Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 186(20): 4325-4344.e26, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37652010

RESUMEN

KCR channelrhodopsins (K+-selective light-gated ion channels) have received attention as potential inhibitory optogenetic tools but more broadly pose a fundamental mystery regarding how their K+ selectivity is achieved. Here, we present 2.5-2.7 Å cryo-electron microscopy structures of HcKCR1 and HcKCR2 and of a structure-guided mutant with enhanced K+ selectivity. Structural, electrophysiological, computational, spectroscopic, and biochemical analyses reveal a distinctive mechanism for K+ selectivity; rather than forming the symmetrical filter of canonical K+ channels achieving both selectivity and dehydration, instead, three extracellular-vestibule residues within each monomer form a flexible asymmetric selectivity gate, while a distinct dehydration pathway extends intracellularly. Structural comparisons reveal a retinal-binding pocket that induces retinal rotation (accounting for HcKCR1/HcKCR2 spectral differences), and design of corresponding KCR variants with increased K+ selectivity (KALI-1/KALI-2) provides key advantages for optogenetic inhibition in vitro and in vivo. Thus, discovery of a mechanism for ion-channel K+ selectivity also provides a framework for next-generation optogenetics.


Asunto(s)
Channelrhodopsins , Rhinosporidium , Humanos , Channelrhodopsins/química , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Channelrhodopsins/ultraestructura , Microscopía por Crioelectrón , Canales Iónicos , Potasio/metabolismo , Rhinosporidium/química
2.
J Am Chem Soc ; 145(19): 10779-10789, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37129501

RESUMEN

Channelrhodopsins (ChRs) are light-gated ion channels and central optogenetic tools that can control neuronal activity with high temporal resolution at the single-cell level. Although their application in optogenetics has rapidly progressed, it is unsolved how their channels open and close. ChRs transport ions through a series of interlocking elementary processes that occur over a broad time scale of subpicoseconds to seconds. During these processes, the retinal chromophore functions as a channel regulatory domain and transfers the optical input as local structural changes to the channel operating domain, the helices, leading to channel gating. Thus, the core question on channel gating dynamics is how the retinal chromophore structure changes throughout the photocycle and what rate-limits the kinetics. Here, we investigated the structural changes in the retinal chromophore of canonical ChR, C1C2, in all photointermediates using time-resolved resonance Raman spectroscopy. Moreover, to reveal the rate-limiting factors of the photocycle and channel gating, we measured the kinetic isotope effect of all photoreaction processes using laser flash photolysis and laser patch clamp, respectively. Spectroscopic and electrophysiological results provided the following understanding of the channel gating: the retinal chromophore highly twists upon the retinal Schiff base (RSB) deprotonation, causing the surrounding helices to move and open the channel. The ion-conducting pathway includes the RSB, where inflowing water mediates the proton to the deprotonated RSB. The twisting of the retinal chromophore relaxes upon the RSB reprotonation, which closes the channel. The RSB reprotonation rate-limits the channel closing.


Asunto(s)
Fenómenos Electrofisiológicos , Canales Iónicos , Channelrhodopsins/química , Protones , Luz
3.
Anal Chem ; 91(18): 11987-11993, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31442029

RESUMEN

The transient grating (TG) method is a powerful technique for monitoring the time dependence of the diffusion coefficient during photochemical reactions. However, the applications of this technique have been limited to photochemical reactions. Here, a microstopped flow (µ-SF) system is developed to expand the technique's applicability. The constructed µ-SF system can be used for a solution with a total volume as small as 3 µL, and mixing times for absorption and diffusion measurements were determined to be 400 µs and 100 ms, respectively. To demonstrate this system with the TG method, an acid-induced denaturation of a photosensor protein, phototropin LOV2 domain with a linker, was studied from the viewpoint of the reactivity. This system can be used not only for time-resolved diffusion measurement but also for conventional absorption or fluorescence detection methods. In particular, this system has a great advantage for a target solution in that only a very small amount is needed.


Asunto(s)
Mediciones Luminiscentes , Fototropinas/análisis , Difusión , Factores de Tiempo
4.
J Mol Biol ; : 168844, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39476949

RESUMEN

Channelrhodopsins are light-gated ion channels consisting of seven-transmembrane helices and a retinal chromophore, which are used aspopular optogenetictools for modulating neuronal activity. Cation channelrhodopsins (CCRs), first recognized as the photoreceptors in the chlorophyteChlamydomonas reinhardtii, have since been identified in diverse species of green algae, as well in other unicellular eukaryotes. The CCRs from non-chlorophyte species are commonly referred to as bacteriorhodopsin-like channelrhodopsins, or BCCRs, as most of them feature the three characteristic amino acid residues of the "DTD motif" in the third transmembrane helix (TM3 or helix C) matching the canonical DTD motif of the well-studied archaeal light-driven proton pump bacteriorhodopsin. Here, we report characterization of HulaCCR1, a novel BCCR identified through metatranscriptomic analysis of a unicellular eukaryotic community in Lake Hula, Israel. Interestingly, HulaCCR1 has an ETD motif in which the first residue of the canonical motif is substituted for glutamate. Electrophysiological measurements of the wild-type and a mutant with a DTD motif of HulaCCR1 suggest the critical role of the first glutamate in spectral tuning and channel gating. Additionally, HulaCCR1 exhibits long extensions at the N- and C-termini. Photocurrents recorded from a truncated variant without the signal peptide predicted at the N-terminus were diminished, and membrane localization of the truncated variant significantly decreased, indicating that the signal peptide is important for membrane trafficking of HulaCCR1. These characteristics of HulaCCR1 would be related to a new biological significance in the original unidentified species, distinct from those known for other BCCRs.

5.
RSC Adv ; 11(2): 1086-1097, 2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35423687

RESUMEN

An intrinsically disordered protein, α-synuclein (αSyn), binds to negatively charged phospholipid membranes and adopts an α-helical structure. This conformational change is also induced by interaction with sodium dodecyl sulfate (SDS), which is an anionic surfactant used in previous studies to mimic membrane binding. However, while the structure of the αSyn and SDS complex has been studied widely by various static measurements, the process of structural change from the denatured state to the folded state remains unclear. In this study, the interaction dynamics between αSyn and SDS micelles was investigated using time-resolved measurements with a micro-stopped-flow system, which has been recently developed. In particular, the time-resolved diffusion based on the transient grating technique in combination with a micro-stopped-flow system revealed the gradual change in diffusion triggered by the presence of SDS micelles. This change is induced not only by binding to SDS micelles, but also by an intramolecular conformational change. It was interesting to find that the diffusion coefficient decreased in an intermediate state and then increased to the final state in the binding reaction. We also carried out stopped-flow-kinetic measurements of circular dichroism and intramolecular fluorescence resonance energy transfer, and the D change was assigned to the formation of a compact structure derived from the helix bending on the micelle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA