Asunto(s)
Relojes Circadianos , Ratones , Animales , Relojes Circadianos/genética , Núcleo Supraquiasmático , Ritmo Circadiano , Miedo
7.
Genes Dev ; 33(5-6): 294-309, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30804225

RESUMEN

The mammalian circadian clock relies on the transcription factor CLOCK:BMAL1 to coordinate the rhythmic expression of thousands of genes. Consistent with the various biological functions under clock control, rhythmic gene expression is tissue-specific despite an identical clockwork mechanism in every cell. Here we show that BMAL1 DNA binding is largely tissue-specific, likely because of differences in chromatin accessibility between tissues and cobinding of tissue-specific transcription factors. Our results also indicate that BMAL1 ability to drive tissue-specific rhythmic transcription is associated with not only the activity of BMAL1-bound enhancers but also the activity of neighboring enhancers. Characterization of physical interactions between BMAL1 enhancers and other cis-regulatory regions by RNA polymerase II chromatin interaction analysis by paired-end tag (ChIA-PET) reveals that rhythmic BMAL1 target gene expression correlates with rhythmic chromatin interactions. These data thus support that much of BMAL1 target gene transcription depends on BMAL1 capacity to rhythmically regulate a network of enhancers.


Asunto(s)
Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Regulación de la Expresión Génica/genética , Secuencias de Aminoácidos/genética , Animales , Cromatina/metabolismo , Ritmo Circadiano/genética , Elementos de Facilitación Genéticos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN Polimerasa II/metabolismo
8.
Trends Biochem Sci ; 47(9): 745-758, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35577675

RESUMEN

The circadian clock is an intracellular timekeeping device that drives daily rhythms in diverse and extensive processes throughout the body. The clock mechanism comprises a core transcription/translation negative feedback loop that is modulated by a complex set of additional interlocking feedback loops. Pharmacological manipulation of the clock may be valuable for treating many maladies including jet lag, shift work and related sleep disorders, various metabolic diseases, and cancer. We review recent identification of small-molecule clock modulators and discuss the biochemical features of the core clock that may be amenable to future drug discovery.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Descubrimiento de Drogas
9.
Cell ; 142(6): 841-3, 2010 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-20850006

RESUMEN

Cells possess internal ∼24 hr or circadian clocks that synchronize physiological processes with daily cycles of light and nutrient availability. In this issue, Asher et al. (2010) find that PARP-1 (poly(ADP-ribose) polymerase 1) modifies components of the clock machinery in response to feeding, providing a mechanism for how metabolic rhythms coordinate with circadian rhythms.

10.
Proc Natl Acad Sci U S A ; 119(45): e2211142119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322771

RESUMEN

Ultradian rhythms in metabolism and physiology have been described previously in mammals. However, the underlying mechanisms for these rhythms are still elusive. Here, we report the discovery of temperature-sensitive ultradian rhythms in mammalian fibroblasts that are independent of both the cell cycle and the circadian clock. The period in each culture is stable over time but varies in different cultures (ranging from 3 to 24 h). We show that transient, single-cell metabolic pulses are synchronized into stable ultradian rhythms across contacting cells in culture by gap junction-mediated coupling. Coordinated rhythms are also apparent for other metabolic and physiological measures, including plasma membrane potential (Δψp), intracellular glutamine, α-ketoglutarate, intracellular adenosine triphosphate (ATP), cytosolic pH, and intracellular calcium. Moreover, these ultradian rhythms require extracellular glutamine, several different ion channels, and the suppression of mitochondrial ATP synthase by α-ketoglutarate, which provides a key feedback mechanism. We hypothesize that cellular coupling and metabolic feedback can be used by cells to balance energy demands for survival.


Asunto(s)
Relojes Circadianos , Ritmo Ultradiano , Animales , Ácidos Cetoglutáricos , Glutamina , Ciclo Celular , Ritmo Circadiano/fisiología , Mamíferos
11.
Proc Natl Acad Sci U S A ; 119(31): e2204901119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881790

RESUMEN

Although a wide variety of genetic tools has been developed to study learning and memory, the molecular basis of memory encoding remains incompletely understood. Here, we undertook an unbiased approach to identify novel genes critical for memory encoding. From a large-scale, in vivo mutagenesis screen using contextual fear conditioning, we isolated in mice a mutant, named Clueless, with spatial learning deficits. A causative missense mutation (G434V) was found in the voltage-gated potassium channel, subfamily C member 3 (Kcnc3) gene in a region that encodes a transmembrane voltage sensor. Generation of a Kcnc3G434V CRISPR mutant mouse confirmed this mutation as the cause of the learning defects. While G434V had no effect on transcription, translation, or trafficking of the channel, electrophysiological analysis of the G434V mutant channel revealed a complete loss of voltage-gated conductance, a broadening of the action potential, and decreased neuronal firing. Together, our findings have revealed a role for Kcnc3 in learning and memory.


Asunto(s)
Hipocampo , Discapacidades para el Aprendizaje , Memoria , Mutación Missense , Canales de Potasio Shaw , Potenciales de Acción/fisiología , Animales , Hipocampo/fisiopatología , Discapacidades para el Aprendizaje/genética , Ratones , Ratones Endogámicos C57BL , Canales de Potasio Shaw/genética , Canales de Potasio Shaw/fisiología
12.
Genes Dev ; 31(21): 2121-2135, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29196536

RESUMEN

The molecular mechanisms underlying human brain evolution are not fully understood; however, previous work suggested that expression of the transcription factor CLOCK in the human cortex might be relevant to human cognition and disease. In this study, we investigated this novel transcriptional role for CLOCK in human neurons by performing chromatin immunoprecipitation sequencing for endogenous CLOCK in adult neocortices and RNA sequencing following CLOCK knockdown in differentiated human neurons in vitro. These data suggested that CLOCK regulates the expression of genes involved in neuronal migration, and a functional assay showed that CLOCK knockdown increased neuronal migratory distance. Furthermore, dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. These data support a role for CLOCK-regulated transcriptional cascades involved in human brain evolution and function.


Asunto(s)
Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Neuronas/fisiología , Línea Celular , Movimiento Celular/genética , Epigénesis Genética/genética , Técnicas de Silenciamiento del Gen , Humanos , Neocórtex/metabolismo , Trastornos del Neurodesarrollo/genética , Neuronas/citología
13.
Semin Cell Dev Biol ; 126: 37-44, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34625370

RESUMEN

Timing is everything. Many organisms across the tree of life have evolved timekeeping mechanisms that regulate numerous of their cellular functions to optimize timing by anticipating changes in the environment. The specific environmental changes that are sensed depends on the organism. For animals, plants, and free-living microbes, environmental cues include light/dark cycles, daily temperature fluctuations, among others. In contrast, for a microbe that is never free-living, its rhythmic environment is its host's rhythmic biology. Here, we describe recent research on the interactions between hosts and microbes, from the perspective both of symbiosis as well as infections. In addition to describing the biology of the microbes, we focus specifically on how circadian clocks modulate these host-microbe interactions.


Asunto(s)
Relojes Circadianos , Enfermedades Transmisibles , Animales , Ritmo Circadiano/fisiología , Interacciones Microbiota-Huesped , Simbiosis
14.
Nat Rev Genet ; 18(3): 164-179, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27990019

RESUMEN

Circadian clocks are endogenous oscillators that control 24-hour physiological and behavioural processes in organisms. These cell-autonomous clocks are composed of a transcription-translation-based autoregulatory feedback loop. With the development of next-generation sequencing approaches, biochemical and genomic insights into circadian function have recently come into focus. Genome-wide analyses of the clock transcriptional feedback loop have revealed a global circadian regulation of processes such as transcription factor occupancy, RNA polymerase II recruitment and initiation, nascent transcription, and chromatin remodelling. The genomic targets of circadian clocks are pervasive and are intimately linked to the regulation of metabolism, cell growth and physiology.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Relojes Circadianos/genética , Epigénesis Genética , Mamíferos/genética , Transcripción Genética , Animales , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , ARN Polimerasa II/metabolismo
15.
Cell ; 134(5): 728-42, 2008 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-18775307

RESUMEN

The circadian system orchestrates the temporal organization of many aspects of physiology, including metabolism, in synchrony with the 24 hr rotation of the Earth. Like the metabolic system, the circadian system is a complex feedback network that involves interactions between the central nervous system and peripheral tissues. Emerging evidence suggests that circadian regulation is intimately linked to metabolic homeostasis and that dysregulation of circadian rhythms can contribute to disease. Conversely, metabolic signals also feed back into the circadian system, modulating circadian gene expression and behavior. Here, we review the relationship between the circadian and metabolic systems and the implications for cardiovascular disease, obesity, and diabetes.


Asunto(s)
Ritmo Circadiano , Redes y Vías Metabólicas , Animales , Relojes Biológicos , Conducta Alimentaria , Humanos
16.
Proc Natl Acad Sci U S A ; 117(19): 10350-10356, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32358201

RESUMEN

Nongenetic cellular heterogeneity is associated with aging and disease. However, the origins of cell-to-cell variability are complex and the individual contributions of different factors to total phenotypic variance are still unclear. Here, we took advantage of clear phenotypic heterogeneity of circadian oscillations in clonal cell populations to investigate the underlying mechanisms of cell-to-cell variability. Using a fully automated tracking and analysis pipeline, we examined circadian period length in thousands of single cells and hundreds of clonal cell lines and found that longer circadian period is associated with increased intercellular heterogeneity. Based on our experimental results, we then estimated the contributions of heritable and nonheritable factors to this variation in circadian period length using a variance partitioning model. We found that nonheritable noise predominantly drives intercellular circadian period variation in clonal cell lines, thereby revealing a previously unrecognized link between circadian oscillations and intercellular heterogeneity. Moreover, administration of a noise-enhancing drug reversibly increased both period length and variance. These findings suggest that circadian period may be used as an indicator of cellular noise and drug screening for noise control.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Modelos Biológicos , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Circadianas Period/metabolismo , Análisis de la Célula Individual/métodos , Animales , Células Cultivadas , Mediciones Luminiscentes , Ratones , Células Madre Embrionarias de Ratones/citología , Proteínas Circadianas Period/genética , Procesos Estocásticos
17.
Proc Natl Acad Sci U S A ; 117(11): 5761-5771, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32132203

RESUMEN

The circadian clock coordinates a variety of immune responses with signals from the external environment to promote survival. We investigated the potential reciprocal relationship between the circadian clock and skin inflammation. We treated mice topically with the Toll-like receptor 7 (TLR7) agonist imiquimod (IMQ) to activate IFN-sensitive gene (ISG) pathways and induce psoriasiform inflammation. IMQ transiently altered core clock gene expression, an effect mirrored in human patient psoriatic lesions. In mouse skin 1 d after IMQ treatment, ISGs, including the key ISG transcription factor IFN regulatory factor 7 (Irf7), were more highly induced after treatment during the day than the night. Nuclear localization of phosphorylated-IRF7 was most prominently time-of-day dependent in epidermal leukocytes, suggesting that these cell types play an important role in the diurnal ISG response to IMQ. Mice lacking Bmal1 systemically had exacerbated and arrhythmic ISG/Irf7 expression after IMQ. Furthermore, daytime-restricted feeding, which affects the phase of the skin circadian clock, reverses the diurnal rhythm of IMQ-induced ISG expression in the skin. These results suggest a role for the circadian clock, driven by BMAL1, as a negative regulator of the ISG response, and highlight the finding that feeding time can modulate the skin immune response. Since the IFN response is essential for the antiviral and antitumor effects of TLR activation, these findings are consistent with the time-of-day-dependent variability in the ability to fight microbial pathogens and tumor initiation and offer support for the use of chronotherapy for their treatment.


Asunto(s)
Ritmo Circadiano , Inmunidad Innata/genética , Interferones/genética , Glicoproteínas de Membrana/genética , Piel/metabolismo , Receptor Toll-Like 7/genética , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Imiquimod/farmacología , Inductores de Interferón/farmacología , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/metabolismo , Interferones/metabolismo , Masculino , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Piel/efectos de los fármacos , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 7/metabolismo
18.
Nature ; 539(7629): 378-383, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27806374

RESUMEN

Sleep is conserved from invertebrates to vertebrates, and is tightly regulated in a homeostatic manner. The molecular and cellular mechanisms that determine the amount of rapid eye movement sleep (REMS) and non-REMS (NREMS) remain unknown. Here we identify two dominant mutations that affect sleep and wakefulness by using an electroencephalogram/electromyogram-based screen of randomly mutagenized mice. A splicing mutation in the Sik3 protein kinase gene causes a profound decrease in total wake time, owing to an increase in inherent sleep need. Sleep deprivation affects phosphorylation of regulatory sites on the kinase, suggesting a role for SIK3 in the homeostatic regulation of sleep amount. Sik3 orthologues also regulate sleep in fruitflies and roundworms. A missense, gain-of-function mutation in the sodium leak channel NALCN reduces the total amount and episode duration of REMS, apparently by increasing the excitability of REMS-inhibiting neurons. Our results substantiate the use of a forward-genetics approach for studying sleep behaviours in mice, and demonstrate the role of SIK3 and NALCN in regulating the amount of NREMS and REMS, respectively.


Asunto(s)
Canales Iónicos/genética , Mutagénesis , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas Serina-Treonina Quinasas/genética , Sueño/genética , Sueño/fisiología , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Secuencia Conservada , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Electroencefalografía , Electromiografía , Homeostasis/genética , Canales Iónicos/química , Canales Iónicos/metabolismo , Proteínas de la Membrana , Ratones , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Empalme del ARN/genética , Distribución Aleatoria , Privación de Sueño , Sueño REM/genética , Sueño REM/fisiología , Factores de Tiempo , Vigilia/genética , Vigilia/fisiología
19.
Mol Cell ; 53(5): 791-805, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24582500

RESUMEN

The circadian clock is a self-sustaining oscillator that controls daily rhythms. For the proper circadian gene expression, dynamic changes in chromatin structure are important. Although chromatin modifiers have been shown to play a role in circadian gene expression, the in vivo role of circadian signal-modulated chromatin modifiers at an organism level remains to be elucidated. Here, we provide evidence that the lysine-specific demethylase 1 (LSD1) is phosphorylated by protein kinase Cα (PKCα) in a circadian manner and the phosphorylated LSD1 forms a complex with CLOCK:BMAL1 to facilitate E-box-mediated transcriptional activation. Knockin mice bearing phosphorylation-defective Lsd1(SA/SA) alleles exhibited altered circadian rhythms in locomotor behavior with attenuation of rhythmic expression of core clock genes and impaired phase resetting of circadian clock. These data demonstrate that LSD1 is a key component of the molecular circadian oscillator, which plays a pivotal role in rhythmicity and phase resetting of the circadian clock.


Asunto(s)
Ritmo Circadiano , Regulación de la Expresión Génica , Oxidorreductasas N-Desmetilantes/metabolismo , Proteína Quinasa C-alfa/metabolismo , Factores de Transcripción ARNTL/metabolismo , Secuencia de Aminoácidos , Animales , Conducta Animal , Proteínas CLOCK/metabolismo , Inmunoprecipitación de Cromatina , Histona Demetilasas , Luz , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Datos de Secuencia Molecular , Oscilometría , Oxidorreductasas N-Desmetilantes/genética , Fosforilación , Regiones Promotoras Genéticas , Homología de Secuencia de Aminoácido , Núcleo Supraquiasmático/metabolismo , Factores de Tiempo
20.
Proc Natl Acad Sci U S A ; 116(44): 22229-22236, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31611405

RESUMEN

Fumarylacetoacetate hydrolase (FAH) is the last enzyme in tyrosine catabolism, and mutations in the FAH gene are associated with hereditary tyrosinemia type I (HT1 or TYRSN1) in humans. In a behavioral screen of N-ethyl-N-nitrosourea mutagenized mice we identified a mutant line which we named "swingshift" (swst, MGI:3611216) with a nonsynonymous point mutation (N68S) in Fah that caused age-dependent disruption of sleep-wake patterns. Mice homozygous for the mutation had an earlier onset of activity (several hours before lights off) and a reduction in total activity and body weight when compared with wild-type or heterozygous mice. Despite abnormal behavioral entrainment to light-dark cycles, there were no differences in the period or phase of the central clock in mutant mice, indicating a defect downstream of the suprachiasmatic nucleus. Interestingly, these behavioral phenotypes became milder as the mice grew older and were completely rescued by the administration of NTBC [2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione], an inhibitor of 4-hydroxyphenylpyruvate dioxygenase, which is upstream of FAH. Mechanistically, the swst mutation had no effect on the enzymatic activity of FAH, but rather promoted the degradation of the mutant protein. This led to reduced FAH protein levels and enzymatic activity in the liver and kidney (but not the brain or fibroblasts) of homozygous mice. In addition, plasma tyrosine-but not methionine, phenylalanine, or succinylacetone-increased in homozygous mice, suggesting that swst mutants provide a model of mild, chronic HT1.


Asunto(s)
Ritmo Circadiano , Hidrolasas/genética , Mutación , Sueño , Tirosinemias/genética , 4-Hidroxifenilpiruvato Dioxigenasa/antagonistas & inhibidores , Animales , Células Cultivadas , Ciclohexanonas/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Estabilidad de Enzimas , Células HEK293 , Homocigoto , Humanos , Hidrolasas/deficiencia , Hidrolasas/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Nitrobenzoatos/uso terapéutico , Especificidad de Órganos , Núcleo Supraquiasmático/metabolismo , Tirosinemias/tratamiento farmacológico , Tirosinemias/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA