Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proteomics ; 24(9): e2300312, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38446070

RESUMEN

The ectoparasitic mite Varroa destructor transmits and triggers viral infections that have deleterious effects on honey bee colonies worldwide. We performed a manipulative experiment in which worker bees collected at emergence were exposed to Varroa for 72 h, and their proteomes were compared with those of untreated control bees. Label-free quantitative proteomics identified 77 differentially expressed A. mellifera proteins (DEPs). In addition, viral proteins were identified by orthogonal analysis, and most importantly, Deformed wing virus (DWV) was found at high levels/intensity in Varroa-exposed bees. Pathway enrichment analysis suggested that the main pathways affected included peroxisomal metabolism, cyto-/exoskeleton reorganization, and cuticular proteins. Detailed examination of individual DEPs revealed that additional changes in DEPs were associated with peroxisomal function. In addition, the proteome data support the importance of TGF-ß signaling in Varroa-DWV interaction and the involvement of the mTORC1 and Hippo pathways. These results suggest that the effect of DWV on bees associated with Varroa feeding results in aberrant autophagy. In particular, autophagy is selectively modulated by peroxisomes, to which the observed proteome changes strongly corresponded. This study complements previous research with different study designs and suggests the importance of the peroxisome, which plays a key role in viral infections.


Asunto(s)
Peroxisomas , Virus ARN , Varroidae , Animales , Abejas/virología , Abejas/parasitología , Varroidae/virología , Peroxisomas/metabolismo , Peroxisomas/virología , Virus ARN/fisiología , Proteómica/métodos , Proteoma/metabolismo , Proteoma/análisis , Proteínas de Insectos/metabolismo , Transducción de Señal , Interacciones Huésped-Parásitos
2.
Proteomics ; 23(1): e2200146, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35946602

RESUMEN

American foulbrood (AFB) is a devastating disease of honey bees. There remains a gap in the understanding of the interactions between the causative agent and host, so we used shotgun proteomics to gain new insights. Nano-LC-MS/MS analysis preceded visual description and Paenibacillus larvae identification in the same individual sample. A further critical part of our methodology was that larvae before capping were used as the model stage. The identification of the virulence factors SplA, PlCBP49, enolase, and DnaK in all P. larvae-positive samples was consistent with previous studies. Furthermore, the results were consistent with the array of virulence factors identified in an in vitro study of P. larvae exoprotein fractions. Although an S-layer protein and a putative bacteriocin were highlighted as important, the microbial collagenase ColA and InhA were not found in our samples. The most important virulence factor identified was isoform of neutral metalloproteinase (UniProt: V9WB82), a major protein marker responsible for the shift in the PCA biplot. This protein is associated with larval decay and together with other virulence factors (bacteriocin) can play a key role in protection against secondary invaders. Overall, this study provides new knowledge on host-pathogen interactions and a new methodical approach to study the disease.


Asunto(s)
Bacteriocinas , Paenibacillus larvae , Paenibacillus , Abejas , Animales , Estados Unidos , Larva , Paenibacillus larvae/metabolismo , Proteómica , Espectrometría de Masas en Tándem , Factores de Virulencia/metabolismo , Bacteriocinas/metabolismo , Paenibacillus/metabolismo
3.
Clin Proteomics ; 20(1): 39, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749499

RESUMEN

BACKGROUND: Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors. New drug targets and proteins that would assist sensitive PPGL imagining could improve therapy and quality of life of patients with PPGL, namely those with recurrent or metastatic disease. Using a combined proteomic strategy, we looked for such clinically relevant targets among integral membrane proteins (IMPs) upregulated on the surface of tumor cells and non-membrane druggable enzymes in PPGL. METHODS: We conducted a detailed proteomic analysis of 22 well-characterized human PPGL samples and normal chromaffin tissue from adrenal medulla. A standard quantitative proteomic analysis of tumor lysate, which provides information largely on non-membrane proteins, was accompanied by specific membrane proteome-aimed methods, namely glycopeptide enrichment using lectin-affinity, glycopeptide capture by hydrazide chemistry, and enrichment of membrane-embedded hydrophobic transmembrane segments. RESULTS: The study identified 67 cell surface integral membrane proteins strongly upregulated in PPGL compared to control chromaffin tissue. We prioritized the proteins based on their already documented direct role in cancer cell growth or progression. Increased expression of the seven most promising drug targets (CD146, CD171, ANO1, CD39, ATP8A1, ACE and SLC7A1) were confirmed using specific antibodies. Our experimental strategy also provided expression data for soluble proteins. Among the druggable non-membrane enzymes upregulated in PPGL, we identified three potential drug targets (SHMT2, ARG2 and autotaxin) and verified their upregulated expression. CONCLUSIONS: Application of a combined proteomic strategy recently presented as "Pitchfork" enabled quantitative analysis of both, membrane and non-membrane proteome, and resulted in identification of 10 potential drug targets in human PPGL. Seven membrane proteins localized on the cell surface and three non-membrane druggable enzymes proteins were identified and verified as significantly upregulated in PPGL. All the proteins have been previously shown to be upregulated in several human cancers, and play direct role in cancer progression. Marked upregulation of these proteins along with their localization and established direct roles in tumor progression make these molecules promising candidates as drug targets or proteins for sensitive PPGL imaging.

4.
J Nat Prod ; 82(5): 1217-1226, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30995037

RESUMEN

Honey is a unique natural product produced by European honeybees. Due to its high economic value, honey is considered to be well characterized chemically, and it is often discovered to be an adulterated commodity. However, this study shows that our knowledge of honey protein composition, which is of high medical and pharmaceutical importance, is incomplete. In this in-depth proteomic study of 13 honeys, we identified a number of proteins that are important for an understanding of honey properties and merit additional pharmaceutical research. Our major result is an expanded understanding of the proteins underlying honey's antimicrobial properties, such as hymenoptaecin and defensin-1, glucose dehydrogenase isoforms, venom allergens and other venom-like proteins, serine proteases and serine protease inhibitors, and a series of royal jelly proteins. In addition, we performed quantitative comparisons of all of the proteins previously known or newly identified. The honey proteins, determined using label-free nLC-MS/MS in which the same protein quantity was analyzed in one series, were found in relatively similar proportions, although eucalyptus honey differed most widely from the remaining honeys. Overall, the proteome analysis indicated that honeybees supply proteins to honey in a relatively stable ratio within each proteome, but total protein quantity can differ by approximately an order of magnitude in different honeys.


Asunto(s)
Alérgenos/análisis , Antibacterianos/farmacología , Ácidos Grasos/química , Miel/análisis , Proteómica/métodos , Serina Proteasas/análisis , Inhibidores de Serina Proteinasa/análisis , Ponzoñas/análisis
5.
Exp Cell Res ; 349(2): 273-281, 2016 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-27793648

RESUMEN

The general mechanism underlying the tumor suppressor activity of the Hippo signaling pathway remains unclear. In this study, we explore the molecular mechanisms connecting the Hippo signaling pathway with glucose metabolism. We have found that two key regulators of glycolysis, C-MYC and GLUT1, are targets of the Hippo signaling pathway in human leukemia cells. Our results revealed that activation of MST1 by the natural compound shikonin inhibited the expression of GLUT1 and C-MYC. Furthermore, RNAi experiments confirmed the regulation of GLUT1 and C-MYC expression via the MST1-YAP1-TEAD1 axis. Surprisingly, YAP1 was found to positively regulate C-MYC mRNA levels in complex with TEAD1, while it negatively regulates C-MYC levels in cooperation with MST1. Hence, YAP1 serves as a rheostat for C-MYC, which is regulated by MST1. In addition, depletion of MST1 stimulates lactate production, whereas the specific depletion of TEAD1 has an opposite effect. The inhibition of lactate production and cellular proliferation induced by shikonin also depends on the Hippo pathway activity. Finally, a bioinformatic analysis revealed conserved TEAD-binding motifs in the C-MYC and GLUT1 promoters providing another molecular data supporting our observations. In summary, regulation of glucose metabolism could serve as a new tumor suppressor mechanism orchestrated by the Hippo signaling pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Genes myc/efectos de los fármacos , Naftoquinonas/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/efectos de los fármacos , Apoptosis/genética , Proliferación Celular/genética , Proteínas de Unión al ADN/efectos de los fármacos , Transportador de Glucosa de Tipo 1/metabolismo , Factor de Crecimiento de Hepatocito , Humanos , Proteínas Nucleares/efectos de los fármacos , Fosfoproteínas/efectos de los fármacos , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas/efectos de los fármacos , Transducción de Señal/fisiología , Factores de Transcripción de Dominio TEA , Factores de Transcripción/efectos de los fármacos , Proteínas Señalizadoras YAP
6.
J Nat Prod ; 79(9): 2304-14, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27571379

RESUMEN

Quambalarine B (QB) is a secondary metabolite produced by the basidiomycete Quambalaria cyanescens with potential anticancer activity. Here we report that QB at low micromolar concentration inhibits proliferation of several model leukemic cell lines (Jurkat, NALM6, and REH), whereas higher concentrations induce cell death. By contrast, the effect of QB on primary leukocytes (peripheral blood mononuclear cells) is significantly milder with lower toxicity and cytostatic activity. Moreover, QB inhibited expression of the C-MYC oncoprotein and mRNA expression of its target genes, LDHA, PKM2, and GLS. Finally, QB blocked the phosphorylation of P70S6K, a downstream effector kinase in mTOR signaling that regulates translation of C-MYC. This observation could explain the molecular mechanism behind the antiproliferative and cytotoxic effects of QB on leukemic cells. Altogether, our results establish QB as a promising molecule in anticancer treatment.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Basidiomycota/química , Naftoquinonas/química , Naftoquinonas/farmacología , Antineoplásicos/sangre , Antineoplásicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células Jurkat/efectos de los fármacos , Leucocitos Mononucleares/efectos de los fármacos , Estructura Molecular , Naftoquinonas/sangre , Naftoquinonas/síntesis química , Naftoquinonas/aislamiento & purificación , Fosforilación , Proteínas Quinasas S6 Ribosómicas 70-kDa , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR
7.
Dev Comp Immunol ; : 105213, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38880215

RESUMEN

Regulation of neuroimmune interactions varies across avian species. Little is presently known about the interplay between periphery and central nervous system (CNS) in parrots, birds sensitive to neuroinflammation. Here we investigated the systemic and CNS responses to dextran sulphate sodium (DSS)- and lipopolysaccharide (LPS)-induced subclinical acute peripheral inflammation in budgerigar (Melopsittacus undulatus). Three experimental treatment groups differing in DSS and LPS stimulation were compared to controls. Individuals treated with DSS showed significant histological intestinal damage. Through quantitative proteomics we described changes in plasma (PL) and cerebrospinal fluid (CSF) composition. In total, we identified 180 proteins in PL and 978 proteins in CSF, with moderate co-structure between the proteomes. Between treatments we detected differences in immune, coagulation and metabolic pathways. Proteomic variation was associated with the levels of pro-inflammatory cytokine mRNA expression in intestine and brain. Our findings shed light on systemic impacts of peripheral low-grade inflammation in birds.

8.
Sci Total Environ ; 905: 166973, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37699488

RESUMEN

A challenge in bee protection is to assess the risks of pesticide-pathogen interactions. Lotmaria passim, a ubiquitous unicellular parasite in honey bees, is considered harmful under specific conditions. Imidacloprid causes unpredictable side effects. Research indicates that both L. passim and imidacloprid may affect the physiology, behavior, immunity, microbiome and lifespan of honey bees. We designed cage experiments to test whether the infection of L. passim is affected by a sublethal dose of imidacloprid. Workers collected at the time of emergence were exposed to L. passim and 2.5 µg/L imidacloprid in the coexposure treatment group. First, samples of bees were taken from cages since they were 5 days old and 3 days postinfection, i.e., after finishing an artificial 24 h L. passim infection. Additional bees were collected every two additional days. In addition, bees frozen at the time of emergence and collected from the unexposed group were analyzed. Abdomens were analyzed using qPCR to determine parasite load, while corresponding selected heads were subjected to a label-free proteomic analysis. Our results show that bees are free of L. passim at the time of emergence. Furthermore, imidacloprid considerably increased the prevalence as well as parasite loads in individual bees. This means that imidacloprid facilitates infection, enabling faster parasite spread in a colony and potentially to surrounding colonies. The proteomic analysis of bee heads showed that imidacloprid neutralized the increased transferrin 1 expression by L. passim. Importantly, this promising marker has been previously observed to be upregulated by infections, including gut parasites. This study contributes to understanding the side effects of imidacloprid and demonstrates that a single xenobiotic/pesticide compound can interact with the gut parasite. Our methodology can be used to assess the effects of different compounds on L. passim.


Asunto(s)
Insecticidas , Parásitos , Plaguicidas , Trypanosomatina , Abejas , Animales , Prevalencia , Proteómica , Trypanosomatina/parasitología , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Insecticidas/toxicidad
9.
Sci Rep ; 13(1): 8573, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237091

RESUMEN

In most mammals and particularly in mice, chemical communication relies on the detection of ethologically relevant fitness-related cues from other individuals. In mice, urine is the primary source of these signals, so we employed proteomics and metabolomics to identify key components of chemical signalling. We show that there is a correspondence between urinary volatiles and proteins in the representation of genetic background, sex and environment in two house mouse subspecies Mus musculus musculus and M. m. domesticus. We found that environment has a strong influence upon proteomic and metabolomic variation and that volatile mixtures better represent males while females have surprisingly more sex-biased proteins. Using machine learning and combined-omics techniques, we identified mixtures of metabolites and proteins that are associated with biological features.


Asunto(s)
Proteínas , Proteómica , Masculino , Femenino , Ratones , Animales , Señales (Psicología) , Transducción de Señal , Variación Genética , Mamíferos
10.
Elife ; 122023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37428018

RESUMEN

The activation of Src kinase in cells is strictly controlled by intramolecular inhibitory interactions mediated by SH3 and SH2 domains. They impose structural constraints on the kinase domain holding it in a catalytically non-permissive state. The transition between inactive and active conformation is known to be largely regulated by the phosphorylation state of key tyrosines 416 and 527. Here, we identified that phosphorylation of tyrosine 90 reduces binding affinity of the SH3 domain to its interacting partners, opens the Src structure, and renders Src catalytically active. This is accompanied by an increased affinity to the plasma membrane, decreased membrane motility, and slower diffusion from focal adhesions. Phosphorylation of tyrosine 90 controlling SH3-medited intramolecular inhibitory interaction, analogical to tyrosine 527 regulating SH2-C-terminus bond, enables SH3 and SH2 domains to serve as cooperative but independent regulatory elements. This mechanism allows Src to adopt several distinct conformations of varying catalytic activities and interacting properties, enabling it to operate not as a simple switch but as a tunable regulator functioning as a signalling hub in a variety of cellular processes.


Asunto(s)
Dominios Homologos src , Familia-src Quinasas , Familia-src Quinasas/metabolismo , Fosforilación , Tirosina/metabolismo , Proteínas Tirosina Quinasas/metabolismo
11.
Clin Transl Allergy ; 13(10): e12302, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37876035

RESUMEN

BACKGROUND: The domestic mite Blomia tropicalis is a major source of allergens in tropical and subtropical regions. Despite its great medical importance, the allergome of this mite has not been sufficiently studied. Only 14 allergen groups have been identified in B. tropicalis thus far, even though early radioimmunoelectrophoresis techniques (27 uncharacterized allergen complexes) and comparative data based on 40 allergen groups officially recognized by the World Health Organization (WHO)/IUIS in domestic astigmatid mites suggest the presence of a large set of additional allergens. METHODS: Here, we employ a multiomics approach to assess the allergome of B. tropicalis using genomic and transcriptomic sequence data and perform highly sensitive protein abundance quantification. FINDINGS: Among the 14 known allergen groups, we confirmed 13 (one WHO/IUIS allergen, Blo t 19, was not found) and identified 16 potentially novel allergens based on sequence similarity. These data indicate that B. tropicalis shares 27 known/deduced allergen groups with pyroglyphid house dust mites (genus Dermatophagoides). Among these groups, five allergen-encoding genes are highly expressed at the transcript level: Blo t 1, Blo t 5, Blo t 21 (known), Blo t 15, and Blo t 18 (predicted). However, at the protein level, a different set of most abundant allergens was found: Blo t 2, 10, 11, 20 and 21 (mite bodies) or Blo t 3, 4, 6 and predicted Blo t 13, 14 and 36 (mite feces). INTERPRETATION: We report the use of an integrated omics method to identify and predict an array of mite allergens and advanced, label-free proteomics to determine allergen protein abundance. Our research identifies a large set of novel putative allergens and shows that the expression levels of allergen-encoding genes may not be strictly correlated with the actual allergenic protein abundance in mite bodies.

12.
BMC Biochem ; 13: 3, 2012 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-22292590

RESUMEN

BACKGROUND: Enzymatic allergens of storage mites that contaminate stored food products are poorly characterized. We describe biochemical and immunological properties of the native alpha-amylase allergen Aca s 4 from Acarus siro, a medically important storage mite. RESULTS: A. siro produced a high level of alpha-amylase activity attributed to Aca s 4. This enzyme was purified and identified by protein sequencing and LC-MS/MS analysis. Aca s 4 showed a distinct inhibition pattern and an unusual alpha-amylolytic activity with low sensitivity to activation by chloride ions. Homology modeling of Aca s 4 revealed a structural change in the chloride-binding site that may account for this activation pattern. Aca s 4 was recognized by IgE from house dust mite-sensitive patients, and potential epitopes for cross-reactivity with house dust mite group 4 allergens were found. CONCLUSIONS: We present the first protein-level characterization of a group 4 allergen from storage mites. Due to its high production and IgE reactivity, Aca s 4 is potentially relevant to allergic hypersensitivity.


Asunto(s)
Acaridae/enzimología , Alérgenos/química , Proteínas de Insectos/química , alfa-Amilasas/química , Acaridae/inmunología , Alérgenos/inmunología , Alérgenos/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Reacciones Cruzadas , Heces/química , Humanos , Hipersensibilidad/sangre , Hipersensibilidad/inmunología , Inmunoglobulina E/sangre , Proteínas de Insectos/inmunología , Proteínas de Insectos/aislamiento & purificación , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología Estructural de Proteína , alfa-Amilasas/inmunología , alfa-Amilasas/aislamiento & purificación
13.
Int J Parasitol ; 52(6): 343-358, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35218763

RESUMEN

Schistosome invasive stages, cercariae, leave intermediate snail hosts, penetrate the skin of definitive hosts, and transform to schistosomula which migrate to the final location. During invasion, cercariae employ histolytic and other bioactive products of specialized holocrine secretory cells - postacetabular (PA) and circumacetabular (CA) penetration glands. Although several studies attempted to characterize protein composition of the in vitro-induced gland secretions in Schistosoma mansoni and Schistosoma japonicum, the results were somewhat inconsistent and dependent on the method of sample collection and processing. Products of both gland types mixed during their secretion did not allow localization of identified proteins to a particular gland. Here we compared proteomes of separately isolated cercarial gland cells of the avian schistosome Trichobilharzia szidati, employing laser-assisted microdissection and shotgun LC-MS/MS, thus obtaining the largest dataset so far of the representation and localization of cercarial penetration gland proteins. We optimized the methods of sample processing with cercarial bodies (heads) first. Alizarin-pre-stained, chemically non-fixed samples provided optimal results of MS analyses, and enabled us to distinguish PA and CA glands for microdissection. Using 7.5 × 106 µm3 sample volume per gland replicate, we identified 3347 peptides assigned to 792 proteins, from which 461 occurred in at least two of three replicates in either gland type (PA = 455, 40 exclusive; CA = 421, six exclusive; 60 proteins differed significantly in their abundance between the glands). Peptidases of five catalytic types accounted for ca. 8% and 6% of reliably identified proteins in PA and CA glands, respectively. Invadolysin, nardilysin, cathepsins B2 and L3, and elastase 2b orthologs were the major gland endopeptidases. Two cystatins and a serpin were highly abundant peptidase inhibitors in the glands. While PA glands generally had rich enzymatic equipment, CA glands were conspicuously abundant in venom allergen-like proteins.


Asunto(s)
Proteómica , Schistosomatidae , Animales , Cercarias , Cromatografía Liquida , Rayos Láser , Schistosoma mansoni , Espectrometría de Masas en Tándem
14.
J Proteomics ; 239: 104157, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33631366

RESUMEN

Honey adulteration is a common practice that deceives consumers and devalues the unique curative and food properties of honey. For marketing, each honey must satisfy an internationally valid Codex standard. One of the quality parameters is diastase/amylase activity, which, if lowered, may be compensated for by the addition of foreign amylases. However, the estimation of enzyme activity does not enable identification of artificially added amylases. 45 honey samples were analyzed using label-free nanoLC-MS/MS proteomics. Four honeys were found to contain the foreign amylases from Aspergillus niger, Bacillus amyloliquefaciens and/or Bacillus licheniformis. This result was confirmed via proof of specificity at multiple levels. Furthermore, we identified a series of plant-related protein groups. Despite plant-related proteins constituting a significant portion of honey proteins, they were minor components compared to the major honey bee-derived proteins. Bioinformatic analysis also provided evidence for aphid and catalase proteins in honey, but the limited specificity of the MS/MS identified peptides must be considered. Overall, we demonstrate a proteomics approach employing LC-MS/MS that is useful for proving adulteration and assessing honey quality. As an resource useful for reference, we provide curated sequence databases. In addition, we provide many markers that are naturally found in honey for future studies. SIGNIFICANCE: Honey is unique natural product used since ancient times as a food and natural medicine. Humans strive to understand honey components because they can characterize different types of honey and be used for authentication and origin assessment. One of the important honey components are proteins. The proteins present in honey can naturally occur in honey, but some of them can be used to mask deficiencies in some honey quality properties. Diastases/amylases are such proteins, and their activity, a measure of honey freshness, can decrease in time or due to processing. To our knowledge, we for the first time specifically identify foreign amylases in honey. However, this study provided new information on other non-honey bee proteins in honey. Thus, this study is also of importance due to its identification of plant and aphid proteins and catalase-related proteins. This study provides a clue explaining the controversial presence of catalase in honey, since catalases can be identified and their origin determined via proteomics.


Asunto(s)
Miel , Amilasas , Animales , Abejas , Cromatografía Liquida , Miel/análisis , Proteoma , Espectrometría de Masas en Tándem
15.
J Proteomics ; 233: 104086, 2021 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-33378720

RESUMEN

The pollen beetle is a major pest of oilseed rape. Although various resistance mechanisms have been identified, such as kdr (mutation in the sodium channel) and metabolic resistance (CYP overexpression), other "hidden" factors also exist. Some studies have stressed the importance of epistasis as a genetic background. The combination of kdr and metabolic resistance appears to be unfavorable under field conditions in the absence of pesticide selection. The regulation of detoxification enzymes can play an important role, but we highlight different detoxification markers compared to those emphasized in other studies. We also stress the importance of studying the role of markers identified as pathogenesis-related protein 5-like (PR5; upregulated by insecticides) and highlight the role of RNA (DEAD-box) helicases (downregulated by insecticides). Thus, we suggest the importance of epigenetic drivers of resistance/tolerance to pesticides. The key results are similar to those of our previous study, in which deltamethrin treatment of the pollen beetle was also investigated by a proteogenomic approach. Indeed, the mechanism leading to resistance of the pollen beetle may be an innate mechanism that the pollen beetle can also employ in natural habitats, but under field conditions (pesticide exposure), this mechanism is used to survive in response to insecticides. SIGNIFICANCE: Pesticide resistance is a serious problem that hampers the successful production of crops. Understanding the mechanisms of insecticide resistance is highly important for successful pest control, especially when considering integrated pest management. Here, using a proteogenomic approach, we identified novel markers for understanding pollen beetle resistance to pesticides. In addition, future studies will reveal the role of these markers in the multiresistance of pollen beetle populations. We highlight that the proteins identified as PR5, which are known to occur in beetles and are similar to those in plants, may be responsible for tolerance to multiple stresses. In addition, our results indicate that the RNA helicases that exhibited changes in expression may be the epigenetic drivers of multiresistance. The nature of these changes remains an open question, and their relevance in different situations (responses to different stresses) in natural habitats in the absence of pesticides can be proposed.


Asunto(s)
Escarabajos , Insecticidas , Proteogenómica , Piretrinas , Animales , Escarabajos/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Polen , Piretrinas/farmacología
16.
J Proteomics ; 249: 104356, 2021 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-34438106

RESUMEN

Tyrophagus putrescentiae is an astigmatid mite of great economic, medical and veterinary importance. The microbiome, especially intracellular bacteria, may affect allergy/allergen expression. We targeted Wolbachia proteins, allergen comparisons and markers in Wolbachia-mite interactions in three mite populations. A decoy database was constructed by proteogenomics using the T. putrescentiae draft genome, Wolbachia transcriptome assembly and current T. putrescentiae-related sequences in GenBank. Among thousands of mite-derived proteins, 18 Wolbachia proteins were reliably identified. We suggest that peroxiredoxin, bacterioferritin, ankyrin repeat domain-containing protein and DegQ family serine endoprotease indicate a higher-level bacterium-bacterium-host interaction. We produced evidence that the host-Wolbachia interaction is modulated through pattern recognition receptors (PRRs), mannose-binding lectins/mannose receptors, the cholinergic anti-inflammatory pathway with TNF-α, and others. We observed Tyr p 3 suppression in mites with Wolbachia, linking trypsin to PRR modulation. Nine out of the 12 current WHO/IUIS official allergens were reliably identified, but the remaining three allergens, Tyr p 1, 8 and 35, were detected as only trace hits. This study provides numerous markers for further Wolbachia-host interaction research. For accuracy, mite allergens should be considered according to abundance in species, but mite populations/strains, as well as their microbiome structure, may be key factors. SIGNIFICANCE: The astigmatid mites occurring in homes are significant producers of allergens that are highly dangerous to humans and domesticated animals. Mites are tightly associated with microorganisms that affect their biology and consequently allergy signatures. Mite populations were found to be infected with certain intracellular bacteria, but some populations lacked an intracellular bacterium. Our previous research showed that some populations of Tyrophagus putrescentiae are infected with Wolbachia, but some populations host additional bacteria of interest. Thus, there are not only interactions between the mites and Wolbachia but also likely an additional level of interaction that can be found in the interaction between different bacteria in the mites. These "higher-level" signatures and consequences that bacteria affect, including allergen production, are not understood in mites. In this study, we identified Wolbachia-specific proteins in mites for the first time. This study provides Wolbachia- and mite-derived markers that can be clues for describing "higher-level" mite-bacterium-bacterium interactions. Indeed, the microbiome contribution to allergies can potentially be derived directly from bacterial proteins, especially if they are abundant.


Asunto(s)
Alérgenos , Ácaros , Wolbachia , Animales , Ácaros/microbiología , Proteoma , Proteómica
17.
J Proteomics ; 210: 103535, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31629957

RESUMEN

The allergen repertoire of the house dust mite, Dermatophagoides farinae, is incomplete despite most mite allergens having been described in this species. Using proteogenomics, we aimed to compare proteins and allergens between sexes and provide a foundation for the identification of novel allergens. Overall, 6297 protein hits were identified, and 2899 and 886 were male- and female-specific, respectively. Removal of trace results narrowed the dataset to 3478 hits, including 275 and 157 male- and female-specific hits, respectively. All 34 WHO/IUIS-approved D. farinae allergens (omitting Der f 17) were identified, and we also identified homologs of the yet undescribed Der f 9 and 38. Der f 27/serpin exhibited the largest sex-dependent difference and was dominant in females. Using official protein sequences, Der f 11, 14, 23, 28 and 30 were identified with low success. However, identification success of Der f 11 and 14 was greatly increased by using longer/complete sequences. Der f 30 is characterized by the same tryptic digests as the more abundant Der f 30 (isoform) identified here. Der f 23 appears to be of low abundance in mite bodies. Der f 28.0101 and Der f 28.0201 were detected at low abundance and in trace amounts, respectively. SIGNIFICANCE: In this work, we performed a proteogenomic annotation of the house dust mite, Dermatophagoides farinae, which is the most important source of house dust allergens. The proteogenomic analysis performed here provides a foundation for not only understanding the biology of the mite but also the identification of novel allergens. This study generated a robust proteomic dataset for D. farinae and reviewed existing and candidate allergens in this species. We stress some pitfalls of high-throughput analyses, especially that improper headers of allergen protein records provided in databases can lead to confusion. Using partial sequences in proteomic identification and quantification can lead to low identification success (low signal intensity or MS/MS counts). Thus, we individually curated the protein sequences for proper identification and quantification. The discovered sex differences can be one factor affecting allergen/immunogen variations in mite extracts. Overall, this work provides a benchmark for accurate identification of mite immunogenic proteins using proteomics.


Asunto(s)
Alérgenos/metabolismo , Proteínas de Artrópodos/metabolismo , Dermatophagoides farinae/metabolismo , Proteogenómica/métodos , Proteoma/metabolismo , Pyroglyphidae/metabolismo , Alérgenos/genética , Alérgenos/inmunología , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Dermatophagoides farinae/genética , Dermatophagoides farinae/inmunología , Femenino , Masculino , Pyroglyphidae/genética , Pyroglyphidae/inmunología , Homología de Secuencia , Factores Sexuales
18.
PLoS Negl Trop Dis ; 14(6): e0007759, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32555641

RESUMEN

Naegleria fowleri is a single-cell organism living in warm freshwater that can become a deadly human pathogen known as a brain-eating amoeba. The condition caused by N. fowleri, primary amoebic meningoencephalitis, is usually a fatal infection of the brain with rapid and severe onset. Iron is a common element on earth and a crucial cofactor for all living organisms. However, its bioavailable form can be scarce in certain niches, where it becomes a factor that limits growth. To obtain iron, many pathogens use different machineries to exploit an iron-withholding strategy that has evolved in mammals and is important to host-parasite interactions. The present study demonstrates the importance of iron in the biology of N. fowleri and explores the plausibility of exploiting iron as a potential target for therapeutic intervention. We used different biochemical and analytical methods to explore the effect of decreased iron availability on the cellular processes of the amoeba. We show that, under iron starvation, nonessential, iron-dependent, mostly cytosolic pathways in N. fowleri are downregulated, while the metal is utilized in the mitochondria to maintain vital respiratory processes. Surprisingly, N. fowleri fails to respond to acute shortages of iron by inducing the reductive iron uptake system that seems to be the main iron-obtaining strategy of the parasite. Our findings suggest that iron restriction may be used to slow the progression of infection, which may make the difference between life and death for patients.


Asunto(s)
Adaptación Fisiológica , Regulación de la Expresión Génica , Hierro/metabolismo , Naegleria fowleri/genética , Naegleria fowleri/metabolismo , Respiración de la Célula , Mitocondrias/metabolismo , Oligoelementos/metabolismo
19.
Cells ; 8(2)2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30795621

RESUMEN

The discrete activation of individual caspases is essential during T-cell development, activation, and apoptosis. Humans carrying nonfunctional caspase-8 and caspase-8 conditional knockout mice exhibit several defects in the progression of naive CD4⁺ T cells to the effector stage. MST1, a key kinase of the Hippo signaling pathway, is often presented as a substrate of caspases, and its cleavage by caspases potentiates its activity. Several studies have focused on the involvement of MST1 in caspase activation and also reported several defects in the immune system function caused by MST1 deficiency. Here, we show the rapid activation of the MEK-ERK-MST1 axis together with the cleavage and activation of caspase-3, -6, -7, -8, and -9 after PI3K signaling blockade by the selective inhibitor GDC-0941 in Jurkat T cells. We determined the phosphorylation pattern of MST1 using a phosphoproteomic approach and identified two amino acid residues phosphorylated in an ERK-dependent manner after GDC-0941 treatment together with a novel phosphorylation site at S21 residue, which was extensively phosphorylated in an ERK-independent manner during PI3K signaling blockade. Using caspase inhibitors and the inhibition of MST1 expression using siRNA, we identified an exclusive role of the MEK-ERK-MST1 axis in the activation of initiator caspase-8, which in turn activates executive caspase-3/-7 that finally potentiate MST1 proteolytic cleavage. This mechanism forms a positive feed-back loop that amplifies the activation of MST1 together with apoptotic response in Jurkat T cells during PI3K inhibition. Altogether, we propose a novel MEK-ERK-MST1-CASP8-CASP3/7 apoptotic pathway in Jurkat T cells and believe that the regulation of this pathway can open novel possibilities in systemic and cancer therapies.


Asunto(s)
Apoptosis/efectos de los fármacos , Factor de Crecimiento de Hepatocito/metabolismo , Indazoles/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Sulfonamidas/farmacología , Secuencia de Aminoácidos , Inhibidores de Caspasas/farmacología , Caspasas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Factor de Crecimiento de Hepatocito/química , Humanos , Células Jurkat , Modelos Biológicos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Fosfotreonina/metabolismo , Piperazinas/farmacología , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas/química
20.
Sci Rep ; 9(1): 9400, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253851

RESUMEN

Honeybee workers undergo metamorphosis in capped cells for approximately 13 days before adult emergence. During the same period, Varroa mites prick the defenseless host many times. We sought to identify proteome differences between emerging Varroa-parasitized and parasite-free honeybees showing the presence or absence of clinical signs of deformed wing virus (DWV) in the capped cells. A label-free proteomic analysis utilizing nanoLC coupled with an Orbitrap Fusion Tribrid mass spectrometer provided a quantitative comparison of 2316 protein hits. Redundancy analysis (RDA) showed that the combination of Varroa parasitism and DWV clinical signs caused proteome changes that occurred in the same direction as those of Varroa alone and were approximately two-fold higher. Furthermore, proteome changes associated with DWV signs alone were positioned above Varroa in the RDA. Multiple markers indicate that Varroa activates TGF-ß-induced pathways to suppress wound healing and the immune response and that the collective action of stressors intensifies these effects. Furthermore, we indicate JAK/STAT hyperactivation, p53-BCL-6 feedback loop disruption, Wnt pathway activation, Wnt/Hippo crosstalk disruption, and NF-κB and JAK/STAT signaling conflict in the Varroa-honeybee-DWV interaction. These results illustrate the higher effect of Varroa than of DWV at the time of emergence. Markers for future research are provided.


Asunto(s)
Abejas/metabolismo , Abejas/parasitología , Abejas/virología , Proteoma , Proteómica , Virus ARN , Simbiosis , Factor de Crecimiento Transformador beta , Varroidae , Animales , Biomarcadores , Biología Computacional/métodos , Histonas/metabolismo , Quinasas Janus/metabolismo , Modelos Biológicos , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA