Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Med Chem ; 98: 117540, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38134663

RESUMEN

Global challenges with treatment failures and/or widespread resistance in parasitic worms against commercially available anthelmintics lend impetus to the development of new anthelmintics with novel mechanism(s) of action. The free-living nematode Caenorhabditis elegans is an important model organism used for drug discovery, including the screening and structure-activity investigation of new compounds, and target deconvolution. Previously, we conducted a whole-organism phenotypic screen of the 'Pandemic Response Box' (from Medicines for Malaria Venture, MMV) and identified a hit compound, called ABX464, with activity against C. elegans and a related, parasitic nematode, Haemonchus contortus. Here, we tested a series of 44 synthesized analogues to explore the pharmacophore of activity on C. elegans and revealed five compounds whose potency was similar or greater than that of ABX464, but which were not toxic to human hepatoma (HepG2) cells. Subsequently, we employed thermal proteome profiling (TPP), protein structure prediction and an in silico-docking algorithm to predict ABX464-target candidates. Taken together, the findings from this study contribute significantly to the early-stage drug discovery of a new nematocide based on ABX464. Future work is aimed at validating the ABX464-protein interactions identified here, and at assessing ABX464 and associated analogues against a panel of parasitic nematodes, towards developing a new anthelmintic with a mechanism of action that is distinct from any of the compounds currently-available commercially.


Asunto(s)
Antihelmínticos , Nematodos , Quinolinas , Animales , Humanos , Caenorhabditis elegans , Antihelmínticos/farmacología , Antihelmínticos/química , Relación Estructura-Actividad
2.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256149

RESUMEN

In this study, novel solid lipid particles containing the adjuvant lipid monophosphoryl lipid A (termed 'SLN-A') were synthesised. The SLN-A particles were able to efficiently bind and form complexes with a DNA vaccine encoding the urease alpha subunit of Helicobacter pylori. The resultant nanoparticles were termed lipoplex-A. In a mouse model of H. pylori infection, the lipoplex-A nanoparticles were used to immunise mice, and the resultant immune responses were analysed. It was found that the lipoplex-A vaccine was able to induce high levels of antigen-specific antibodies and an influx of gastric CD4+ T cells in vaccinated mice. In particular, a prime with lipoplex-A and a boost with soluble UreA protein induced significantly high levels of the IgG1 antibody, whereas two doses of lipoplex-A induced high levels of the IgG2c antibody. In this study, lipoplex-A vaccination did not lead to a significant reduction in H. pylori colonisation in a challenge model; however, these results point to the utility of the system for delivering DNA vaccine-encoded antigens to induce immune responses and suggest the ability to tailor those responses.


Asunto(s)
Helicobacter pylori , Liposomas , Nanopartículas , Vacunas de ADN , Animales , Ratones , Ureasa/genética , Modelos Animales de Enfermedad
3.
Allergy ; 78(12): 3221-3234, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37650248

RESUMEN

BACKGROUND: Major fish allergens, including parvalbumin (PV), are heat stable and can withstand extensive cooking processes. Thus, the management of fish allergy generally relies on complete avoidance. Fish-allergic patients may be advised to consume canned fish, as some fish-allergic individuals have reported tolerance to canned fish. However, the safety of consuming canned fish has not been evaluated with comprehensive immunological and molecular analysis of canned fish products. METHODS: We characterized the in vitro immunoreactivity of serum obtained from fish-allergic subjects to canned fish. Seventeen canned fish products (salmon n = 8; tuna n = 7; sardine n = 2) were assessed for the content and integrity of PV using allergen-specific antibodies. Subsequently, the sIgE binding of five selected products was evaluated for individual fish-allergic patients (n = 53). Finally, sIgE-binding proteins were identified by mass spectrometry. RESULTS: The canned fish showed a markedly reduced PV content and binding to PV-specific antibodies compared with conventionally cooked fish. However, PV and other heat-stable fish allergens, including tropomyosin and collagen, still maintained their sIgE-binding capacity. Of 53 patients, 66% showed sIgE binding to canned fish proteins. The canned sardine contained proteins bound to sIgE from 51% of patients, followed by canned salmon (43%-45%) and tuna (8%-17%). PV was the major allergen in canned salmon and sardine. Tropomyosin and/or collagen also showed sIgE binding. CONCLUSION: We showed that canned fish products may not be safe for all fish-allergic patients. Canned fish products should only be considered into the diet of individuals with fish allergy, after detailed evaluation which may include in vitro diagnostics to various heat-stable fish allergens and food challenge conducted in suitable environments.


Asunto(s)
Alérgenos , Hipersensibilidad a los Alimentos , Animales , Humanos , Tropomiosina , Peces , Anticuerpos , Salmón , Productos Pesqueros/efectos adversos , Parvalbúminas , Colágeno
4.
J Nat Prod ; 86(3): 557-565, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36799121

RESUMEN

The known Eremophila microtheca-derived diterpenoid 3,7,8-trihydroxyserrulat-14-en-19-oic acid (1) was targeted for large-scale purification, as this bioactive plant compound has proven to be an attractive scaffold for semisynthetic studies and subsequent library generation. Compound 1 was converted to a selectively protected trimethyl derivative, 3-hydroxy-7,8-dimethoxyserrulat-14-en-19-oic acid methyl ester (2), using simple and rapid methylation conditions. The resulting scaffold 2 was reacted with a diverse series of commercially available isocyanates to generate an 11-membered carbamate-based library. The chemical structures of the 11 new semisynthetic analogues were fully characterized by spectroscopic and spectrometric analysis. All natural products and semisynthetic compounds were evaluated for their anthelmintic, antimalarial, and anti-HIV activities. Compound 3 was shown to elicit the greatest antiplasmodial activity of all compounds tested, with IC50 values of 4.6 and 11.6 µM against Plasmodium falciparum 3D7 and Dd2, respectively. Compound 11 showed the greatest inhibition of development to fourth-stage Haemonchus contortus larvae (L4) and induction of a skinny (Ski) phenotype (67.5% of nematodes) at 50 µM. Compound 7, which inhibited 59.0% of HIV production at 100 µg/mL, was the carbamate analogue that displayed the best antiviral activity.


Asunto(s)
Antiinfecciosos , Antimaláricos , Productos Biológicos , Carbamatos , Extractos Vegetales/química , Antimaláricos/farmacología , Antimaláricos/química , Productos Biológicos/química , Plasmodium falciparum
5.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446130

RESUMEN

Many parasitic worms have a major adverse impact on human and animal populations worldwide due to the chronicity of their infections. There is a growing body of evidence indicating that extracellular vesicles (EVs) are intimately involved in modulating (suppressing) inflammatory/immune host responses and parasitism. As one of the most pathogenic nematodes of livestock animals, Haemonchus contortus is an ideal model system for EV exploration. Here, employing a multi-step enrichment process (in vitro culture, followed by ultracentrifugation, size exclusion and filtration), we enriched EVs from H. contortus and undertook the first comprehensive (qualitative and quantitative) multi-omic investigation of EV proteins and lipids using advanced liquid chromatography-mass spectrometry and informatics methods. We identified and quantified 561 proteins and 446 lipids in EVs and compared these molecules with those of adult worms. We identified unique molecules in EVs, such as proteins linked to lipid transportation and lipid species (i.e., sphingolipids) associated with signalling, indicating the involvement of these molecules in parasite-host cross-talk. This work provides a solid starting point to explore the functional roles of EV-specific proteins and lipids in modulating parasite-host cross-talk, and the prospect of finding ways of disrupting or interrupting this relationship to suppress or eliminate parasite infection.


Asunto(s)
Vesículas Extracelulares , Haemonchus , Parásitos , Animales , Humanos , Haemonchus/química , Haemonchus/metabolismo , Proteoma/metabolismo , Lipidómica , Lípidos
6.
Pediatr Allergy Immunol ; 33(5): e13781, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35616897

RESUMEN

BACKGROUND: Clinical cross-reactivity between bony fish, cartilaginous fish, frog, and chicken muscle has previously been demonstrated in fish-allergic patients. In indicative studies, two reports of anaphylaxis following the consumption of crocodile meat and IgE-cross-binding were linked to the major fish allergen parvalbumin (PV). This study investigates IgE-binding proteins in crocodile meat with a focus on PV and their clinical relevance. METHODS: Proteins were extracted from muscle tissue of crocodile, three bony fish, and two cartilaginous fish. A cohort of fish-allergic pediatric patients (n = 77) underwent allergen skin prick testing (SPT) to three fish preparations (n = 77) and crocodile (n = 12). IgE-binding proteins were identified and quantified by SDS-PAGE, mass spectrometric analyses, and immunoblotting using commercial and in-house antibodies, as well as individual and pooled patients' serum. PV isoforms were purified or recombinantly expressed before immunological analyses, including human mast cell degranulation assay. RESULTS: Of the tissues analyzed, PV was most abundant in heated crocodile preparation, triggering an SPT of ≥3 mm in 8 of 12 (67%) fish-allergic patients. Seventy percent (31 of 44) of fish PV-sensitized patients demonstrated IgE-binding to crocodile PV. Crocodile ß-PV was the major IgE-binding protein but 20-fold less abundant than α-PV. Cellular reactivity was demonstrated for ß-PV and epitopes predicted, explaining frequent IgE-cross-binding of ß-PVs. Both PV isoforms are now registered as the first reptile allergens with the WHO/IUIS (ß-PV as Cro p 1 and α-PV as Cro p 2). CONCLUSION: Fish-allergic individuals may be at risk of an allergy to crocodile and should seek specialist advice before consuming crocodilian meat.


Asunto(s)
Caimanes y Cocodrilos , Hipersensibilidad a los Alimentos , Alérgenos , Animales , Niño , Reacciones Cruzadas , Peces , Hipersensibilidad a los Alimentos/diagnóstico , Humanos , Inmunoglobulina E , Parvalbúminas
7.
J Nat Prod ; 85(7): 1723-1729, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35727327

RESUMEN

High-throughput screening of the NatureBank marine extract library (7616 samples) identified an extract derived from the Australian marine sponge Phyllospongia bergquistae with activity against Hemonchus contortus (barber's pole worm), an economically important parasitic nematode. Bioassay-guided fractionation of the CH2Cl2/MeOH extract from P. bergquistae led to the purification of four known bishomoscalarane sesterterpenes, phyllolactones A-D (1-4). The absolute configurations of phyllolactones B (2) and C (3) were determined by single-crystal X-ray diffraction analysis; literature and data analyses revealed the need for these chemical structures to be revised. Compounds 2-4 induced a lethal, skinny (Ski) phenotype in larvae of H. contortus at concentrations between 5.3 and 10.1 µM. These data indicate that the bishomoscalarane sesterterpene structure class warrants further investigation for nematocidal or nematostatic activity.


Asunto(s)
Antihelmínticos , Poríferos , Animales , Antihelmínticos/farmacología , Australia , Estructura Molecular , Extractos Vegetales , Poríferos/química , Sesterterpenos/farmacología
8.
Mar Drugs ; 20(9)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36135743

RESUMEN

Many targeted natural product isolation approaches rely on the use of pre-existing bioactivity information to inform the strategy used for the isolation of new bioactive compounds. Bioactivity information can be available either in the form of prior assay data or via Structure Activity Relationship (SAR) information which can indicate a potential chemotype that exhibits a desired bioactivity. The work described herein utilizes a unique method of targeted isolation using structure-based virtual screening to identify potential antibacterial compounds active against MRSA within the marine sponge order Verongiida. This is coupled with molecular networking-guided, targeted isolation to provide a novel drug discovery procedure. A total of 12 previously reported bromotyrosine-derived alkaloids were isolated from the marine sponge species Pseudoceratina durissima, and the compound, (+)-aeroplysinin-1 (1) displayed activity against the MRSA pathogen (MIC: <32 µg/mL). The compounds (1−3, 6 and 9) were assessed for their central nervous system (CNS) interaction and behavioral toxicity to zebrafish (Danio rerio) larvae, whereby several of the compounds were shown to induce significant hyperactivity. Anthelmintic activity against the parasitic nematode Haemonchus contorutus was also evaluated (2−4, 6−8).


Asunto(s)
Alcaloides , Antihelmínticos , Productos Biológicos , Poríferos , Alcaloides/química , Animales , Antibacterianos/química , Antibacterianos/farmacología , Estructura Molecular , Poríferos/química , Pez Cebra
9.
Beilstein J Org Chem ; 18: 1544-1552, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36474969

RESUMEN

In order to further expand the NatureBank open access compound library, chemical investigations of the Australian marine sponge, Ianthella basta, were undertaken since UHPLC-MS analysis of the extract from this sponge indicated the presence of a new alkaloid. Large-scale extraction and mass-directed isolation studies on the CH2Cl2/MeOH I. basta extract resulted in the purification of a new bromotyrosine-derived alkaloid, 5-debromopurealidin H (1), along with the known marine natural product, ianthesine E (2). The chemical structure of the new compound was determined following detailed spectroscopic and spectrometric data analysis. These two compounds (1 and 2) along with seven previously reported marine bromotyrosine alkaloids from the NatureBank open access library, which included psammaplysins F (3) and H (4), bastadins 4 (5), 8 (6) and 13 (7), aerothionin (8) and hexadellin A (9), were evaluated for their nematocidal activity against exsheathed third-stage larvae of Haemonchus contortus, a highly pathogenic parasite of ruminants. Of the nine compounds, bastadin 8 (6), hexadellin A (9) and bastadin 4 (5) showed inhibition towards larval motility after 72 h of exposure with IC50 values of 1.6 µM, 10.0 µM and 33.3 µM, respectively.

10.
Allergy ; 76(5): 1443-1453, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32860256

RESUMEN

BACKGROUND: Diagnostic tests for fish allergy are hampered by the large number of under-investigated fish species. Four salmon allergens are well-characterized and registered with the WHO/IUIS while no catfish allergens have been described so far. In 2008, freshwater-cultured catfish production surpassed that of salmon, the globally most-cultured marine species. We aimed to identify, quantify, and compare all IgE-binding proteins in salmon and catfish. METHODS: Seventy-seven pediatric patients with clinically confirmed fish allergy underwent skin prick tests to salmon and catfish. The allergen repertoire of raw and heated protein extracts was evaluated by immunoblotting using five allergen-specific antibodies and patients' serum followed by mass spectrometric analyses. RESULTS: Raw and heated extracts from catfish displayed a higher frequency of IgE-binding compared to those from salmon (77% vs 70% and 64% vs 53%, respectively). The major fish allergen parvalbumin demonstrated the highest IgE-binding capacity (10%-49%), followed by triosephosphate isomerase (TPI; 19%-34%) in raw and tropomyosin (6%-32%) in heated extracts. Six previously unidentified fish allergens, including TPI, were registered with the WHO/IUIS. Creatine kinase from salmon and catfish was detected by IgE from 14% and 10% of patients, respectively. Catfish L-lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase, and glucose-6-phosphate isomerase showed IgE-binding for 6%-13% of patients. In salmon, these proteins could not be separated successfully. CONCLUSIONS: We detail the allergen repertoire of two highly farmed fish species. IgE-binding to fish tropomyosins and TPIs was demonstrated for the first time in a large patient cohort. Tropomyosins, in addition to parvalbumins, should be considered for urgently needed improved fish allergy diagnostics.


Asunto(s)
Alérgenos/inmunología , Hipersensibilidad a los Alimentos , Animales , Bagres , Niño , Hipersensibilidad a los Alimentos/diagnóstico , Humanos , Parvalbúminas , Salmón
11.
J Nat Prod ; 84(11): 2832-2844, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34780692

RESUMEN

Phytochemical profiling was undertaken on the crude extracts of the bulbs, stems, and the fruits of Haemodorum brevisepalum, to determine the nature of the chemical constituents present. This represents the first study to investigate the fruits of a species of Haemodorum. In total, 13 new and 17 previously reported compounds were isolated and identified. The new compounds were of the phenylphenalenone-type class, with a representative of a novel structural form, named tentatively "oxabenzochromenone" (1), a compound akin to an intermediate in a recently proposed phenylphenalenone metabolic network (2), seven new phenylphenalenones (4-10), four new phenylbenzoisochromenones (11-14), and a new phenylbenzoisochromenone derivative (18). The previously reported compounds identified were of the following structure classes: oxabenzochrysenone (3, 23-26), flavonol (15, 16), phenylbenzoisochromenone (17, 21, 22, 27-30), and phenylphenalenone (19, 20). Compounds 2-4, 6-9, 15-18, 21, 22, and 26 were subjected to antimicrobial evaluation with moderate activity observed against Staphylococcus aureus MRSA and slight activity against Pseudomonas aeruginosa and Candida albicans. Compounds 4, 6-9, 17, and 21 were also evaluated for anthelminthic activity against larvae of the blood-feeding parasitic nematode Haemonchus contortus.


Asunto(s)
Magnoliopsida/química , Fenalenos/aislamiento & purificación , Fitoquímicos/análisis , Antiinfecciosos/farmacología , Espectroscopía de Resonancia Magnética , Fenalenos/química , Fenalenos/farmacología , Extractos Vegetales/análisis
12.
J Nat Prod ; 84(4): 964-971, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33631073

RESUMEN

Phytochemical profiling was undertaken on the crude extracts of Drosera magna to determine the nature of the chemical constituents present. In total, three new flavonol diglycosides (1-3), one new flavan-3-ol glycoside (4), and 12 previously reported compounds of the flavonol (5, 9), flavan-3-ol (15), flavanone (8), 1,4-napthoquinone (6, 7, 13, 14), 2,3-dehydroxynapthalene-1,4-dione (10-12), and phenolic acid (16) structure classes were isolated and identified. Compounds 1-9, 13, 17, and 18 were assessed for antimicrobial activity, with compounds 6, 7, 8, and 9 showing significant activity. Compounds 1, 2, and 6 were also evaluated for anthelmintic activity against larval forms of Hemonchus contortus, with compound 6 being active.


Asunto(s)
Antihelmínticos/farmacología , Antiinfecciosos/farmacología , Drosera/química , Flavonoles/farmacología , Glicósidos/farmacología , Animales , Antihelmínticos/aislamiento & purificación , Antiinfecciosos/aislamiento & purificación , Planta Carnívora/química , Flavonoides , Flavonoles/aislamiento & purificación , Glicósidos/aislamiento & purificación , Haemonchus/efectos de los fármacos , Estructura Molecular , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Hojas de la Planta/química , Raíces de Plantas/química , Australia Occidental
13.
Mar Drugs ; 19(12)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34940697

RESUMEN

High-throughput screening of the NatureBank marine extract library (n = 7616) using a phenotypic assay for the parasitic nematode Haemonchus contortus identified an active extract derived from the Australian marine sponge Citronia sp. Bioassay-guided fractionation of the CH2Cl2/MeOH extract from Citronia sp. resulted in the purification of two known hexachlorinated peptides, dysidenin (1) and dysideathiazole (2). Compound 1 inhibited the growth/development of H. contortus larvae and induced multiple phenotypic changes, including a lethal evisceration (Evi) phenotype and/or somatic cell and tissue destruction. This is the first report of anthelmintic activity for these rare and unique polychlorinated peptides.


Asunto(s)
Antinematodos/farmacología , Haemonchus/efectos de los fármacos , Poríferos , Tiazoles/farmacología , Animales , Antinematodos/química , Organismos Acuáticos , Ensayos Analíticos de Alto Rendimiento , Larva/efectos de los fármacos , Tiazoles/química
14.
Molecules ; 26(14)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34299431

RESUMEN

In the present study, we established a practical and cost-effective high throughput screening assay, which relies on the measurement of the motility of Caenorhabditis elegans by infrared light-interference. Using this assay, we screened 14,400 small molecules from the "HitFinder" library (Maybridge), achieving a hit rate of 0.3%. We identified small molecules that reproducibly inhibited the motility of C. elegans (young adults) and assessed dose relationships for a subset of compounds. Future work will critically evaluate the potential of some of these hits as candidates for subsequent optimisation or repurposing as nematocides or nematostats. This high throughput screening assay has the advantage over many previous assays in that it is cost- and time-effective to carry out and achieves a markedly higher throughput (~10,000 compounds per week); therefore, it is suited to the screening of libraries of tens to hundreds of thousands of compounds for subsequent evaluation and development. The present phenotypic whole-worm assay should be readily adaptable to a range of socioeconomically important parasitic nematodes of humans and animals, depending on their dimensions and motility characteristics in vitro, for the discovery of new anthelmintic candidates. This focus is particularly important, given the widespread problems associated with drug resistance in many parasitic worms of livestock animals globally.


Asunto(s)
Antihelmínticos/análisis , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Animales , Antihelmínticos/aislamiento & purificación , Antihelmínticos/farmacología , Antiinfecciosos/farmacología , Antinematodos/análisis , Antinematodos/farmacología , Caenorhabditis elegans/efectos de los fármacos , Resistencia a Medicamentos/efectos de los fármacos , Larva/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología
15.
Molecules ; 26(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068691

RESUMEN

Due to widespread multi-drug resistance in parasitic nematodes of livestock animals, there is an urgent need to discover new anthelmintics with distinct mechanisms of action. Extending previous work, here we screened a panel of 245 chemically-diverse small molecules for anti-parasitic activity against Haemonchus contortus-an economically important parasitic nematode of livestock. This panel was screened in vitro against exsheathed third-stage larvae (xL3) of H. contortus using an established phenotypic assay, and the potency of select compounds to inhibit larval motility and development assessed in dose-response assays. Of the 245 compounds screened, three-designated MPK18, MPK334 and YAK308-induced non-wildtype larval phenotypes and repeatedly inhibited xL3-motility, with IC50 values of 45.2 µM, 17.1 µM and 52.7 µM, respectively; two also inhibited larval development, with IC50 values of 12.3 µM (MPK334) and 6.5 µM (YAK308), and none of the three was toxic to human liver cells (HepG2). These findings suggest that these compounds deserve further evaluation as nematocidal candidates. Future work should focus on structure-activity relationship (SAR) studies of these chemical scaffolds, and assess the in vitro and in vivo efficacies and safety of optimised compounds against adults of H. contortus.


Asunto(s)
Haemonchus/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Haemonchus/crecimiento & desarrollo , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Fenotipo , Bibliotecas de Moléculas Pequeñas/química
16.
Molecules ; 26(19)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34641389

RESUMEN

Widespread resistance in parasitic nematodes to most classes of anthelmintic drugs demands the discovery and development of novel compounds with distinct mechanisms of action to complement strategic or integrated parasite control programs. Products from nature-which assume a diverse 'chemical space'-have significant potential as a source of anthelmintic compounds. In the present study, we screened a collection of extracts (n = 7616) derived from marine invertebrates sampled from Australian waters in a high throughput bioassay for in vitro anti-parasitic activity against the barber's pole worm (Haemonchus contortus)-an economically important parasitic nematode of livestock animals. In this high throughput screen (HTS), we identified 58 active extracts that reduced larval motility by ≥70% (at 90 h), equating to an overall 'hit rate' of ~0.8%. Of these 58 extracts, 16 also inhibited larval development by ≥80% (at 168 h) and/or induced 'non-wild-type' (abnormal) larval phenotypes with reference to 'wild-type' (normal) larvae not exposed to extract (negative controls). Most active extracts (54 of 58) originated from sponges, three from chordates (tunicates) and one from a coral; these extracts represented 37 distinct species/taxa of 23 families. An analysis of samples by 1H NMR fingerprinting was utilised to dereplicate hits and to prioritise a set of 29 sponge samples for future chemical investigation. Overall, these results indicate that a range of sponge species from Australian waters represents a rich source of natural compounds with nematocidal or nematostatic properties. Our plan now is to focus on in-depth chemical investigations of the sample set prioritised herein.


Asunto(s)
Antihelmínticos/farmacología , Hemoncosis/tratamiento farmacológico , Haemonchus/crecimiento & desarrollo , Poríferos/química , Extractos de Tejidos/farmacología , Animales , Antihelmínticos/aislamiento & purificación , Hemoncosis/parasitología , Haemonchus/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Extractos de Tejidos/aislamiento & purificación
17.
Allergy ; 75(11): 2909-2919, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32436591

RESUMEN

BACKGROUND: Tropomyosins are highly conserved proteins, an attribute that forms the molecular basis for their IgE antibody cross-reactivity. Despite sequence similarities, their allergenicity varies greatly between ingested and inhaled invertebrate sources. In this study, we investigated the relationship between the structural stability of different tropomyosins, their endolysosomal degradation patterns, and T-cell reactivity. METHODS: We investigated the differences between four tropomyosins-the major shrimp allergen Pen m 1 and the minor allergens Der p 10 (dust mite), Bla g 7 (cockroach), and Ani s 3 (fish parasite)-in terms of IgE binding, structural stability, endolysosomal degradation and subsequent peptide generation, and T-cell cross-reactivity in a BALB/c murine model. RESULTS: Tropomyosins displayed different melting temperatures, which did not correlate with amino acid sequence similarities. Endolysosomal degradation experiments demonstrated differential proteolytic digestion, as a function of thermal stability, generating different peptide repertoires. Pen m 1 (Tm 42°C) and Der p 10 (Tm 44°C) elicited similar patterns of endolysosomal degradation, but not Bla g 7 (Tm 63°C) or Ani s 3 (Tm 33°C). Pen m 1-specific T-cell clones, with specificity for regions highly conserved in all four tropomyosins, proliferated weakly to Der p 10, but did not proliferate to Bla g 7 and Ani s 3, indicating lack of T-cell epitope cross-reactivity. CONCLUSIONS: Tropomyosin T-cell cross-reactivity, unlike IgE cross-reactivity, is dependent on structural stability rather than amino acid sequence similarity. These findings contribute to our understanding of cross-sensitization among different invertebrates and design of suitable T-cell peptide-based immunotherapies for shrimp and related allergies.


Asunto(s)
Alérgenos , Tropomiosina , Animales , Reacciones Cruzadas , Inmunoglobulina E , Ratones , Linfocitos T
18.
J Nat Prod ; 83(6): 1971-1979, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32478519

RESUMEN

Chemical investigations of two specimens of the Australian crinoid Comatula rotalaria afforded five new taurine-conjugated anthraquinones, comatulins A-E (1-5), together with 11 known marine natural products (6-16). The chemical structures of all the compounds were elucidated by detailed spectroscopic and spectrometric data analysis. The first X-ray crystal structure of a crinoid-derived acyl anthraquinone, rhodocomatulin 5,7-dimethyl ether (8), is reported here. Compounds 1, 2, 6-13, and two additional naphthopyrone derivatives, 17 and 18, were evaluated for their ability to inhibit HIV-1 replication in vitro; none of the compounds were active at 100 µM. Furthermore, compounds 1, 2, 6-10, 14, 15, 17, and 18 were screened for nematocidal activity against exsheathed third-stage larvae of Hemonchus contortus, a highly pathogenic parasite nematode of ruminants. Compound 17, known as 6-methoxycomaparvin 5,8-dimethyl ether, showed an inhibitory effect on larval motility (IC50 = 30 µM) and development (IC50 = 31 µM) and induced the eviscerated (Evi) phenotype.


Asunto(s)
Antraquinonas/farmacología , Equinodermos/metabolismo , Animales , Antraquinonas/química , Antinematodos , Antivirales/química , Antivirales/farmacología , Apoptosis/efectos de los fármacos , Australia , VIH-1/efectos de los fármacos , Haemonchus , Larva/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Replicación Viral/efectos de los fármacos , Difracción de Rayos X
19.
Nanomedicine ; 28: 102234, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32522709

RESUMEN

Templating has been demonstrated to be an efficient method of nanocapsule preparation. However, there have been no reports of using protein-only nanocapsules as an antigen delivery system. Such a system would enable the delivery of antigen without additional polymers. This study focused on defining the structural and cellular characteristics of nanocapsules consisting of antigen (ovalbumin) alone, synthesized by the templating method using highly monodispersed solid core mesoporous shell (SC/MS) and mesoporous (MS) silica nanoparticles of 410 nm and 41 nm in diameter, respectively. The synthesized ovalbumin nanocapsules were homogeneous in structure, and cellular uptake was observed in DC2.4 murine immature dendritic cells with minimal cytotoxicity. The nanocapsules were localized intracellularly and induced antigen presentation by the cross-presentation pathway. The templating system, using SC/MS and MS silica nanoparticles, was demonstrated to be an effective nanocapsule synthesis method for a new antigen delivery system.


Asunto(s)
Células Dendríticas/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Proteínas/química , Animales , Nanocápsulas/química , Dióxido de Silicio/química
20.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375120

RESUMEN

Shellfish allergy affects 2% of the world's population and persists for life in most patients. The diagnosis of shellfish allergy, in particular shrimp, is challenging due to the similarity of allergenic proteins from other invertebrates. Despite the clinical importance of immunological cross-reactivity among shellfish species and between allergenic invertebrates such as dust mites, the underlying molecular basis is not well understood. Here we mine the complete transcriptome of five frequently consumed shrimp species to identify and compare allergens with all known allergen sources. The transcriptomes were assembled de novo, using Trinity, from raw RNA-Seq data of the whiteleg shrimp (Litopenaeus vannamei), black tiger shrimp (Penaeus monodon), banana shrimp (Fenneropenaeus merguiensis), king shrimp (Melicertus latisulcatus), and endeavour shrimp (Metapenaeus endeavouri). BLAST searching using the two major allergen databases, WHO/IUIS Allergen Nomenclature and AllergenOnline, successfully identified all seven known crustacean allergens. The analyses revealed up to 39 unreported allergens in the different shrimp species, including heat shock protein (HSP), alpha-tubulin, chymotrypsin, cyclophilin, beta-enolase, aldolase A, and glyceraldehyde-3-phosphate dehydrogenase (G3PD). Multiple sequence alignment (Clustal Omega) demonstrated high homology with allergens from other invertebrates including mites and cockroaches. This first transcriptomic analyses of allergens in a major food source provides a valuable resource for investigating shellfish allergens, comparing invertebrate allergens and future development of improved diagnostics for food allergy.


Asunto(s)
Alérgenos/genética , Proteínas de Artrópodos/genética , Hipersensibilidad a los Alimentos/genética , Perfilación de la Expresión Génica/métodos , Penaeidae/genética , Transcriptoma/genética , Alérgenos/inmunología , Animales , Proteínas de Artrópodos/clasificación , Proteínas de Artrópodos/inmunología , Reacciones Cruzadas/inmunología , Evolución Molecular , Hipersensibilidad a los Alimentos/inmunología , Humanos , Penaeidae/clasificación , Penaeidae/inmunología , Filogenia , Alimentos Marinos/análisis , Especificidad de la Especie , Tropomiosina/genética , Tropomiosina/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA