Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 186(24): 5308-5327.e25, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37922900

RESUMEN

Mammalian oocytes are filled with poorly understood structures called cytoplasmic lattices. First discovered in the 1960s and speculated to correspond to mammalian yolk, ribosomal arrays, or intermediate filaments, their function has remained enigmatic to date. Here, we show that cytoplasmic lattices are sites where oocytes store essential proteins for early embryonic development. Using super-resolution light microscopy and cryoelectron tomography, we show that cytoplasmic lattices are composed of filaments with a high surface area, which contain PADI6 and subcortical maternal complex proteins. The lattices associate with many proteins critical for embryonic development, including proteins that control epigenetic reprogramming of the preimplantation embryo. Loss of cytoplasmic lattices by knocking out PADI6 or the subcortical maternal complex prevents the accumulation of these proteins and results in early embryonic arrest. Our work suggests that cytoplasmic lattices enrich maternally provided proteins to prevent their premature degradation and cellular activity, thereby enabling early mammalian development.


Asunto(s)
Oocitos , Proteínas , Embarazo , Animales , Femenino , Oocitos/metabolismo , Proteínas/metabolismo , Embrión de Mamíferos/metabolismo , Citoesqueleto , Ribosomas , Desarrollo Embrionario , Mamíferos
2.
Immunol Lett ; : 106899, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019403

RESUMEN

The thymus is the organ where functional and self-tolerant T cells are selected through processes of positive and negative selection before migrating to the periphery. The antigenic peptides presented on MHC class I molecules of thymic epithelial cells (TECs) in the cortex and medulla of the thymus are key players in these processes. It has been theorized that these cells express different proteasome isoforms, which generate MHC class I immunopeptidomes with features that differentiate cortex and medulla, and hence positive and negative CD8+ T cell selection. This theory is largely based on mouse models and does not consider the large variety of noncanonical antigenic peptides that could be produced by proteasomes and presented on MHC class I molecules. Here, we review the multi-omics, biochemical and cellular studies carried out on mouse models and human thymi to investigate their content of proteasome isoforms, briefly summarize the implication that noncanonical antigenic peptide presentation in the thymus could have on CD8+ T cell repertoire and put these aspects in the larger framework of anatomical and immunological differences between these two species.

3.
EMBO Mol Med ; 16(7): 1603-1629, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38886591

RESUMEN

Despite clinical benefits of tyrosine kinase inhibitors (TKIs) in cancer, most tumors can reactivate proliferation under TKI therapy. Here we present transcriptional profiling of HER2+ breast cancer cells transitioning from dormant drug tolerant cells to re-proliferating cells under continuous HER2 inhibitor (HER2i) therapy. Focusing on phosphatases, expression of dual-specificity phosphatase DUSP6 was found inhibited in dormant cells, but strongly induced upon regrowth. DUSP6 expression also selectively associated with poor patient survival in HER2+ breast cancers. DUSP6 overexpression conferred apoptosis resistance, whereas its pharmacological blockade prevented therapy tolerance development under HER2i therapy. DUSP6 targeting also synergized with clinically used HER2i combination therapies. Mechanistically DUSP6 is a positive regulator of HER3 expression, and its impact on HER2i tolerance was mediated by neuregulin-HER3 axis. In vivo, genetic targeting of DUSP6 reduced tumor growth in brain metastasis model, whereas its pharmacological targeting induced synthetic lethal therapeutic effect in combination with HER2i. Collectively this work demonstrates that DUSP6 drives escape from HER2i-induced dormancy, and that DUSP6 is a druggable target to overcome HER3-driven TKI resistance.


Asunto(s)
Neoplasias de la Mama , Fosfatasa 6 de Especificidad Dual , Receptor ErbB-2 , Receptor ErbB-3 , Fosfatasa 6 de Especificidad Dual/metabolismo , Fosfatasa 6 de Especificidad Dual/genética , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Femenino , Receptor ErbB-2/metabolismo , Animales , Receptor ErbB-3/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/antagonistas & inhibidores , Línea Celular Tumoral , Ratones , Resistencia a Antineoplásicos/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA