Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Carcinogenesis ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38868979

RESUMEN

BRAF V600E, one of the most frequent mutations in the MAPK pathway, confers poor prognosis to colorectal cancers (CRCs), partly because of chemotherapeutic resistance. Oncogene-induced DNA damage responses (DDRs) that primarily activate p53 are important mechanistic barriers to the malignant transformation of cells; however, the mechanism underlying this impairment in cancer remains unknown. Here, we evaluated the responses of BRAFV600E-induced DDRs in two CRC cell lines, SW48 and LIM1215, both of which harbor wild-type TP53, KRAS, and BRAF. BRAFV600E transduction exhibited distinct phenotypes in these cells: SW48 cell proliferation markedly decreased, whereas that of LIM1215 increased. BRAFV600E expression induced the activation of oncogene-induced DDR signaling in SW48 cells, but not in LIM1215 cells, whereas chemotherapeutic agents similarly activated DDRs in both cell lines. Knockdown experiments revealed that these responses in SW48 cells were mediated by p53-p21 pathway activation. Comet assay (both alkaline and neutral) revealed that BRAFV600E increased single-strand breaks to the same extent in both cell lines; however, in case of LIM1215 cells, it only facilitated double-strand breaks. Furthermore, the proliferation of LIM1215 cells, wherein no oncogene-induced DDRs occurred, was synergistically inhibited upon MDM2 inhibitor-mediated p53 activation combined with MEK inhibition. Taken together, these distinct DDR signaling responses highlight the novel characteristics of BRAFV600E-mutated CRC cells and define the therapeutic potential of p53 activation combined with MAPK inhibition against TP53 wild-type CRC harboring a BRAFV600E mutation.

2.
Circulation ; 147(25): 1902-1918, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37128901

RESUMEN

BACKGROUND: Cardiac-specific myosin light chain kinase (cMLCK), encoded by MYLK3, regulates cardiac contractility through phosphorylation of ventricular myosin regulatory light chain. However, the pathophysiological and therapeutic implications of cMLCK in human heart failure remain unclear. We aimed to investigate whether cMLCK dysregulation causes cardiac dysfunction and whether the restoration of cMLCK could be a novel myotropic therapy for systolic heart failure. METHODS: We generated the knock-in mice (Mylk3+/fs and Mylk3fs/fs) with a familial dilated cardiomyopathy-associated MYLK3 frameshift mutation (MYLK3+/fs) that had been identified previously by us (c.1951-1G>T; p.P639Vfs*15) and the human induced pluripotent stem cell-derived cardiomyocytes from the carrier of the mutation. We also developed a new small-molecule activator of cMLCK (LEUO-1154). RESULTS: Both mice (Mylk3+/fs and Mylk3fs/fs) showed reduced cMLCK expression due to nonsense-mediated messenger RNA decay, reduced MLC2v (ventricular myosin regulatory light chain) phosphorylation in the myocardium, and systolic dysfunction in a cMLCK dose-dependent manner. Consistent with this result, myocardium from the mutant mice showed an increased ratio of cardiac superrelaxation/disordered relaxation states that may contribute to impaired cardiac contractility. The phenotypes observed in the knock-in mice were rescued by cMLCK replenishment through the AAV9_MYLK3 vector. Human induced pluripotent stem cell-derived cardiomyocytes with MYLK3+/fs mutation reduced cMLCK expression by 50% and contractile dysfunction, accompanied by an increased superrelaxation/disordered relaxation ratio. CRISPR-mediated gene correction, or cMLCK replenishment by AAV9_MYLK3 vector, successfully recovered cMLCK expression, the superrelaxation/disordered relaxation ratio, and contractile dysfunction. LEUO-1154 increased human cMLCK activity ≈2-fold in the Vmax for ventricular myosin regulatory light chain phosphorylation without affecting the Km. LEUO-1154 treatment of human induced pluripotent stem cell-derived cardiomyocytes with MYLK3+/fs mutation restored the ventricular myosin regulatory light chain phosphorylation level and superrelaxation/disordered relaxation ratio and improved cardiac contractility without affecting calcium transients, indicating that the cMLCK activator acts as a myotrope. Finally, human myocardium from advanced heart failure with a wide variety of causes had a significantly lower MYLK3/PPP1R12B messenger RNA expression ratio than control hearts, suggesting an altered balance between myosin regulatory light chain kinase and phosphatase in the failing myocardium, irrespective of the causes. CONCLUSIONS: cMLCK dysregulation contributes to the development of cardiac systolic dysfunction in humans. Our strategy to restore cMLCK activity could form the basis of a novel myotropic therapy for advanced systolic heart failure.


Asunto(s)
Insuficiencia Cardíaca Sistólica , Células Madre Pluripotentes Inducidas , Humanos , Ratones , Animales , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Fosforilación , Cadenas Ligeras de Miosina/genética , Cadenas Ligeras de Miosina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Contracción Miocárdica/fisiología , ARN Mensajero/genética , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-38870264

RESUMEN

Increased dietary phosphate consumption intensifies renal phosphate burden. Several mechanisms for phosphate-induced renal tubulointerstitial fibrosis have been reported. Considering the dual nature of phosphate as both a potential renal toxin and an essential nutrient for the body, kidneys may possess inherent protective mechanisms against phosphate overload, rather than succumbing solely to injury. However, there is limited understanding of such mechanisms. To identify these mechanisms, we conducted single-cell RNA sequencing (scRNA-seq) analysis of the kidneys of control (Ctrl) and dietary phosphate-loaded (Phos) mice at a time point when the Phos group had not yet developed tubulointerstitial fibrosis. scRNA-seq analysis identified the highest number of differentially expressed genes (DEGs) in the clusters belonging to proximal tubular epithelial cells (PTECs). Based on these DEGs, in silico analyses suggested that the Phos group activated peroxisome proliferator-activated receptor alpha (PPAR-α) and fatty acid ß-oxidation (FAO) in the PTECs. This activation was further substantiated through various experiments, including the use of an FAO activity visualization probe. Compared to wild-type mice, Ppara knockout mice exhibited exacerbated tubulointerstitial fibrosis in response to phosphate overload. Experiments conducted with cultured PTECs demonstrated that activation of the PPAR-α/FAO pathway leads to improved cellular viability under high phosphate conditions. The Phos group mice showed a decreased serum concentration of free fatty acids, which are endogenous PPAR-α agonists. Instead, experiments using cultured PTECs revealed that phosphate directly activates the PPAR-α/FAO pathway. These findings indicate that noncanonical metabolic reprogramming via endogenous activation of the PPAR-α/FAO pathway in PTECs is essential to counteract phosphate toxicity.

4.
Hum Mol Genet ; 30(15): 1384-1397, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-33949662

RESUMEN

Desmoglein-2, encoded by DSG2, is one of the desmosome proteins that maintain the structural integrity of tissues, including heart. Genetic mutations in DSG2 cause arrhythmogenic cardiomyopathy, mainly in an autosomal dominant manner. Here, we identified a homozygous stop-gain mutations in DSG2 (c.C355T, p.R119X) that led to complete desmoglein-2 deficiency in a patient with severe biventricular heart failure. Histological analysis revealed abnormal deposition of desmosome proteins, disrupted intercalated disk structures in the myocardium. Induced pluripotent stem cells (iPSCs) were generated from the patient (R119X-iPSC), and the mutated DSG2 gene locus was heterozygously corrected to a normal allele via homology-directed repair (HDR-iPSC). Both isogenic iPSCs were differentiated into cardiomyocytes [induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs)]. Multielectrode array analysis detected abnormal excitation in R119X-iPSC-CMs but not in HDR-iPSC-CMs. Micro-force testing of three-dimensional self-organized tissue rings (SOTRs) revealed tissue fragility and a weak maximum force in SOTRs from R119X-iPSC-CMs. Notably, these phenotypes were significantly recovered in HDR-iPSC-CMs. Myocardial fiber structures in R119X-iPSC-CMs were severely aberrant, and electron microscopic analysis confirmed that desmosomes were disrupted in these cells. Unexpectedly, the absence of desmoglein-2 in R119X-iPSC-CMs led to decreased expression of desmocollin-2 but no other desmosome proteins. Adeno-associated virus-mediated replacement of DSG2 significantly recovered the contraction force in SOTRs generated from R119X-iPSC-CMs. Our findings confirm the presence of a desmoglein-2-deficient cardiomyopathy among clinically diagnosed dilated cardiomyopathies. Recapitulation and correction of the disease phenotype using iPSC-CMs provide evidence to support the development of precision medicine and the proof of concept for gene replacement therapy for this cardiomyopathy.


Asunto(s)
Cardiomiopatías/patología , Desmogleína 2/deficiencia , Miocitos Cardíacos/metabolismo , Calcio/metabolismo , Cardiomiopatías/metabolismo , Cardiomiopatía Dilatada/metabolismo , Diferenciación Celular , Desmogleína 2/metabolismo , Desmogleínas/genética , Desmogleínas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Miocardio/metabolismo
5.
EMBO Rep ; 22(1): e50949, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33251722

RESUMEN

AMP-activated protein kinase (AMPK) is a multifunctional kinase that regulates microtubule (MT) dynamic instability through CLIP-170 phosphorylation; however, its physiological relevance in vivo remains to be elucidated. In this study, we identified an active form of AMPK localized at the intercalated disks in the heart, a specific cell-cell junction present between cardiomyocytes. A contractile inhibitor, MYK-461, prevented the localization of AMPK at the intercalated disks, and the effect was reversed by the removal of MYK-461, suggesting that the localization of AMPK is regulated by mechanical stress. Time-lapse imaging analysis revealed that the inhibition of CLIP-170 Ser-311 phosphorylation by AMPK leads to the accumulation of MTs at the intercalated disks. Interestingly, MYK-461 increased the individual cell area of cardiomyocytes in CLIP-170 phosphorylation-dependent manner. Moreover, heart-specific CLIP-170 S311A transgenic mice demonstrated elongation of cardiomyocytes along with accumulated MTs, leading to progressive decline in cardiac contraction. In conclusion, these findings suggest that AMPK regulates the cell shape and aspect ratio of cardiomyocytes by modulating the turnover of MTs through homeostatic phosphorylation of CLIP-170 at the intercalated disks.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Miocitos Cardíacos , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Forma de la Célula , Ratones , Proteínas Asociadas a Microtúbulos , Microtúbulos/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas de Neoplasias , Fosforilación
6.
Biochem Biophys Res Commun ; 637: 40-49, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36375249

RESUMEN

Kinetic analysis of intracellular calcium (Ca2+) in cardiomyocytes is commonly used to determine the pathogenicity of genetic mutations identified in patients with dilated cardiomyopathy (DCM). Conventional methods for measuring Ca2+ kinetics target whole-well cultured cardiomyocytes and therefore lack information concerning individual cells. Results are also affected by heterogeneity in cell populations. Here, we developed an analytical method using CRISPR/Cas9 genome editing combined with high-content image analysis (HCIA) that links cell-by-cell Ca2+ kinetics and immunofluorescence images in thousands of cardiomyocytes at a time. After transfecting cultured mouse cardiomyocytes that constitutively express Cas9 with gRNAs, we detected a prolonged action potential duration specifically in Serca2a-depleted ventricular cardiomyocytes in mixed culture. To determine the phenotypic effect of a frameshift mutation in PKD1 in a patient with DCM, we introduced the mutation into Cas9-expressing cardiomyocytes by gRNA transfection and found that it decreases the expression of PKD1-encoded PC1 protein that co-localizes specifically with Serca2a and L-type voltage-gated calcium channels. We also detected the suppression of Ca2+ amplitude in ventricular cardiomyocytes with decreased PC1 expression in mixed culture. Our HCIA method provides comprehensive kinetic and static information on individual cardiomyocytes and allows the pathogenicity of mutations to be determined rapidly.


Asunto(s)
Calcio , Cardiomiopatía Dilatada , Ratones , Animales , Calcio/metabolismo , Cinética , Miocitos Cardíacos/metabolismo , Edición Génica/métodos , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Cardiomiopatía Dilatada/genética , ARN Guía de Kinetoplastida/genética
7.
FASEB J ; 35(11): e21994, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34674311

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) caused by TMEM43 p.S358L is a fully penetrant heart disease that results in impaired cardiac function or fatal arrhythmia. However, the molecular mechanism of ACM caused by the TMEM43 variant has not yet been fully elucidated. In this study, we generated knock-in (KI) rats harboring a Tmem43 p.S358L mutation and established induced pluripotent stem cells (iPSCs) from patients based on the identification of TMEM43 p.S358L variant from a family with ACM. The Tmem43-S358L KI rats exhibited ventricular arrhythmia and fibrotic myocardial replacement in the subepicardium, which recapitulated the human ACM phenotype. The four-transmembrane protein TMEM43 with the p.S358L variant (TMEM43S358L ) was found to be modified by N-linked glycosylation in both KI rat cardiomyocytes and patient-specific iPSC-derived cardiomyocytes. TMEM43S358L glycosylation increased under the conditions of enhanced endoplasmic reticulum (ER) stress caused by pharmacological stimulation or age-dependent decline of the ER function. Intriguingly, the specific glycosylation of TMEM43S358L resulted from the altered membrane topology of TMEM43. Moreover, unlike TMEM43WT , which is mainly localized to the ER, TMEM43S358L accumulated at the nuclear envelope of cardiomyocytes with the increase in glycosylation. Finally, our comprehensive transcriptomic analysis demonstrated that the regional differences in gene expression patterns between the inner and outer layers observed in the wild type myocardium were partially diminished in the KI myocardium prior to exhibiting histological changes indicative of ACM. Altogether, these findings suggest that the aberrant accumulation of TMEM43S358L underlies the pathogenesis of ACM caused by TMEM43 p.S358L variant by affecting the transmural gene expression within the myocardium.


Asunto(s)
Cardiomiopatías , Proteínas de la Membrana/fisiología , Miocardio/metabolismo , Adulto , Anciano , Animales , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Células Cultivadas , Femenino , Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Mutación , Miocitos Cardíacos , Ratas
8.
FASEB J ; 35(4): e21495, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33689182

RESUMEN

Enhancers regulate gene expressions in a tissue- and pathology-specific manner by altering its activities. Plasma levels of atrial and brain natriuretic peptides, encoded by the Nppa and Nppb, respectively, and synthesized predominantly in cardiomyocytes, vary depending on the severity of heart failure. We previously identified the noncoding conserved region 9 (CR9) element as a putative Nppb enhancer at 22-kb upstream from the Nppb gene. However, its regulatory mechanism remains unknown. Here, we therefore investigated the mechanism of CR9 activation in cardiomyocytes using different kinds of drugs that induce either cardiac hypertrophy or cardiac failure accompanied by natriuretic peptides upregulation. Chronic treatment of mice with either catecholamines or doxorubicin increased CR9 activity during the progression of cardiac hypertrophy to failure, which is accompanied by proportional increases in Nppb expression. Conversely, for cultured cardiomyocytes, doxorubicin decreased CR9 activity and Nppb expression, while catecholamines increased both. However, exposing cultured cardiomyocytes to mechanical loads, such as mechanical stretch or hydrostatic pressure, upregulate CR9 activity and Nppb expression even in the presence of doxorubicin. Furthermore, the enhancement of CR9 activity and Nppa and Nppb expressions by either catecholamines or mechanical loads can be blunted by suppressing mechanosensing and mechanotransduction pathways, such as muscle LIM protein (MLP) or myosin tension. Finally, the CR9 element showed a more robust and cell-specific response to mechanical loads than the -520-bp BNP promoter. We concluded that the CR9 element is a novel enhancer that responds to mechanical loads by upregulating natriuretic peptides expression in cardiomyocytes.


Asunto(s)
Expresión Génica/fisiología , Mecanotransducción Celular/fisiología , Miocitos Cardíacos/metabolismo , Péptido Natriurético Encefálico/metabolismo , Animales , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Proteínas con Dominio LIM , Ratones Transgénicos , Proteínas Musculares , Péptido Natriurético Encefálico/genética , Péptidos Natriuréticos/genética , Péptidos Natriuréticos/metabolismo , Ratas , Activación Transcripcional/genética , Activación Transcripcional/fisiología
9.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35163674

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that shows progressive muscle weakness. A few treatments exist including symptomatic therapies, which can prolong survival or reduce a symptom; however, no fundamental therapies have been found. As a therapeutic strategy, enhancing muscle force is important for patients' quality of life. In this study, we focused on skeletal muscle-specific myosin regulatory light chain kinase (skMLCK), which potentially enhances muscle contraction, as overexpression of skMLCK was thought to improve muscle function. The adeno-associated virus serotype 6 encoding skMLCK (AAV6/skMLCK) and eGFP (control) was produced and injected intramuscularly into the lower limbs of SOD1G37R mice, which are a familial ALS model. AAV6/skMLCK showed the successful expression of skMLCK in the muscle tissues. Although the control did not affect the muscle force in both of the WT and SOD1G37R mice, AAV6/skMLCK enhanced the twitch force of SOD1G37R mice and the tetanic force of WT and SOD1G37R mice. These results indicate that overexpression of skMLCK can enhance the tetanic force of healthy muscle as well as rescue weakened muscle function. In conclusion, the gene transfer of skMLCK has the potential to be a new therapy for ALS as well as for other neuromuscular diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Dependovirus/metabolismo , Técnicas de Transferencia de Gen , Músculo Esquelético/enzimología , Músculo Esquelético/fisiopatología , Quinasa de Cadena Ligera de Miosina/genética , Animales , Fenómenos Biomecánicos , Modelos Animales de Enfermedad , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Inyecciones Intramusculares , Ratones Endogámicos C57BL , Tetania
10.
J Magn Reson Imaging ; 53(5): 1559-1567, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33336504

RESUMEN

BACKGROUND: In the management of testicular torsion, estimating the duration of testicular ischemia is essential for deciding on an appropriate surgical treatment, but there are currently limited evaluation methods. PURPOSE: To perform testicular creatine chemical exchange saturation transfer (CrCEST) imaging and to evaluate its ability to accurately estimate the duration of testicular ischemia. STUDY TYPE: Prospective. ANIMAL MODEL: C57BL/6 control mice (n = 6) and testicular ischemia models induced by clamping the spermatic cord (n = 14). Eight of testicular ischemia models were serially imaged at two or three timepoints and a total of 26 images of ischemic testis were obtained. The ischemic duration ranged from 6-42 hours. FIELD STRENGTH/SEQUENCE: 11.7T vertical-bore MRI/segment fast low-angle shot acquisition for CEST. ASSESSMENT: CrCEST imaging was performed and the magnetization transfer ratio for the CrCEST effect (MTRCr** ) was calculated in control mice and testicular ischemia models. Correlation analysis between the duration of testicular ischemia and MTRCr** decline was performed. STATISTICAL TESTS: Paired t-test, and Pearson's correlation analysis. RESULTS: In control mice, the CrCEST effect in testes was significantly more than five times higher than that in skeletal muscle. MTRCr** did not differ significantly between the right and left testes (8.6 ± 0.8 vs. 8.3 ± 0.6, P = 0.96). In testicular ischemia models, MTRCr** of ischemic testes was significantly lower than that of controls (4 ± 2 vs. 8.9 ± 0.6, P < 0.001). Correlation analysis revealed a strong linear correlation between MTRCr** decline and the duration of ischemia (r = 0.96, P < 0.001). DATA CONCLUSION: A decreased CrCEST effect in ischemic testes correlated well with ischemic duration. Testicular CrCEST imaging was useful for accurately estimating the duration of testicular ischemia. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Asunto(s)
Creatina , Testículo , Animales , Isquemia/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Estudios Prospectivos , Testículo/diagnóstico por imagen
11.
J Magn Reson Imaging ; 54(5): 1457-1465, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34056801

RESUMEN

BACKGROUND: When determining treatment strategies for male infertility, it is important to evaluate spermatogenesis and its spatial distribution in the testes. PURPOSE: To investigate the usefulness of creatine chemical exchange saturation transfer (CrCEST) imaging for evaluating spermatogenesis and its spatial distribution. STUDY TYPE: Prospective. ANIMAL MODEL: C57BL/6 control mice (n = 5) and model mice of male infertility induced by whole testis X-ray irradiation (n = 11) or localized X-ray irradiation to lower regions of testes (n = 3). FIELD STRENGTH/SEQUENCE: A 11.7-T vertical-bore magnetic resonance imaging (MRI)/segmented fast low-angle shot acquisition for CEST. ASSESSMENT: The magnetization transfer ratio for the CrCEST effect (MTRCr* ) was calculated in each testis of the control mice and X-ray irradiation model mice at 10, 15, 20, and 30 days after irradiation. Correlation analysis was performed between MTRCr* and Johnsen's score, a histological score for spermatogenesis. In the localized X-ray irradiation model, regional MTRCr* and Johnsen's score were calculated for correlation analysis. STATISTICAL TESTS: Unpaired t-test, one-way analysis of variance with Tukey's HSD test and Pearson's correlation analysis. A P value < 0.05 was considered statistically significant. RESULTS: In the irradiation model, CrCEST imaging revealed a significant linear decrease of MTRCr* after irradiation (control, 8.7 ± 0.6; 10 days, 7.9 ± 0.8; 15 days, 6.5 ± 0.6; 20 days, 5.4 ± 1.0; 30 days, 4.4 ± 0.8). A significant linear correlation was found between MTRCr* and Johnsen's score (Pearson's correlation coefficient (r) = 0.79). In the localized irradiation model, CrCEST imaging visualized a significant regional decrease of MTRCr* in the unshielded region (shielded, 6.9 ± 0.7; unshielded, 4.9 ± 1.0), and a significant linear correlation was found between regional MTRCr* and Johnsen's score (r = 0.78). DATA CONCLUSION: Testicular CrCEST effects correlated well with spermatogenesis. CrCEST imaging was useful for evaluating spermatogenesis and its spatial distribution. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Creatina , Testículo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Estudios Prospectivos , Espermatogénesis , Testículo/diagnóstico por imagen
12.
FASEB J ; 34(2): 2041-2054, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31916304

RESUMEN

Most eukaryotic cells generate adenosine triphosphate (ATP) through the oxidative phosphorylation system (OXPHOS) to support cellular activities. In cultured cell-based experiments, we recently identified the hypoxia-inducible protein G0/G1 switch gene 2 (G0s2) as a positive regulator of OXPHOS, and showed that G0s2 protects cultured cardiomyocytes from hypoxia. In this study, we examined the in vivo protective role of G0s2 against hypoxia by generating both loss-of-function and gain-of-function models of g0s2 in zebrafish. Zebrafish harboring transcription activator-like effector nuclease (TALEN)-mediated knockout of g0s2 lost hypoxic tolerance. Conversely, cardiomyocyte-specific transgenic zebrafish hearts exhibited strong tolerance against hypoxia. To clarify the mechanism by which G0s2 protects cardiac function under hypoxia, we introduced a mitochondrially targeted FRET-based ATP biosensor into zebrafish heart to visualize ATP dynamics in in vivo beating hearts. In addition, we employed a mosaic overexpression model of g0s2 to compare the contraction and ATP dynamics between g0s2-expressing and non-expressing cardiomyocytes, side-by-side within the same heart. These techniques revealed that g0s2-expressing cardiomyocyte populations exhibited preserved contractility coupled with maintained intra-mitochondrial ATP concentrations even under hypoxic condition. Collectively, these results demonstrate that G0s2 provides ischemic tolerance in vivo by maintaining ATP production, and therefore represents a promising therapeutic target for hypoxia-related diseases.


Asunto(s)
Proteínas de Ciclo Celular , Transferencia Resonante de Energía de Fluorescencia , Isquemia Miocárdica , Miocardio , Proteínas de Pez Cebra , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosforilación Oxidativa , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
13.
FASEB J ; 34(1): 1859-1871, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914602

RESUMEN

The respiratory chain (RC) transports electrons to form a proton motive force that is required for ATP synthesis in the mitochondria. RC disorders cause mitochondrial diseases that have few effective treatments; therefore, novel therapeutic strategies are critically needed. We previously identified Higd1a as a positive regulator of cytochrome c oxidase (CcO) in the RC. Here, we test that Higd1a has a beneficial effect by increasing CcO activity in the models of mitochondrial dysfunction. We first demonstrated the tissue-protective effects of Higd1a via in situ measurement of mitochondrial ATP concentrations ([ATP]mito) in a zebrafish hypoxia model. Heart-specific Higd1a overexpression mitigated the decline in [ATP]mito under hypoxia and preserved cardiac function in zebrafish. Based on the in vivo results, we examined the effects of exogenous HIGD1A on three cellular models of mitochondrial disease; notably, HIGD1A improved respiratory function that was coupled with increased ATP synthesis and demonstrated cellular protection in all three models. Finally, enzyme kinetic analysis revealed that Higd1a significantly increased the maximal velocity of the reaction between CcO and cytochrome c without changing the affinity between them, indicating that Higd1a is a positive modulator of CcO. These results corroborate that Higd1a, or its mimic, provides therapeutic options for the treatment of mitochondrial diseases.


Asunto(s)
Transporte de Electrón/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Animales Modificados Genéticamente , Transporte Biológico/fisiología , Línea Celular , Citocromos c/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Células HEK293 , Humanos , Hipoxia/metabolismo , Cinética , Oxidación-Reducción , Respiración , Pez Cebra/metabolismo
14.
FASEB J ; 34(5): 6399-6417, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32175648

RESUMEN

Brugada syndrome (BrS) is an inherited channelopathy responsible for almost 20% of sudden cardiac deaths in patients with nonstructural cardiac diseases. Approximately 70% of BrS patients, the causative gene mutation(s) remains unknown. In this study, we used whole exome sequencing to investigate candidate mutations in a family clinically diagnosed with BrS. A heterozygous 1616G>A substitution (R539Q mutation) was identified in the transmembrane protein 168 (TMEM168) gene of symptomatic individuals. Similar to endogenous TMEM168, both TMEM168 wild-type (WT) and mutant proteins that were ectopically induced in HL-1 cells showed nuclear membrane localization. A significant decrease in Na+ current and Nav 1.5 protein expression was observed in HL-1 cardiomyocytes expressing mutant TMEM168. Ventricular tachyarrhythmias and conduction disorders were induced in the heterozygous Tmem168 1616G>A knock-in mice by pharmacological stimulation, but not in WT mice. Na+ current was reduced in ventricular cardiomyocytes isolated from the Tmem168 knock-in heart, and Nav 1.5 expression was also impaired. This impairment was dependent on increased Nedd4-2 binding to Nav 1.5 and subsequent ubiquitination. Collectively, our results show an association between the TMEM168 1616G>A mutation and arrhythmogenesis in a family with BrS.


Asunto(s)
Síndrome de Brugada/genética , Predisposición Genética a la Enfermedad , Proteínas de la Membrana/genética , Mutación , Miocitos Cardíacos/patología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Adulto , Animales , Síndrome de Brugada/patología , Femenino , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Linaje , Adulto Joven
16.
Genes Dev ; 27(18): 1949-58, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24029916

RESUMEN

Spermatogonial stem cells (SSCs) present the potential to acquire pluripotency under specific culture conditions. However, the frequency of pluripotent cell derivation is low, and the mechanism of SSC reprogramming remains unknown. In this study, we report that induction of global DNA hypomethylation in germline stem (GS) cells (cultured SSCs) induces pluripotent cell derivation. When DNA demethylation was triggered by Dnmt1 depletion, GS cells underwent apoptosis. However, GS cells were converted into embryonic stem (ES)-like cells by double knockdown of Dnmt1 and p53. This treatment down-regulated Dmrt1, a gene involved in sexual differentiation, meiosis, and pluripotency. Dmrt1 depletion caused apoptosis of GS cells, but a combination of Dmrt1 and p53 depletion also induced pluripotency. Functional screening of putative Dmrt1 target genes revealed that Dmrt1 depletion up-regulates Sox2. Sox2 transfection up-regulated Oct4 and produced pluripotent cells. This conversion was enhanced by Oct1 depletion, suggesting that the balance of Oct proteins maintains SSC identity. These results suggest that spontaneous SSC reprogramming is caused by unstable DNA methylation and that a Dmrt1-Sox2 cascade is critical for regulating pluripotency in SSCs.


Asunto(s)
Células Madre Pluripotentes/fisiología , Factores de Transcripción/metabolismo , Animales , Línea Celular , Reprogramación Celular/genética , Metilación de ADN , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 1 de Transcripción de Unión a Octámeros/genética , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Espermatogonias/metabolismo , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
17.
J Biol Chem ; 294(40): 14562-14573, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31371451

RESUMEN

Oxidative phosphorylation generates most of the ATP in respiring cells. ATP is an essential energy source, especially in cardiomyocytes because of their continuous contraction and relaxation. Previously, we reported that G0/G1 switch gene 2 (G0S2) positively regulates mitochondrial ATP production by interacting with FOF1-ATP synthase. G0S2 overexpression mitigates ATP decline in cardiomyocytes and strongly increases their hypoxic tolerance during ischemia. Here, we show that G0S2 protein undergoes proteasomal degradation via a cytosolic molecular triage system and that inhibiting this process increases mitochondrial ATP production in hypoxia. First, we performed screening with a library of siRNAs targeting ubiquitin-related genes and identified RING finger protein 126 (RNF126) as an E3 ligase involved in G0S2 degradation. RNF126-deficient cells exhibited prolonged G0S2 protein turnover and reduced G0S2 ubiquitination. BCL2-associated athanogene 6 (BAG6), involved in the molecular triage of nascent membrane proteins, enhanced RNF126-mediated G0S2 ubiquitination both in vitro and in vivo Next, we found that Glu-44 in the hydrophobic region of G0S2 acts as a degron necessary for G0S2 polyubiquitination and proteasomal degradation. Because this degron was required for an interaction of G0S2 with BAG6, an alanine-replaced G0S2 mutant (E44A) escaped degradation. In primary cultured cardiomyocytes, both overexpression of the G0S2 E44A mutant and RNF126 knockdown effectively attenuated ATP decline under hypoxic conditions. We conclude that the RNF126/BAG6 complex contributes to G0S2 degradation and that interventions to prevent G0S2 degradation may offer a therapeutic strategy for managing ischemic diseases.


Asunto(s)
Proteínas de Ciclo Celular/genética , Chaperonas Moleculares/genética , Isquemia Miocárdica/genética , Fosforilación Oxidativa , Ubiquitina-Proteína Ligasas/genética , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Alanina/genética , Proteínas de Ciclo Celular/química , Regulación de la Expresión Génica/genética , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Mitocondrias/genética , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Mutación , Isquemia Miocárdica/patología , Miocitos Cardíacos/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/genética
18.
Circulation ; 139(18): 2157-2169, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30764634

RESUMEN

BACKGROUND: Bradyarrhythmia is a common clinical manifestation. Although the majority of cases are acquired, genetic analysis of families with bradyarrhythmia has identified a growing number of causative gene mutations. Because the only ultimate treatment for symptomatic bradyarrhythmia has been invasive surgical implantation of a pacemaker, the discovery of novel therapeutic molecular targets is necessary to improve prognosis and quality of life. METHODS: We investigated a family containing 7 individuals with autosomal dominant bradyarrhythmias of sinus node dysfunction, atrial fibrillation with slow ventricular response, and atrioventricular block. To identify the causative mutation, we conducted the family-based whole exome sequencing and genome-wide linkage analysis. We characterized the mutation-related mechanisms based on the pathophysiology in vitro. After generating a transgenic animal model to confirm the human phenotypes of bradyarrhythmia, we also evaluated the efficacy of a newly identified molecular-targeted compound to upregulate heart rate in bradyarrhythmias by using the animal model. RESULTS: We identified one heterozygous mutation, KCNJ3 c.247A>C, p.N83H, as a novel cause of hereditary bradyarrhythmias in this family. KCNJ3 encodes the inwardly rectifying potassium channel Kir3.1, which combines with Kir3.4 (encoded by KCNJ5) to form the acetylcholine-activated potassium channel ( IKACh channel) with specific expression in the atrium. An additional study using a genome cohort of 2185 patients with sporadic atrial fibrillation revealed another 5 rare mutations in KCNJ3 and KCNJ5, suggesting the relevance of both genes to these arrhythmias. Cellular electrophysiological studies revealed that the KCNJ3 p.N83H mutation caused a gain of IKACh channel function by increasing the basal current, even in the absence of m2 muscarinic receptor stimulation. We generated transgenic zebrafish expressing mutant human KCNJ3 in the atrium specifically. It is interesting to note that the selective IKACh channel blocker NIP-151 repressed the increased current and improved bradyarrhythmia phenotypes in the mutant zebrafish. CONCLUSIONS: The IKACh channel is associated with the pathophysiology of bradyarrhythmia and atrial fibrillation, and the mutant IKACh channel ( KCNJ3 p.N83H) can be effectively inhibited by NIP-151, a selective IKACh channel blocker. Thus, the IKACh channel might be considered to be a suitable pharmacological target for patients who have bradyarrhythmia with a gain-of-function mutation in the IKACh channel.


Asunto(s)
Fibrilación Atrial , Bloqueo Atrioventricular , Bradicardia , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Enfermedades Genéticas Congénitas , Mutación Missense , Sustitución de Aminoácidos , Animales , Animales Modificados Genéticamente , Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Fibrilación Atrial/patología , Fibrilación Atrial/fisiopatología , Bloqueo Atrioventricular/genética , Bloqueo Atrioventricular/metabolismo , Bloqueo Atrioventricular/patología , Bloqueo Atrioventricular/fisiopatología , Benzopiranos/farmacología , Bradicardia/genética , Bradicardia/metabolismo , Bradicardia/patología , Bradicardia/fisiopatología , Técnicas Electrofisiológicas Cardíacas , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Enfermedades Genéticas Congénitas/fisiopatología , Humanos , Masculino , Xenopus laevis , Pez Cebra
19.
J Magn Reson Imaging ; 51(2): 563-570, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31228359

RESUMEN

BACKGROUND: Creatine chemical exchange saturation transfer (CrCEST) imaging is expected to be a novel evaluation method of muscular energy metabolism. PURPOSE: To develop CrCEST imaging of mouse skeletal muscle and to validate this technique by measuring changes in Cr concentration of ischemic hindlimbs. STUDY TYPE: Prospective. ANIMAL MODEL: C57BL/6 mice (n = 6), mild hindlimb ischemic mice (n = 6), and severe hindlimb ischemic mice (n = 6). FIELD STRENGTH/SEQUENCE: Magnetic resonance angiography (MRA), CrCEST imaging, and phosphorus magnetic resonance spectroscopy (31 P MRS) obtained at 11.7T. ASSESSMENT: MRA and 31 P MRS were performed to confirm the presence of ischemia following the compression by rubber tourniquet. CrCEST imaging was performed and magnetization transfer ratio asymmetry (MTRasym ), which reflects Cr concentration, and was calculated in severe ischemia models, mild ischemia models, and control mice. Follow-up CrCEST imaging was performed after the release of ischemia in the mild ischemia models. STATISTICAL TESTS: Mean ± SD, one-way analysis of variance (ANOVA) with Tukey's HSD test, unpaired or paired t-test. RESULTS: MRA revealed the loss of blood flow of the femoral artery in the ischemic hindlimb. 31 P MRS revealed different degrees of PCr decrease in severe and mild ischemic hindlimb (n = 3 per group, normal hindlimb: 1.0 ± 0, mild ischemic hindlimb: 0.77 ± 0.13, severe ischemic hindlimb: 0 ± 0). CrCEST imaging inversely revealed a significant stepwise increase in the MTRasym ratio of ischemic hindlimbs compared with controls (control, mild ischemia, and severe ischemia; 0.99 ± 0.04, 1.36 ± 0.08, and 1.59 ± 0.23, respectively, P < 0.0001). In addition, follow-up CrCEST imaging after the release of ischemia revealed normalization of the MTRasym ratios (recovered hindlimb: 1.01 ± 0.05). DATA CONCLUSION: We demonstrated an increase in the MTRasym of ischemic hindlimbs, along with a decrease of PCr. We demonstrated the normalization of MTRasym after the release of ischemia and developed CrCEST imaging of mouse skeletal muscle. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:563-570.


Asunto(s)
Creatina , Músculo Esquelético , Animales , Miembro Posterior , Isquemia/diagnóstico por imagen , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/diagnóstico por imagen , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA