Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 577(7791): 519-525, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31942073

RESUMEN

The origin of eukaryotes remains unclear1-4. Current data suggest that eukaryotes may have emerged from an archaeal lineage known as 'Asgard' archaea5,6. Despite the eukaryote-like genomic features that are found in these archaea, the evolutionary transition from archaea to eukaryotes remains unclear, owing to the lack of cultured representatives and corresponding physiological insights. Here we report the decade-long isolation of an Asgard archaeon related to Lokiarchaeota from deep marine sediment. The archaeon-'Candidatus Prometheoarchaeum syntrophicum' strain MK-D1-is an anaerobic, extremely slow-growing, small coccus (around 550 nm in diameter) that degrades amino acids through syntrophy. Although eukaryote-like intracellular complexes have been proposed for Asgard archaea6, the isolate has no visible organelle-like structure. Instead, Ca. P. syntrophicum is morphologically complex and has unique protrusions that are long and often branching. On the basis of the available data obtained from cultivation and genomics, and reasoned interpretations of the existing literature, we propose a hypothetical model for eukaryogenesis, termed the entangle-engulf-endogenize (also known as E3) model.


Asunto(s)
Archaea/clasificación , Archaea/aislamiento & purificación , Células Eucariotas/clasificación , Modelos Biológicos , Células Procariotas/clasificación , Aminoácidos/metabolismo , Archaea/metabolismo , Archaea/ultraestructura , Células Eucariotas/citología , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Evolución Molecular , Genoma Arqueal/genética , Sedimentos Geológicos/microbiología , Lípidos/análisis , Lípidos/química , Filogenia , Células Procariotas/citología , Células Procariotas/metabolismo , Células Procariotas/ultraestructura , Simbiosis
2.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36288087

RESUMEN

Two strictly anaerobic, Gram-stain-positive, non-motile bacteria (strains OPF53T and TOC12T) were isolated from mouse intestines. Strains OPF53T and TOC12T grew at pH 5.5-9.0 and 5.0-9.0, respectively, and at temperatures of 30-45 °C. The cell morphologies of these strains were short rods and rods, respectively, and the cells possessed intracellular granules. The major cellular fatty acids of OPF53T were C18  :  1 cis 9 and C18  :  1 cis 9 dimethyl acetal, whereas those of TOC12T were C18  :  0 and C18  :  1 cis 9. In OPF53T, the main end-products of modified peptone-yeast extract-glucose (PYG) fermentation were lactate, formate and butyrate, whereas, in addition to these acids, TOC12T also produced hydrogen. The genomes of OPF53T and TOC12T were respectively 2.2 and 2.0 Mbp in size with a DNA G+C contents of 69.1 and 58.7 %. The 16S rRNA gene sequences of OPF53T and TOC12T showed the highest similarity to members of the family Atopobiaceae, namely, Olsenella phocaeensis Marseille-P2936T (94.3 %) and Olsenella umbonata KCTC 15140T (93.2 %), respectively. Phylogenetic analyses revealed that both isolates formed distinct lineages from other genera of the family Atopobiaceae. In addition, the two strains were characterized by relatively low 16S rRNA gene sequence similarity (93.4 %) and can be distinguished by their distinctive traits (including cell shape, DNA G+C content, and major fatty acids profiles). On the basis of their polyphasic taxonomic properties, these isolates represent two noel species of two novel genera within the family Atopobiaceae, for which the names Granulimonas faecalis gen. nov., sp. nov. (OPF53T=JCM 35015T=KCTC 25474T) and Leptogranulimonas caecicola gen. nov., sp. nov. (TOC12T=JCM 35017T=KCTC 25472T) are proposed.


Asunto(s)
Ácido Láctico , Peptonas , Animales , Ratones , ARN Ribosómico 16S/genética , Filogenia , Composición de Base , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Ácidos Grasos/química , Hidrógeno , Formiatos , Butiratos , Glucosa , Intestinos
3.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36142891

RESUMEN

The bile resistance of intestinal bacteria is among the key factors responsible for their successful colonization of and survival in the mammalian gastrointestinal tract. In this study, we demonstrated that lactate-producing Atopobiaceae bacteria (Leptogranulimonas caecicola TOC12T and Granulimonas faecalis OPF53T) isolated from mouse intestine showed high resistance to mammalian bile extracts, due to significant bile salt hydrolase (BSH) activity. We further succeeded in isolating BSH proteins (designated LcBSH and GfBSH) from L. caecicola TOC12T and G. faecalis OPF53T, respectively, and characterized their enzymatic features. Interestingly, recombinant LcBSH and GfBSH proteins exhibited BSH activity against 12 conjugated bile salts, indicating that LcBSH and GfBSH have much broader substrate specificity than the previously identified BSHs from lactic acid bacteria, which are generally known to hydrolyze six bile salt isomers. Phylogenetic analysis showed that LcBSH and GfBSH had no affinities with any known BSH subgroup and constituted a new BSH subgroup in the phylogeny. In summary, we discovered functional BSHs with broad substrate specificity from Atopobiaceae bacteria and demonstrated that these BSH enzymes confer bile resistance to L. caecicola TOC12T and G. faecalis OPF53T.


Asunto(s)
Actinobacteria , Lactobacillales , Actinobacteria/metabolismo , Amidohidrolasas/metabolismo , Animales , Bilis/metabolismo , Ácidos y Sales Biliares , Lactatos , Lactobacillales/metabolismo , Mamíferos/metabolismo , Ratones , Filogenia , Especificidad por Sustrato
4.
Artículo en Inglés | MEDLINE | ID: mdl-33588983

RESUMEN

A novel mesophilic sulfate-reducing bacterium, strain HN2T, was isolated from groundwater sampled from the subsurface siliceous mudstone of the Wakkanai Formation located in Horonobe, Hokkaido, Japan. The bacterium was Gram-negative and vibrio-shaped, and its motility was conferred by a single polar flagellum. Cells had desulfoviridin. Catalase and oxidase activities were not detected. It grew in the temperature range of 25-40 °C (optimum, 35 °C) and pH range of 6.3-8.1 (optimum, pH 7.2-7.6). It used sulfate, thiosulfate, dimethyl sulfoxide, anthraquinone-2,6-disulfonate, Fe3+, and manganese oxide, but not elemental sulfur, nitrite, nitrate, or fumarate as electron acceptors. The strain showed weak growth with sulfite as the electron acceptor. Fermentative growth with pyruvate, lactate and cysteine was observed in the absence of sulfate, but not with malate or fumarate. NaCl was not required, but the strain tolerated up to 40 g l-1. Strain HN2T did not require vitamins. The major cellular fatty acids were iso-C15 : 0 (23.8 %), C18 : 1 ω9t (18.4 %), C18 : 0 (15.0 %), C16 : 0 (14.5 %), and anteiso-C17 :0 (10.1 %). The major respiratory quinone was menaquinone MK-6(H2). The G+C content of the genomic DNA was 56.7 mol%. Based on 16S rRNA gene sequence analysis, the closest phylogenetic relative of strain HN2T is Desulfovibrio psychrotolerans JS1T (97.0 %). Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values of the strains HN2T and D. psychrotolerans JS1T were 22.2 and 79.8 %, respectively. Based on the phenotypic and molecular genetic evidence, we propose a novel species, D. subterraneus sp. nov. with the type strain HN2T (=DSM 101010T=NBRC 112213T).


Asunto(s)
Desulfovibrio/clasificación , Agua Subterránea/microbiología , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Desulfovibrio/aislamiento & purificación , Ácidos Grasos/química , Japón , Oxidación-Reducción , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sulfatos , Sulfitos , Vitamina K 2/análogos & derivados , Vitamina K 2/química
5.
Int J Syst Evol Microbiol ; 70(1): 596-603, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31622237

RESUMEN

A strictly aerobic, bacteriochlorophyll a-containing betaproteobacterium, designated strain W35T, was isolated from a biofilm sampled at Tama River in Japan. The non-motile and rod-shaped cells formed pink-beige pigmented colonies on agar plates containing organic compounds, and showed an in vivo absorption maximum at 871 nm in the near-infrared region, typical for the presence of bacteriochlorophyll a. The new bacterial strain is Gram-negative, and oxidase- and catalase-positive. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain W35T was closely related to species in the genus Aquabacterium. The closest phylogenetic relatives of strain W35T were Aquabacterium commune B8T (97.9 % sequence similarity), Aquabacterium citratiphilum B4T (97.2 %) and Aquabacterium limnoticum ABP-4T (97.0 %). The major cellular fatty acids were C16  :  1ω7c (50.4 %), C16  :  0 (22.7 %), summed feature 8 (C18  :  1ω7c/C18  :  1ω6c; 9.7 %), C18  :  3ω6c (5.5 %), C12  :  0 (5.3 %) and C10  :  0 3OH (2.7 %). The respiratory quinone was ubiquinone-8. Predominant polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The G+C content of the genomic DNA was 70.4 mol% (genome data) and 71.4 mol% (HPLC). The genome size of strain W35T is 6.1 Mbp and average nucleotide identity analysis indicated genome similarities of strain W35T and related Aquabacterium type strains to be 78-79 %. The results of polyphasic comparisons showed that strain W35T was clearly distinguishable from other members of the genus Aquabacterium. Therefore, we propose a new species in the genus Aquabacterium, namely, Aquabacterium pictum sp. nov. The type strain is W35T (=DSM 106757T=NBRC 111963T). The description of the genus Aquabacterium is also emended.


Asunto(s)
Bacterioclorofila A/química , Burkholderiales/clasificación , Filogenia , Ríos/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Biopelículas , Burkholderiales/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Japón , Fosfolípidos/química , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química , Microbiología del Agua
6.
Water Sci Technol ; 82(2): 292-302, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32941171

RESUMEN

Duckweed biomass production in a duckweed pond fed with three differently treated sewage (i.e. sewage treated by primary sedimentation (PS); conventional activated sludge process (CAS); and downflow hanging sponge process (DHS)) was evaluated in order to assess the effects of water quality on biomass yield. Higher and stable biomass production was observed when the duckweed pond was fed with PS or DHS-effluent than with CAS-effluent, evidently due to the difference in nutrient loads. Availability of nutrients, especially phosphorus, affected the biomass production rate: higher the nutrient, faster the production. Microbial community analysis revealed that the members of Rhizobiales were likely to contribute to stable and high biomass growth. From the results of the study, a sewage treatment system consisting of a primary sedimentation followed by a duckweed pond and a tertiary treatment unit can be proposed to maximize biomass production without compromising treatment objectives. Size and operational parameters of the duckweed pond should be determined primarily based on the nutrient availability in the influent water to maximize duckweed growth.


Asunto(s)
Araceae , Microbiota , Biomasa , Estanques , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
7.
Int J Syst Evol Microbiol ; 69(4): 1185-1194, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30775966

RESUMEN

A novel slow-growing, facultatively anaerobic, filamentous bacterium, strain MO-CFX2T, was isolated from a methanogenic microbial community in a continuous-flow bioreactor that was established from subseafloor sediment collected off the Shimokita Peninsula of Japan. Cells were multicellular filamentous, non-motile and Gram-stain-negative. The filaments were generally more than 20 µm (up to approximately 200 µm) long and 0.5-0.6 µm wide. Cells possessed pili-like structures on the cell surface and a multilayer structure in the cytoplasm. Growth of the strain was observed at 20-37 °C (optimum, 30 °C), pH 5.5-8.0 (pH 6.5-7.0), and 0-30 g l-1 NaCl (5 g l-1 NaCl). Under optimum growth conditions, doubling time and maximum cell density were estimated to be approximately 19 days and ~105 cells ml-1, respectively. Strain MO-CFX2T grew chemoorganotrophically on a limited range of organic substrates in anaerobic conditions. The major cellular fatty acids were saturated C16 : 0 (47.9 %) and C18 : 0 (36.9 %), and unsaturated C18 : 1ω9c (6.0 %) and C16 : 1ω7 (5.1 %). The G+C content of genomic DNA was 63.2 mol%. 16S rRNA gene-based phylogenetic analysis showed that strain MO-CFX2T shares a notably low sequence identity with its closest relatives, which were Thermanaerothrix daxensis GNS-1T and Thermomarinilinea lacunifontana SW7T (both 85.8 % sequence identity). Based on these phenotypic and genomic properties, we propose the name Aggregatilinea lenta gen. nov., sp. nov. for strain MO-CFX2T (=KCTC 15625T, =JCM 32065T). In addition, we also propose the associated family and order as Aggregatilineaceae fam. nov. and Aggregatilineales ord. nov., respectively.


Asunto(s)
Reactores Biológicos/microbiología , Chloroflexi/clasificación , Sedimentos Geológicos/microbiología , Filogenia , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Chloroflexi/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Japón , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
8.
Environ Microbiol ; 20(12): 4503-4511, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30126076

RESUMEN

Under methanogenic conditions, short-chain fatty acids are common byproducts from degradation of organic compounds and conversion of these acids is an important component of the global carbon cycle. Due to the thermodynamic difficulty of propionate degradation, this process requires syntrophic interaction between a bacterium and partner methanogen; however, the metabolic strategies and behaviour involved are not fully understood. In this study, the first genome analysis of obligately syntrophic propionate degraders (Pelotomaculum schinkii HH and P. propionicicum MGP) and comparison with other syntrophic propionate degrader genomes elucidated novel components of energy metabolism behind Pelotomaculum propionate oxidation. Combined with transcriptomic examination of P. schinkii behaviour in co-culture with Methanospirillum hungatei, we found that formate may be the preferred electron carrier for P. schinkii syntrophy. Propionate-derived menaquinol may be primarily re-oxidized to formate, and energy was conserved during formate generation through newly proposed proton-pumping formate extrusion. P. schinkii did not overexpress conventional energy metabolism associated with a model syntrophic propionate degrader Syntrophobacter fumaroxidans MPOB (i.e., CoA transferase, Fix and Rnf). We also found that P. schinkii and the partner methanogen may also interact through flagellar contact and amino acid and fructose exchange. These findings provide new understanding of syntrophic energy acquisition and interactions.


Asunto(s)
Peptococcaceae/metabolismo , Propionatos/metabolismo , Deltaproteobacteria/metabolismo , Metabolismo Energético , Formiatos/metabolismo , Methanospirillum/metabolismo , Oxidación-Reducción
9.
Appl Environ Microbiol ; 84(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30030229

RESUMEN

Most microorganisms living in the environment have yet to be cultured, owing at least in part to their slow and poor propagation properties and susceptibility to oxidative stress. Our previous studies demonstrated that a simple modification in the preparation of agar media, i.e., autoclaving the phosphate and agar separately (termed "PS" medium), can greatly improve the culturability of microorganisms by mitigating oxidative stress compared with the use of "PT" medium (autoclaving the phosphate and agar together). Here, we attempted to isolate phylogenetically novel bacteria by combining PS medium with prolonged cultivation. After inoculation with forest soil or pond sediment samples, significantly more colonies appeared on PS medium than on PT medium. A total of 98 and 74 colonies that emerged after more than 7 days of cultivation were isolated as slow growers from PS and PT media, respectively. Sequencing analysis of their 16S rRNA genes revealed that the slow growers recovered from PS medium included more phylogenetically novel bacteria than those from PT medium, including a strain that could be classified into a novel order in the class Alphaproteobacteria Further physiological analysis of representative strains showed that they were actually slow and poor growers and formed small but visible colonies only on PS medium. This study demonstrates that the culturability of previously uncultured bacteria can be improved by using an isolation strategy that combines a simple modification in medium preparation with an extended incubation time.IMPORTANCE Most microbial species inhabiting natural environments have not yet been isolated. One of the serious issues preventing their isolation is intrinsically slow and/or poor growth. Moreover, these slow and/or poor growers are likely to be highly sensitive to environmental stresses, especially oxidative stress. We reported previously that interaction between agar and phosphate during autoclave sterilization generates hydrogen peroxide, which adversely affects the culturability of environmental microorganisms, in particular, slow-growing organisms vulnerable to oxidative stress. In this study, we successfully isolated many slow-growing bacterial strains with phylogenetic novelty by simply modifying their cultivation on agar plates, i.e., autoclaving the phosphate and agar separately. The current limited repertoire of culture techniques still has room for improvement in the isolation of microorganisms previously considered unculturable.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Recuento de Colonia Microbiana/métodos , Medios de Cultivo/metabolismo , Agar , Bacterias/clasificación , Bacterias/genética , Recuento de Colonia Microbiana/instrumentación , Medios de Cultivo/química , ADN Bacteriano/genética , ADN Ribosómico/genética , Filogenia , Estanques/microbiología , ARN Ribosómico 16S/genética , Microbiología del Suelo
10.
Int J Syst Evol Microbiol ; 68(7): 2370-2374, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29863457

RESUMEN

A Gram-negative, aerobic, rod-shaped, non-spore-forming, motile bacterium, designated strain RPE64T, was isolated from the gut symbiotic organ of the bean bug Riptortus pedestris, collected in Tsukuba, Japan, in 2007. 16S rRNA gene sequencing showed that this strain belongs to the Burkholderia glathei clade, exhibiting the highest sequence similarity to Burkholderia peredens LMG 29314T (100 %), Burkholderia turbans LMG 29316T (99.52 %) and Burkholderia ptereochthonis LMG 29326T (99.04 %). Phylogenomic analyses based on 107 single-copy core genes and Genome blast Distance Phylogeny confirmed B. peredens LMG 29314T, B. ptereochthonis LMG 29326T and several uncultivated, endophytic Burkholderia species as its nearest phylogenetic neighbours. Digital DNA-DNA hybridization experiments unambiguously demonstrated that strain RPE64T represents a novel species in this lineage. The G+C content of its genome was 63.2 mol%. The isoprenoid quinone was ubiquinone 8 and the predominant fatty acid components were C16 : 0, C18 : 1ω7c and C17 : 0 cyclo. The absence of nitrate reduction and the capacity to grow at pH 8 clearly differentiated strain RPE64T from related Burkholderia species. Based on these genotypic and phenotypic characteristics, strain RPE64T is classified as representing a novel species of the genus Burkholderia, for which the name Burkholderia insecticola sp. nov. is proposed. The type strain is RPE64T (=NCIMB 15023T=JCM 31142T).


Asunto(s)
Burkholderia/clasificación , Sistema Digestivo/microbiología , Heterópteros/microbiología , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , Burkholderia/genética , Burkholderia/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Japón , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Simbiosis , Ubiquinona/química
11.
Appl Environ Microbiol ; 83(13)2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28455333

RESUMEN

N-Acylhomoserine lactone acylase (AHL acylase) is a well-known enzyme responsible for disrupting cell-cell communication (quorum sensing) in bacteria. Here, we isolated and characterized a novel and unique AHL acylase (designated MacQ) from a multidrug-resistant bacterium, Acidovorax sp. strain MR-S7. The purified MacQ protein heterologously expressed in Escherichia coli degraded a wide variety of AHLs, ranging from C6 to C14 side chains with or without 3-oxo substitutions. We also observed that AHL-mediated virulence factor production in a plant pathogen, Pectobacterium carotovorum, was dramatically attenuated by coculture with MacQ-overexpressing Escherichia coli, whereas E. coli with an empty vector was unable to quench the pathogenicity, which strongly indicates that MacQ can act in vivo as a quorum-quenching enzyme and interfere with the quorum-sensing system in the pathogen. In addition, this enzyme was found to be capable of degrading a wide spectrum of ß-lactams (penicillin G, ampicillin, amoxicillin, carbenicillin, cephalexin, and cefadroxil) by deacylation, clearly indicating that MacQ is a bifunctional enzyme that confers both quorum quenching and antibiotic resistance on strain MR-S7. MacQ has relatively low amino acid sequence identity to any of the known acylases (<39%) and has among the broadest substrate range. Our findings provide the possibility that AHL acylase genes can be an alternative source of antibiotic resistance genes posing a threat to human health if they migrate and transfer to pathogenic bacteria.IMPORTANCEN-Acylhomoserine lactones (AHLs) are well-known signal molecules for bacterial cell-cell communication (quorum sensing), and AHL acylase, which is able to degrade AHLs, has been recognized as a major target for quorum-sensing interference (quorum quenching) in pathogens. In this work, we succeeded in isolating a novel AHL acylase (MacQ) from a multidrug-resistant bacterium and demonstrated that the MacQ enzyme could confer multidrug resistance as well as quorum quenching on the host organism. Indeed, the purified MacQ protein was found to be bifunctional and capable of degrading not only various AHL derivatives but also multiple ß-lactam antibiotics by deacylation activities. Although quorum quenching and antibiotic resistance have been recognized to be distinct biological functions, our findings clearly link the two functions by discovering the novel bifunctional enzyme and further providing the possibility that a hitherto-overlooked antibiotic resistance mechanism mediated by the quorum-quenching enzyme may exist in natural environments and perhaps in clinical settings.


Asunto(s)
Amidohidrolasas/metabolismo , Comamonadaceae/enzimología , Farmacorresistencia Bacteriana , Acil-Butirolactonas/metabolismo , Amidohidrolasas/genética , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Comamonadaceae/efectos de los fármacos , Comamonadaceae/genética , Comamonadaceae/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Percepción de Quorum , beta-Lactamas/metabolismo , beta-Lactamas/farmacología
12.
Int J Syst Evol Microbiol ; 67(10): 3982-3986, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28893364

RESUMEN

A novel thermophilic, anaerobic, chemoheterotrophic, acetate-oxidizing and iron(III)-, manganese(IV)-, nitrate- and sulfate-reducing bacterium, designated strain ANAT, was isolated from a deep subsurface oil field in Japan (Yabase oil field, Akita Pref.). Cells of strain ANAT were Gram-stain-negative, non-motile, non-spore forming and slightly curved or twisted rods (1.5-5.0 µm long and 0.6-0.7 µm wide). The isolate grew at 25-60 °C (optimum 55 °C) and pH 6.0-8.0 (optimum pH 7.0). The isolate was capable of reducing iron(III), manganese(IV), nitrate and sulfate as an electron acceptor. The isolate utilized a limited range of electron donors such as acetate, lactate, pyruvate and yeast extract for iron reduction. Strain ANAT also used pyruvate, fumarate, succinate, malate, yeast extract and peptone for fermentative growth. The major respiratory quinones were menaquinone-7(H8) and menaquinone-8. The strain contained C18 : 0, iso-C18 : 0 and C16 : 0 as the major cellular fatty acids. The G+C content of the genomic DNA was 34.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain ANAT was closely related to Calditerrivibrio nitroreducens in the phylum Deferribacteres with low sequence similarities (89.5 %), and formed a distinct clade within the family Deferribacteraceae. In addition, the isolate is the first sulfate-reducing member of the phylum Deferribacteres. Based on phenotypic, chemotaxonomic and phylogenetic properties, a novel genus and species, Petrothermobacter organivorans gen. nov., sp. nov., is proposed for the isolate (type strain=ANAT= NBRC 112621T=DSM 105015T).


Asunto(s)
Bacterias Anaerobias/clasificación , Yacimiento de Petróleo y Gas/microbiología , Filogenia , Bacterias Anaerobias/genética , Bacterias Anaerobias/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Compuestos Férricos/metabolismo , Japón , Manganeso/metabolismo , Nitratos/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sulfatos/metabolismo , Vitamina K 2/análogos & derivados , Vitamina K 2/química
13.
Environ Microbiol ; 18(8): 2495-506, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26636257

RESUMEN

High-affinity hydrogen (H2 )-oxidizing bacteria possessing group 5 [NiFe]-hydrogenase genes are important contributors to atmospheric H2 uptake in soil environments. Although previous studies reported the occurrence of a significant H2 uptake activity in vegetation, there has been no report on the identification and diversity of the responsible microorganisms. Here, we show the existence of plant-associated bacteria with the ability to consume atmospheric H2 that may be a potential energy source required for their persistence in plants. Detection of the gene hhyL - encoding the large subunit of group 5 [NiFe]-hydrogenase - in plant tissues showed that plant-associated high-affinity H2 -oxidizing bacteria are widely distributed in herbaceous plants. Among a collection of 145 endophytic isolates, seven Streptomyces strains were shown to possess hhyL gene and exhibit high- or intermediate-affinity H2 uptake activity. Inoculation of Arabidopsis thaliana (thale cress) and Oryza sativa (rice) seedlings with selected isolates resulted in an internalization of the bacteria in plant tissues. H2 uptake activity per bacterial cells was comparable between plant and soil, demonstrating that both environments are favourable for the H2 uptake activity of streptomycetes. This study first demonstrated the occurrence of plant-associated high-affinity H2 -oxidizing bacteria and proposed their potential contribution as atmospheric H2 sink.


Asunto(s)
Arabidopsis/microbiología , Endófitos/metabolismo , Hidrógeno/metabolismo , Oryza/microbiología , Streptomyces/metabolismo , Transporte Biológico , Hidrogenasas/genética , Oxidación-Reducción , Suelo , Microbiología del Suelo , Streptomyces/genética , Streptomyces/aislamiento & purificación
14.
Int J Syst Evol Microbiol ; 66(11): 4873-4877, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27553654

RESUMEN

A mesophilic, hydrogenotrophic methanogen, designated strain MobHT, was isolated from sediments derived from deep sedimentary, natural-gas-bearing aquifers in Japan. Strain MobHT utilized H2/CO2 or formate, but not ethanol, 1-propanol, 2-propanol, 2-butanol or cyclopentanol, for growth and methane production. In addition, acetate and tungsten were required for growth. Yeast extract stimulated the growth, but was not required. The cells were weakly motile with multiple flagella, presented as a curved-rod-shaped (0.8×2.0 µm) and occurred singly or in pairs. Strain MobHT grew at 15-40 °C (optimum 35 °C) and at pH 5.9-7.9 (optimum pH 7.0-7.5). The sodium chloride range for growth was 0-5.8 % (optimum 2 %). The G+C content of the genomic DNA was 37.6 mol%. In the phylogenetic tree based on the 16S rRNA gene sequences, strain MobHT clustered together with Methanomicrobium mobile (95.4 % in sequence similarity), and formed a distinct clade from Methanolacinia petrolearia SEBR 4847T (95.6 %) and Methanolacinia paynteri G-2000T (95.4 %). The two species of the genus Methanolacinia utilized 2-propanol, whereas strain MobHT and Methanomicrobium mobile, the sole species of the genus Methanomicrobium, do not. Based on phenotypic and phylogenetic features, we propose a novel species for the isolate with the name, Methanomicrobiumantiquum sp. nov. The type strain is MobHT (=DSM 21220T=NBRC 104160T).


Asunto(s)
Agua Subterránea/microbiología , Methanomicrobiaceae/clasificación , Gas Natural , Yacimiento de Petróleo y Gas/microbiología , Filogenia , Composición de Base , ADN de Archaea/genética , Japón , Metano , Methanomicrobiaceae/genética , Methanomicrobiaceae/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
15.
Int J Syst Evol Microbiol ; 66(2): 988-996, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26637817

RESUMEN

A novel obligately anaerobic bacterium, designated strain TC1T, was isolated from methanogenic granular sludge in a full-scale mesophilic upflow anaerobic sludge blanket reactor treating high-strength starch-based wastewater. Cells had a multicellular filamentous morphology, stained Gram-negative and were non-motile. The filaments were flexible, generally >100 µm long and 0.3-0.4 µm wide. Growth of the isolate was observed at 25-43 °C (optimum 37 °C) and pH 6.0-8.5 (optimum pH 7.0). Strain TC1T grew chemo-organotrophically on a range of carbohydrates under anaerobic conditions. Yeast extract was required for growth. The major fermentative end products of glucose, supplemented with yeast extract, were acetate, lactate, succinate, propionate, formate and hydrogen. Co-cultivation with the hydrogenotrophic methanogen Methanospirillum hungatei DSM 864T enhanced growth of the isolate. The DNA G+C content was determined experimentally to be 42.1 mol%. The major cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0 and iso-C17 : 0 3-OH. Based on 16S rRNA gene sequence analysis, strain TC1T belonged to the class Anaerolineae in the phylum Chloroflexi, in which Ornatilinea apprima P3M-1T was its closest phylogenetic relative (88.3 % nucleotide identity). Phylogenomic analyses using 38 and 83 single-copy marker genes also supported the novelty of strain TC1T at least at the genus level. Based on phylogenetic, genomic and phenotypic characteristics, we propose that strain TC1T represents a novel species of a new genus, for which we suggest the name Flexilinea flocculi gen. nov., sp. nov. The type strain of Flexilinea flocculi is strain TC1T ( = JCM 30897T = CGMCC 1.5202T).

16.
Int J Syst Evol Microbiol ; 66(7): 2635-2642, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27098854

RESUMEN

A novel, strictly anaerobic, short rod-shaped bacterium, designated strain TBC1T, was isolated from methanogenic granular sludge in a full-scale mesophilic upflow anaerobic sludge blanket reactor treating high-strength starch-based organic wastewater. Cells of this strain were 2-4 µm long and 0.4-0.6 µm wide. They were non-motile and Gram-stain-negative. The optimum growth temperature was 30-37 °C, with a range of 20-40 °C. The optimum pH for growth was around pH 7.0, while growth occurred in a range of pH 6.5-9.0. Strain TBC1T grew chemo-organotrophically on a narrow range of carbohydrates under anaerobic conditions. Yeast extract was required for its growth. The major fermentative end products from glucose, supplemented with yeast extract, were acetate, malate, propionate, formate and hydrogen. Doubling time under optimal growth conditions was estimated to be 1 day. The DNA G+C content of strain TBC1T was 49.2 mol% as determined by HPLC. Major cellular fatty acids were C16 : 0, C18 : 0, C16 : 1ω9c and C18 : 1ω9c. Based on its 16S rRNA gene sequence, strain TBC1T was shown to represent a distinct lineage at the family level in the phylum Bacteroidetes. Among previously described species of this phylum, Mucilaginibacter boryungensis BDR-9T (Sphingobacteriaceae) displayed the highest sequence similarity (85.9 %) with strain TBC1T. Phylogenomic analyses using 38-83 single copy marker genes also supported the novelty of strain TBC1T at the family level. Based on its characteristics, strain TBC1T (=JCM 30898T=DSM 100618T) is considered to be the type strain of a novel species of a new genus, Lentimicrobium saccharophilum gen. nov., sp. nov. A new family, Lentimicrobiaceae fam. nov., is also proposed encompassing the strain and related environmental 16S rRNA gene clone sequences.


Asunto(s)
Bacteroidetes/clasificación , Filogenia , Aguas del Alcantarillado/microbiología , Aguas Residuales/microbiología , Técnicas de Tipificación Bacteriana , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Fermentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
17.
Int J Syst Evol Microbiol ; 65(Pt 3): 805-810, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25481294

RESUMEN

An obligately anaerobic bacterium, designated strain GK12(T), was isolated from an anaerobic digester in Fukagawa, Hokkaido Prefecture, Japan. The cells of strain GK12(T) were non-motile, non-spore-forming cocci that commonly occurred in chains. 16S rRNA gene sequence analysis revealed that strain GK12(T) was affiliated with the family Erysipelotrichaceae in the phylum Firmicutes and showed 91.8 % sequence similarity to the most closely related species, Faecalicoccus acidiformans. The strain grew at 30-50 °C (optimally at 40 °C) and at pH 5.5-8.5 (optimally at pH 7.5). The main end product of glucose fermentation was lactate. Yeast extract was required for growth. The strain contained C14 : 0, C14 : 0 1,1-dimethoxyalkane (DMA), C16 : 0 DMA and C18 : 0 DMA as the major cellular fatty acids (>10 % of the total). The polar lipid profile was composed of phosphatidylglycerol, phosphatidylinositol and an unidentified phospholipid. The whole-cell sugars were galactose, rhamnose and ribose. The cell-wall murein contained alanine, glutamic acid, lysine, serine and threonine, but not diaminopimelic acid. The G+C content of the genomic DNA was 47.7 mol%. Based on phenotypic, phylogenetic and chemotaxonomic properties, a novel genus and species, Catenisphaera adipataccumulans gen. nov., sp. nov., is proposed to accommodate strain GK12(T) ( = NBRC 108915(T) = DSM 25799(T)).


Asunto(s)
Bacterias Anaerobias/clasificación , Bacilos Grampositivos/clasificación , Filogenia , Bacterias Anaerobias/genética , Bacterias Anaerobias/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , Reactores Biológicos/microbiología , ADN Bacteriano/genética , Ácidos Grasos/química , Fermentación , Bacilos Grampositivos/genética , Bacilos Grampositivos/aislamiento & purificación , Japón , Datos de Secuencia Molecular , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
18.
Int J Syst Evol Microbiol ; 65(Pt 6): 1749-1754, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25740933

RESUMEN

A moderately thermophilic, aerobic, stalked bacterium (strain MA2T) was isolated from marine sediments in Kagoshima Bay, Japan. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain MA2T was most closely related to the genera Rhodobium,Parvibaculum, and Rhodoligotrophos (92-93 % similarity) within the class Alphaproteobacteria. Strain MA2T was a Gram-stain-negative and stalked dimorphic bacteria. The temperature range for growth was 16-48 °C (optimum growth at 42 °C). This strain required yeast extract and NaCl (>1 %, w/v) for growth, tolerated up to 11 % (w/v) NaCl, and was capable of utilizing various carbon sources. The major cellular fatty acid and major respiratory quinone were C18 : 1ω7c and ubiquinone-10, respectively. The DNA G+C content was 60.7 mol%. Strain MA2T performed denitrification and produced N2O from nitrate under strictly microaerobic conditions. Strain MA2T possessed periplasmic nitrate reductase (Nap) genes but not membrane-bound nitrate reductase (Nar) genes. On the basis of this morphological, physiological, biochemical and genetic information a novel genus and species, Tepidicaulis marinus gen. nov., sp. nov., are proposed, with MA2T ( = NBRC 109643T = DSM 27167T) as the type strain of the species.


Asunto(s)
Alphaproteobacteria/clasificación , Sedimentos Geológicos/microbiología , Filogenia , Agua de Mar/microbiología , Alphaproteobacteria/genética , Alphaproteobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Desnitrificación , Ácidos Grasos/química , Genes Bacterianos , Japón , Datos de Secuencia Molecular , Nitratos/metabolismo , Óxido Nitroso/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
19.
Environ Microbiol ; 16(9): 2739-51, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24428681

RESUMEN

In an acetate-fed anaerobic-aerobic membrane bioreactor with deteriorated enhanced biological phosphorus removal (EBPR), Defluviicoccus-related tetrad-forming organisms (DTFO) were observed to predominate in the microbial community. Using metagenomics, a partial genome of the predominant DTFO, 'Candidatus Defluviicoccus tetraformis strain TFO71', was successfully constructed and characterized. Examining the genome confirmed the presence of genes related to the synthesis and degradation of glycogen and polyhydroxyalkanoate (PHA), which function as energy and carbon storage compounds. TFO71 and 'Candidatus Accumulibacter phosphatis' (CAP) UW-1 and CAP UW-2, representative polyphosphate-accumulating organisms (PAO), have PHA metabolism-related genes with high homology, but TFO71 has unique genes for PHA synthesis, gene regulation and granule management. We further discovered genes encoding DTFO polyphosphate (polyP) synthesis, suggesting that TFO71 may synthesize polyP under untested conditions. However, TFO71 may not activate these genes under EBPR conditions because the retrieved genome does not contain all inorganic phosphate transporters that are characteristic of PAOs (CAP UW-1, CAP UW-2, Microlunatus phosphovorus NM-1 and Tetrasphaera species). As a first step in characterizing EBPR-associated DTFO metabolism, this study identifies important differences between DTFO and PAO that may contribute to EBPR community competition and deterioration.


Asunto(s)
Reactores Biológicos , Metagenoma , Fósforo/metabolismo , Rhodospirillaceae/genética , ADN Bacteriano/genética , Genes Bacterianos , Glucógeno/metabolismo , Filogenia , Polihidroxialcanoatos/metabolismo , Polifosfatos/metabolismo , ARN Ribosómico 16S/genética
20.
Environ Microbiol ; 16(6): 1695-708, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24238218

RESUMEN

A low-diversity microbial community, dominated by the γ-proteobacterium Halomonas sulfidaeris, was detected in samples of warm saline formation porewater collected from the Cambrian Mt. Simon Sandstone in the Illinois Basin of the North American Midcontinent (1.8 km/5872 ft burial depth, 50°C, pH 8, 181 bars pressure). These highly porous and permeable quartz arenite sandstones are directly analogous to reservoirs around the world targeted for large-scale hydrocarbon extraction, as well as subsurface gas and carbon storage. A new downhole low-contamination subsurface sampling probe was used to collect in situ formation water samples for microbial environmental metagenomic analyses. Multiple lines of evidence suggest that this H. sulfidaeris-dominated subsurface microbial community is indigenous and not derived from drilling mud microbial contamination. Data to support this includes V1-V3 pyrosequencing of formation water and drilling mud, as well as comparison with previously published microbial analyses of drilling muds in other sites. Metabolic pathway reconstruction, constrained by the geology, geochemistry and present-day environmental conditions of the Mt. Simon Sandstone, implies that H. sulfidaeris-dominated subsurface microbial community may utilize iron and nitrogen metabolisms and extensively recycle indigenous nutrients and substrates. The presence of aromatic compound metabolic pathways suggests this microbial community can readily adapt to and survive subsurface hydrocarbon migration.


Asunto(s)
Halomonas/genética , Microbiología del Agua , Genes Bacterianos , Illinois , Redes y Vías Metabólicas/genética , Metagenoma , Microbiota/genética , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Filogenia , Cuarzo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA