Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 300(2): 105624, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176651

RESUMEN

The glycosylation of proteins and lipids is known to be closely related to the mechanisms of various diseases such as influenza, cancer, and muscular dystrophy. Therefore, it has become clear that the analysis of post-translational modifications of proteins, including glycosylation, is important to accurately understand the functions of each protein molecule and the interactions among them. In order to conduct large-scale analyses more efficiently, it is essential to promote the accumulation, sharing, and reuse of experimental and analytical data in accordance with the FAIR (Findability, Accessibility, Interoperability, and Re-usability) data principles. However, a FAIR data repository for storing and sharing glycoconjugate information, including glycopeptides and glycoproteins, in a standardized format did not exist. Therefore, we have developed GlyComb (https://glycomb.glycosmos.org) as a new standardized data repository for glycoconjugate data. Currently, GlyComb can assign a unique identifier to a set of glycosylation information associated with a specific peptide sequence or UniProt ID. By standardizing glycoconjugate data via GlyComb identifiers and coordinating with existing web resources such as GlyTouCan and GlycoPOST, a comprehensive system for data submission and data sharing among researchers can be established. Here we introduce how GlyComb is able to integrate the variety of glycoconjugate data already registered in existing data repositories to obtain a better understanding of the available glycopeptides and glycoproteins, and their glycosylation patterns. We also explain how this system can serve as a foundation for a better understanding of glycan function.


Asunto(s)
Bases de Datos de Compuestos Químicos , Glicómica , Proteómica , Glicopéptidos/metabolismo , Glicoproteínas/metabolismo , Glicosilación , Polisacáridos/metabolismo , Bases de Datos Genéticas
2.
J Clin Biochem Nutr ; 56(2): 105-10, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25759515

RESUMEN

A novel antioxidant capacity assay for lipophilic compounds was developed using electron paramagnetic resonance (EPR) spectroscopy. The assay is based on antioxidant's scavenging ability against the tert-butoxyl radical generated photolytically from di-tert-butyl peroxide in ethyl acetate, and named the tert-butoxyl-based antioxidant capacity (BAC) assay. The radical was trapped by spin trap, 5,5-dimethyl-1-pyrroline-N-oxide, and EPR signal intensity of the spin adduct was used as a quantitative marker of radical levels. Signal intensity decreased in a dose-dependent manner in the presence of an antioxidant that competitively reacts with the radical, which was utilized to evaluate BAC values. The BAC method enabled the accurate estimation of antioxidant capacity for lipophilic materials that may counteract lipid peroxidation in biological membranes. The BAC values for quercetin and caffeic acid are 0.639 ± 0.020 and 0.118 ± 0.012 trolox equivalents, respectively, which are much smaller than values obtained by other aqueous methods such as H-ORAC and ORAC-EPR. Thus, antioxidants present in a non-aqueous environment should be evaluated using a non-aqueous system. In combination with in situ ascorbate reduction, the BAC method was capable of accurately determining the antioxidant capacity of water-insoluble materials that may be reduced in living cells.

3.
J Appl Glycosci (1999) ; 70(3): 67-73, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38143568

RESUMEN

Foreign amylase addition to honey in an effort to disguise diastase activity has become a widespread form of food fraud. However, since there is no report on the investigation in Japan, we investigated foreign amylases in 67 commercial honeys in Japan. First, the α-glucosidase and diastase activities of honeys were measured, which revealed that only α-glucosidase activity was significantly low in several samples. As both enzymes are secreted from honeybee glands, it is unlikely that only one enzyme was inactivated during processing. Therefore, we suspected the presence of foreign amylase. α-Amylase in honey were assigned using protein analysis software based on LC-QTOF-MS. As a result, α-amylases from Aspergillus and Geobacillus were detected in 13 and 6 out of 67 honeys, respectively. To detect foreign amylases easily, we developed a cost-effective method using native PAGE. Conventional native PAGE failed to separate the α-amylase derived from honeybee and Geobacillus. However, when native PAGE was performed using a gel containing 1 % maltodextrin, the α-amylase from honeybee did not migrated in the gel and the α-amylase could be separated from the other two α-amylases. The results from this method were consistent with those of LC-QTOF-MS method, suggesting that the novel native PAGE method can be used to detect foreign amylases.

4.
Redox Biol ; 66: 102845, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37597423

RESUMEN

While it is well established that the KEAP1-NRF2 pathway regulates the main inducible cellular response to oxidative stress, this cytoprotective function of NRF2 could become deleterious to the host if it confers survival onto irreparably damaged cells. In this regard, we have found that in diseased states, NRF2 promotes the transcriptional activation of a specific subset of the senescence-associated secretory phenotype (SASP) gene program, which we have named the NRF2-induced secretory phenotype (NISP). In two models of hepatic disease using Pten::Keap1 and Keap1::Atg7 double knockout mice, we found that the NISP functions in the liver to recruit CCR2 expressing monocytes, which function as immune system effector cells to directly remove the damaged cells. Through activation of this immune surveillance pathway, in non-transformed cells, NRF2 functions as a tumour suppressor to mitigate the long-term survival of damaged cells which otherwise would be detrimental for host survival. This pathway represents the final stage of the oxidative stress response, as it allows cells to be safely removed if the macromolecular damage caused by the original stressor is so extensive that it is beyond the repair capacity of the cell.


Asunto(s)
Hígado , Factor 2 Relacionado con NF-E2 , Animales , Ratones , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/genética , Transporte Biológico , Activación Transcripcional , Ratones Noqueados
5.
Mol Cell Biol ; 40(22)2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-32868290

RESUMEN

Activating mutations in KEAP1-NRF2 are frequently found in tumors of the lung, esophagus, and liver, where they are associated with aggressive growth, resistance to cancer therapies, and low overall survival. Despite the fact that NRF2 is a validated driver of tumorigenesis and chemotherapeutic resistance, there are currently no approved drugs which can inhibit its activity. Therefore, there is an urgent clinical need to identify NRF2-selective cancer therapies. To this end, we developed a novel synthetic lethal assay, based on fluorescently labeled isogenic wild-type and Keap1 knockout cell lines, in order to screen for compounds which selectively kill cells in an NRF2-dependent manner. Through this approach, we identified three compounds based on the geldanamycin scaffold which display synthetic lethality with NRF2. Mechanistically, we show that products of NRF2 target genes metabolize the quinone-containing geldanamycin compounds into more potent HSP90 inhibitors, which enhances their cytotoxicity while simultaneously restricting the synthetic lethal effect to cells with aberrant NRF2 activity. As all three of the geldanamycin-derived compounds have been used in clinical trials, they represent ideal candidates for drug repositioning to target the currently untreatable NRF2 activity in cancer.


Asunto(s)
Antineoplásicos/farmacología , Benzoquinonas/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Lactamas Macrocíclicas/farmacología , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Antineoplásicos/química , Benzoquinonas/química , Benzoquinonas/metabolismo , Muerte Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Femenino , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Lactamas Macrocíclicas/química , Ratones , Ratones Endogámicos BALB C , Mutación , Trasplante de Neoplasias , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteína Oncogénica v-akt/antagonistas & inhibidores , Oxidación-Reducción , Paclitaxel/farmacología
6.
J Food Biochem ; 44(7): e13268, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32412116

RESUMEN

As a Japanese folk medicine, Tithonia diversifolia is used for cardiovascular disease prevention and health maintenance. We isolated T. diversifolia-derived orizabin based on the nitric oxide production inhibitory effect. This study aimed to consider orizabin as a novel functional compound with anti-atherosclerotic activity. Orizabin significantly inhibited the adhesion of THP-1 cells to human umbilical vein endothelial cells (HUVECs) and suppressed the mRNA expression of adhesion molecules in HUVECs. In Phorbol 12-myristate 13-acetate stimulated THP-1 cells, orizabin suppressed macrophage differentiation, CD36 expression (1% at 10 µM), and NFκB transcriptional activity. Furthermore, orizabin suppressed oxidized low-density lipoprotein (oxLDL) uptake in macrophages and the Akt phosphorylation. On the contrary, we revealed that phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase (PTEN) mRNA and protein expression were promoted significantly by orizabin (mRNA, 270-fold at 10 µM). Our study presented the possibility that T. diversifolia-derived orizabin is novel anti-atherosclerotic compound via the suppression of Akt phosphorylation, and T. diversifolia may be effective as a new crop for vascular health maintenance. PRACTICAL APPLICATIONS: In this study, the differentiation of monocytes was suppressed without any toxicity, it was obvious in the image, and the oxLDL uptake in monocytes was clearly suppressed by orizabin. Our findings presented that T. diversifolia-derived compound orizabin specifically contributes to the promotion of PTEN expression and suppression of Akt signal in cells, and acts to suppress inflammation by suppression of NFκB transcriptional activity. As a component derived from food, it has a strong function and can be used to maintain the health for blood vessels. It is also a finding that deserves to expand production currently being carried out on a small scale. Furthermore, the promoting effect of PTEN known as a cancer suppressor in orizabin may result in further use for pharmaceuticals research. Orizabin can be safely used as a food-derived compound for maintaining human health.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Tithonia , Adhesión Celular , Diferenciación Celular , Humanos , Lipoproteínas LDL , Fosfohidrolasa PTEN/genética , Monoéster Fosfórico Hidrolasas , Células THP-1
7.
Carbohydr Res ; 464: 44-56, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29859376

RESUMEN

Glycan-binding protein (GBP) interaction experiments, such as glycan microarrays, are often used to understand glycan recognition patterns. However, oftentimes the interpretation of glycan array experimental data makes it difficult to identify discrete GBP binding patterns due to their ambiguity. It is known that lectins, for example, are non-specific in their binding affinities; the same lectin can bind to different monosaccharides or even different glycan structures. In bioinformatics, several tools to mine the data generated from these sorts of experiments have been developed. These tools take a library of predefined motifs, which are commonly-found glycan patterns such as sialyl-Lewis X, and attempt to identify the motif(s) that are specific to the GBP being analyzed. In our previous work, as opposed to using predefined motifs, we developed the Multiple Carbohydrate Alignment with Weights (MCAW) tool to visualize the state of the glycans being recognized by the GBP under analysis. We previously reported on the effectiveness of our tool and algorithm by analyzing several glycan array datasets from the Consortium of Functional Glycomics (CFG). In this work, we report on our analysis of 1081 data sets which we collected from the CFG, the results of which we have made publicly and freely available as a database called MCAW-DB. We introduce this database, its usage and describe several analysis results. We show how MCAW-DB can be used to analyze glycan-binding patterns of GBPs amidst their ambiguity. For example, the visualization of glycan-binding patterns in MCAW-DB show how they correlate with the concentrations of the samples used in the array experiments. Using MCAW-DB, the patterns of glycans found to bind to various GBP-glycan binding proteins are visualized, indicating the binding "environment" of the glycans. Thus, the ambiguity of glycan recognition is numerically represented, along with the patterns of monosaccharides surrounding the binding region. The profiles in MCAW-DB could potentially be used as predictors of affinity of unknown or novel glycans to particular GBPs by comparing how well they match the existing profiles for those GBPs. Moreover, as the glycan profiles of diseased tissues become available, glycan alignments could also be used to identify glycan biomarkers unique to that tissue. Databases of these alignments may be of great use for drug discovery.


Asunto(s)
Bases de Datos Factuales , Glicómica , Polisacáridos/metabolismo , Animales , Sitios de Unión , Secuencia de Carbohidratos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Análisis por Micromatrices , Polisacáridos/química , Receptores de Superficie Celular/metabolismo
8.
Chem Commun (Camb) ; (41): 4303-5, 2006 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-17047848

RESUMEN

With a proper choice of phosphane ligands, a Ni(cod)2-phosphane catalyst promotes decarboxylative ring-opening reaction of a wide structural variety of cyclic carbonates to give omega-dienyl aldehydes in good yields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA