Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 174(1): 72-87.e32, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29861175

RESUMEN

Recent reports indicate that hypoxia influences the circadian clock through the transcriptional activities of hypoxia-inducible factors (HIFs) at clock genes. Unexpectedly, we uncover a profound disruption of the circadian clock and diurnal transcriptome when hypoxic cells are permitted to acidify to recapitulate the tumor microenvironment. Buffering against acidification or inhibiting lactic acid production fully rescues circadian oscillation. Acidification of several human and murine cell lines, as well as primary murine T cells, suppresses mechanistic target of rapamycin complex 1 (mTORC1) signaling, a key regulator of translation in response to metabolic status. We find that acid drives peripheral redistribution of normally perinuclear lysosomes away from perinuclear RHEB, thereby inhibiting the activity of lysosome-bound mTOR. Restoring mTORC1 signaling and the translation it governs rescues clock oscillation. Our findings thus reveal a model in which acid produced during the cellular metabolic response to hypoxia suppresses the circadian clock through diminished translation of clock constituents.


Asunto(s)
Hipoxia de la Célula , Relojes Circadianos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Aminoácidos Dicarboxílicos/farmacología , Animales , Proteínas CLOCK/metabolismo , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Células Cultivadas , Relojes Circadianos/efectos de los fármacos , Medios de Cultivo/química , Factores Eucarióticos de Iniciación , Concentración de Iones de Hidrógeno , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Transducción de Señal/efectos de los fármacos , Linfocitos T/citología , Linfocitos T/metabolismo , Transcriptoma/efectos de los fármacos , Proteína 2 del Complejo de la Esclerosis Tuberosa/deficiencia , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética
2.
J Biol Chem ; 299(4): 104595, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36898579

RESUMEN

The integrated stress response (ISR) is an important mechanism by which cells confer protection against environmental stresses. Central to the ISR is a collection of related protein kinases that monitor stress conditions, such as Gcn2 (EIF2AK4) that recognizes nutrient limitations, inducing phosphorylation of eukaryotic translation initiation factor 2 (eIF2). Gcn2 phosphorylation of eIF2 lowers bulk protein synthesis, conserving energy and nutrients, coincident with preferential translation of stress-adaptive gene transcripts, such as that encoding the Atf4 transcriptional regulator. While Gcn2 is central for cell protection to nutrient stress and its depletion in humans leads to pulmonary disorders, Gcn2 can also contribute to the progression of cancers and facilitate neurological disorders during chronic stress. Consequently, specific ATP-competitive inhibitors of Gcn2 protein kinase have been developed. In this study, we report that one such Gcn2 inhibitor, Gcn2iB, can activate Gcn2, and we probe the mechanism by which this activation occurs. Low concentrations of Gcn2iB increase Gcn2 phosphorylation of eIF2 and enhance Atf4 expression and activity. Of importance, Gcn2iB can activate Gcn2 mutants devoid of functional regulatory domains or with certain kinase domain substitutions derived from Gcn2-deficient human patients. Other ATP-competitive inhibitors can also activate Gcn2, although there are differences in their mechanisms of activation. These results provide a cautionary note about the pharmacodynamics of eIF2 kinase inhibitors in therapeutic applications. Compounds designed to be kinase inhibitors that instead directly activate Gcn2, even loss of function variants, may provide tools to alleviate deficiencies in Gcn2 and other regulators of the ISR.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Proteínas Serina-Treonina Quinasas , Humanos , Adenosina Trifosfato/metabolismo , Activación Enzimática/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
3.
Semin Cancer Biol ; 33: 3-15, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25920797

RESUMEN

A variety of cell intrinsic or extrinsic stresses evoke perturbations in the folding environment of the endoplasmic reticulum (ER), collectively known as ER stress. Adaptation to stress and re-establishment of ER homeostasis is achieved by activation of an integrated signal transduction pathway called the unfolded protein response (UPR). Both ER stress and UPR activation have been implicated in a variety of human cancers. Although at early stages or physiological conditions of ER stress, the UPR generally promotes survival, when the stress becomes more stringent or prolonged, its role can switch to a pro-cell death one. Here, we discuss historical and recent evidence supporting an involvement of the UPR in malignancy, describe the main mechanisms by which tumor cells overcome ER stress to promote their survival, tumor progression and metastasis and discuss the current state of efforts to develop therapeutic approaches of targeting the UPR.


Asunto(s)
Neoplasias/metabolismo , Neoplasias/patología , Respuesta de Proteína Desplegada , Adaptación Fisiológica , Animales , Apoptosis , Autofagia , Linaje de la Célula , Senescencia Celular , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Homeostasis , Humanos , Hipoxia , Ratones , Ratones Transgénicos , Metástasis de la Neoplasia , Neoplasias/terapia , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Proteínas ras/metabolismo
4.
J Med Chem ; 67(7): 5259-5271, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38530741

RESUMEN

A series of activators of GCN2 (general control nonderepressible 2) kinase have been developed, leading to HC-7366, which has entered the clinic as an antitumor therapy. Optimization resulted in improved permeability compared to that of the original indazole hinge binding scaffold, while maintaining potency at GCN2 and selectivity over PERK (protein kinase RNA-like endoplasmic reticulum kinase). The improved ADME properties of this series led to robust in vivo compound exposure in both rats and mice, allowing HC-7366 to be dosed in xenograft models, demonstrating that activation of the GCN2 pathway by this compound leads to tumor growth inhibition.


Asunto(s)
Proteínas Serina-Treonina Quinasas , eIF-2 Quinasa , Humanos , Ratones , Ratas , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , eIF-2 Quinasa/metabolismo , Ratones Endogámicos C57BL , ARN , Retículo Endoplásmico/metabolismo
6.
Nat Cell Biol ; 21(7): 889-899, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31263264

RESUMEN

The c-Myc oncogene drives malignant progression and induces robust anabolic and proliferative programmes leading to intrinsic stress. The mechanisms enabling adaptation to MYC-induced stress are not fully understood. Here we reveal an essential role for activating transcription factor 4 (ATF4) in survival following MYC activation. MYC upregulates ATF4 by activating general control nonderepressible 2 (GCN2) kinase through uncharged transfer RNAs. Subsequently, ATF4 co-occupies promoter regions of over 30 MYC-target genes, primarily those regulating amino acid and protein synthesis, including eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), a negative regulator of translation. 4E-BP1 relieves MYC-induced proteotoxic stress and is essential to balance protein synthesis. 4E-BP1 activity is negatively regulated by mammalian target of rapamycin complex 1 (mTORC1)-dependent phosphorylation and inhibition of mTORC1 signalling rescues ATF4-deficient cells from MYC-induced endoplasmic reticulum stress. Acute deletion of ATF4 significantly delays MYC-driven tumour progression and increases survival in mouse models. Our results establish ATF4 as a cellular rheostat of MYC activity, which ensures that enhanced translation rates are compatible with survival and tumour progression.


Asunto(s)
Factor de Transcripción Activador 4/genética , Genes myc/genética , Activación Transcripcional/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Ciclo Celular , Estrés del Retículo Endoplásmico/genética , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Transgénicos , Fosfoproteínas/genética , Fosforilación , Biosíntesis de Proteínas/fisiología , Serina-Treonina Quinasas TOR/metabolismo
7.
Cancer Discov ; 9(3): 396-415, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30563872

RESUMEN

Resistance to BRAF and MEK inhibitors (BRAFi + MEKi) in BRAF-mutant tumors occurs through heterogeneous mechanisms, including ERK reactivation and autophagy. Little is known about the mechanisms by which ERK reactivation or autophagy is induced by BRAFi + MEKi. Here, we report that in BRAF-mutant melanoma cells, BRAFi + MEKi induced SEC61-dependent endoplasmic reticulum (ER) translocation of the MAPK pathway via GRP78 and KSR2. Inhibition of ER translocation prevented ERK reactivation and autophagy. Following ER translocation, ERK exited the ER and was rephosphorylated by PERK. Reactivated ERK phosphorylated ATF4, which activated cytoprotective autophagy. Upregulation of GRP78 and phosphorylation of ATF4 were detected in tumors of patients resistant to BRAFi + MEKi. ER translocation of the MAPK pathway was demonstrated in therapy-resistant patient-derived xenografts. Expression of a dominant-negative ATF4 mutant conferred sensitivity to BRAFi + MEKi in vivo. This mechanism reconciles two major targeted therapy resistance pathways and identifies druggable targets, whose inhibition would likely enhance the response to BRAFi + MEKi. SIGNIFICANCE: ERK reactivation and autophagy are considered distinct resistance pathways to BRAF + MEK inhibition (BRAFi + MEKi) in BRAF V600E cancers. Here, we report BRAFi + MEKi-induced ER translocation of the MAPK pathway is necessary for ERK reactivation, which drives autophagy. The ER translocation mechanism is a major druggable driver of resistance to targeted therapy.This article is highlighted in the In This Issue feature, p. 305.


Asunto(s)
Retículo Endoplásmico/metabolismo , Sistema de Señalización de MAP Quinasas , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Animales , Autofagia , Línea Celular Tumoral , Resistencia a Antineoplásicos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/patología , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/metabolismo , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Masculino , Melanoma/genética , Melanoma/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Transporte de Proteínas , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Nat Cell Biol ; 20(1): 104-115, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29230015

RESUMEN

The unfolded protein response (UPR) is a stress-activated signalling pathway that regulates cell proliferation, metabolism and survival. The circadian clock coordinates metabolism and signal transduction with light/dark cycles. We explore how UPR signalling interfaces with the circadian clock. UPR activation induces a 10 h phase shift in circadian oscillations through induction of miR-211, a PERK-inducible microRNA that transiently suppresses both Bmal1 and Clock, core circadian regulators. Molecular investigation reveals that miR-211 directly regulates Bmal1 and Clock via distinct mechanisms. Suppression of Bmal1 and Clock has the anticipated impact on expression of select circadian genes, but we also find that repression of Bmal1 is essential for UPR-dependent inhibition of protein synthesis and cell adaptation to stresses that disrupt endoplasmic reticulum homeostasis. Our data demonstrate that c-Myc-dependent activation of the UPR inhibits Bmal1 in Burkitt's lymphoma, thereby suppressing both circadian oscillation and ongoing protein synthesis to facilitate tumour progression.


Asunto(s)
Neoplasias Óseas/genética , Relojes Circadianos/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Osteosarcoma/genética , eIF-2 Quinasa/genética , Factores de Transcripción ARNTL/antagonistas & inhibidores , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Linfocitos B/metabolismo , Linfocitos B/patología , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Proteínas CLOCK/antagonistas & inhibidores , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Xenoinjertos , Humanos , Fototransducción , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patología , Osteosarcoma/metabolismo , Osteosarcoma/patología , Fotoperiodo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Respuesta de Proteína Desplegada , eIF-2 Quinasa/metabolismo
9.
Sci Transl Med ; 10(439)2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29720449

RESUMEN

Oncogenic lesions up-regulate bioenergetically demanding cellular processes, such as protein synthesis, to drive cancer cell growth and continued proliferation. However, the hijacking of these key processes by oncogenic pathways imposes onerous cell stress that must be mitigated by adaptive responses for cell survival. The mechanism by which these adaptive responses are established, their functional consequences for tumor development, and their implications for therapeutic interventions remain largely unknown. Using murine and humanized models of prostate cancer (PCa), we show that one of the three branches of the unfolded protein response is selectively activated in advanced PCa. This adaptive response activates the phosphorylation of the eukaryotic initiation factor 2-α (P-eIF2α) to reset global protein synthesis to a level that fosters aggressive tumor development and is a marker of poor patient survival upon the acquisition of multiple oncogenic lesions. Using patient-derived xenograft models and an inhibitor of P-eIF2α activity, ISRIB, our data show that targeting this adaptive brake for protein synthesis selectively triggers cytotoxicity against aggressive metastatic PCa, a disease for which presently there is no cure.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Neoplasias de la Próstata/metabolismo , Animales , Antineoplásicos/uso terapéutico , Humanos , Masculino , Ratones , Neoplasias de la Próstata/tratamiento farmacológico , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/fisiología
10.
Cell Death Dis ; 9(11): 1108, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30382078

RESUMEN

Terminal differentiation opposes proliferation in the vast majority of tissue types. As a result, loss of lineage differentiation is a hallmark of aggressive cancers, including soft tissue sarcomas (STS). Consistent with these observations, undifferentiated pleomorphic sarcoma (UPS), an STS subtype devoid of lineage markers, is among the most lethal sarcomas in adults. Though tissue-specific features are lost in these mesenchymal tumors they are most commonly diagnosed in skeletal muscle, and are thought to develop from transformed muscle progenitor cells. We have found that a combination of HDAC (Vorinostat) and BET bromodomain (JQ1) inhibition partially restores differentiation to skeletal muscle UPS cells and tissues, enforcing a myoblast-like identity. Importantly, differentiation is partially contingent upon downregulation of the Hippo pathway transcriptional effector Yes-associated protein 1 (YAP1) and nuclear factor (NF)-κB. Previously, we observed that Vorinostat/JQ1 inactivates YAP1 and restores oscillation of NF-κB in differentiating myoblasts. These effects correlate with reduced tumorigenesis, and enhanced differentiation. However, the mechanisms by which the Hippo/NF-κB axis impact differentiation remained unknown. Here, we report that YAP1 and NF-κB activity suppress circadian clock function, inhibiting differentiation and promoting proliferation. In most tissues, clock activation is antagonized by the unfolded protein response (UPR). However, skeletal muscle differentiation requires both Clock and UPR activity, suggesting the molecular link between them is unique in muscle. In skeletal muscle-derived UPS, we observed that YAP1 suppresses PERK and ATF6-mediated UPR target expression as well as clock genes. These pathways govern metabolic processes, including autophagy, and their disruption shifts metabolism toward cancer cell-associated glycolysis and hyper-proliferation. Treatment with Vorinostat/JQ1 inhibited glycolysis/MTOR signaling, activated the clock, and upregulated the UPR and autophagy via inhibition of YAP1/NF-κB. These findings support the use of epigenetic modulators to treat human UPS. In addition, we identify specific autophagy, UPR, and muscle differentiation-associated genes as potential biomarkers of treatment efficacy and differentiation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Autofagia/genética , Proteínas de Ciclo Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de los Músculos/genética , FN-kappa B/genética , Sarcoma/genética , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Autofagia/efectos de los fármacos , Azepinas/farmacología , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Línea Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Relojes Circadianos/efectos de los fármacos , Relojes Circadianos/genética , Humanos , Ratones , Ratones Transgénicos , Neoplasias de los Músculos/tratamiento farmacológico , Neoplasias de los Músculos/metabolismo , Neoplasias de los Músculos/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Mioblastos/patología , FN-kappa B/metabolismo , Sarcoma/tratamiento farmacológico , Sarcoma/metabolismo , Sarcoma/patología , Transducción de Señal , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Células Madre/patología , Triazoles/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Vorinostat/farmacología , Proteínas Señalizadoras YAP , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
11.
Cell Rep ; 6(6): 1046-1058, 2014 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-24613355

RESUMEN

The ability to interconvert terminally differentiated cells could serve as a powerful tool for cell-based treatment of degenerative diseases, including diabetes mellitus. To determine which, if any, adult tissues are competent to activate an islet ß cell program, we performed an in vivo screen by expressing three ß cell "reprogramming factors" in a wide spectrum of tissues. We report that transient intestinal expression of these factors-Pdx1, MafA, and Ngn3 (PMN)-promotes rapid conversion of intestinal crypt cells into endocrine cells, which coalesce into "neoislets" below the crypt base. Neoislet cells express insulin and show ultrastructural features of ß cells. Importantly, intestinal neoislets are glucose-responsive and able to ameliorate hyperglycemia in diabetic mice. Moreover, PMN expression in human intestinal "organoids" stimulates the conversion of intestinal epithelial cells into ß-like cells. Our results thus demonstrate that the intestine is an accessible and abundant source of functional insulin-producing cells.


Asunto(s)
Células Secretoras de Insulina/citología , Insulina/biosíntesis , Intestinos/citología , Islotes Pancreáticos/citología , Animales , Diferenciación Celular/fisiología , Humanos , Células Secretoras de Insulina/metabolismo , Mucosa Intestinal/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Ratones Transgénicos
12.
Autophagy ; 9(4): 612-4, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23328692

RESUMEN

Stress in the tumor microenvironment in the form of hypoxia and low glucose/amino acid levels activates the evolutionarily conserved cellular adaptation program called the unfolded protein response (UPR) promoting cell survival in such conditions. Our recent studies showed that cell autonomous stress such as activation of the proto-oncogene MYC/c-Myc, can also trigger the UPR and induce endoplasmic reticulum (ER) stress-mediated autophagy. Amelioration of ER stress or autophagy enhances cancer cell death in vitro and attenuates tumor growth in vivo. Here we will discuss the role of the UPR and autophagy in MYC-induced transformation. Our findings demonstrate that the EIF2AK3/PERK-EIF2S1/eIF2α-ATF4 arm of the UPR promotes tumorigenesis by activating autophagy and enhancing tumor formation. Therefore, the UPR is an attractive target in MYC-driven cancers.


Asunto(s)
Autofagia , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , eIF-2 Quinasa/metabolismo , Animales , Línea Celular Tumoral , Estrés del Retículo Endoplásmico , Humanos , Ratones , Modelos Biológicos , Proto-Oncogenes Mas , Transducción de Señal , Respuesta de Proteína Desplegada
13.
J Clin Invest ; 122(12): 4621-34, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23143306

RESUMEN

The proto-oncogene c-Myc paradoxically activates both proliferation and apoptosis. In the pathogenic state, c-Myc-induced apoptosis is bypassed via a critical, yet poorly understood escape mechanism that promotes cellular transformation and tumorigenesis. The accumulation of unfolded proteins in the ER initiates a cellular stress program termed the unfolded protein response (UPR) to support cell survival. Analysis of spontaneous mouse and human lymphomas demonstrated significantly higher levels of UPR activation compared with normal tissues. Using multiple genetic models, we demonstrated that c-Myc and N-Myc activated the PERK/eIF2α/ATF4 arm of the UPR, leading to increased cell survival via the induction of cytoprotective autophagy. Inhibition of PERK significantly reduced Myc-induced autophagy, colony formation, and tumor formation. Moreover, pharmacologic or genetic inhibition of autophagy resulted in increased Myc-dependent apoptosis. Mechanistically, we demonstrated an important link between Myc-dependent increases in protein synthesis and UPR activation. Specifically, by employing a mouse minute (L24+/-) mutant, which resulted in wild-type levels of protein synthesis and attenuation of Myc-induced lymphomagenesis, we showed that Myc-induced UPR activation was reversed. Our findings establish a role for UPR as an enhancer of c-Myc-induced transformation and suggest that UPR inhibition may be particularly effective against malignancies characterized by c-Myc overexpression.


Asunto(s)
Autofagia , Linfoma de Burkitt/metabolismo , Transformación Celular Neoplásica/metabolismo , Proteínas Proto-Oncogénicas c-myc/fisiología , Animales , Apoptosis , Linfoma de Burkitt/patología , Señalización del Calcio , Caspasas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Análisis por Conglomerados , Estrés del Retículo Endoplásmico , Técnicas de Inactivación de Genes , Heterocigoto , Humanos , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Transcriptoma , Respuesta de Proteína Desplegada , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
14.
Mol Biol Cell ; 21(24): 4373-86, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20980617

RESUMEN

Deletion of the paralogs ZDS1 and ZDS2 in the budding yeast Saccharomyces cerevisiae causes a mis-regulation of polarized cell growth. Here we show a function for these genes as regulators of the Swe1p (Wee1p) kinase-dependent G2/M checkpoint. We identified a conserved domain in the C-terminus of Zds2p consisting of amino acids 813-912 (hereafter referred to as ZH4 for Zds homology 4) that is required for regulation of Swe1p-dependent polarized bud growth. ZH4 is shown by protein affinity assays to be necessary and sufficient for interaction with Cdc55p, a regulatory subunit of protein phosphatase 2A (PP2A). We hypothesized that the Zds proteins are in a pathway that negatively regulates the Swe1p-dependent G2/M checkpoint via Cdc55p. Supporting this model, deletion of CDC55 rescues the aberrant bud morphology of a zds1Δzds2Δ strain. We also show that expression of ZDS1 or ZDS2 from a strong galactose-inducible promoter can induce mitosis even when the Swe1p-dependent G2/M checkpoint is activated by mis-organization of the actin cytoskeleton. This negative regulation requires the CDC55 gene. Together these data indicate that the Cdc55p/Zds2p module has a function in the regulation of the Swe1p-dependent G2/M checkpoint.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/genética , Secuencia Conservada , Fase G2 , Eliminación de Gen , Mitosis , Mutación Missense , Fosforilación , Mapeo de Interacción de Proteínas , Proteína Fosfatasa 2/genética , Proteínas Tirosina Quinasas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA