Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Immunol ; 204(4): 775-787, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31900335

RESUMEN

Immunogenic cell death (ICD) occurs when a dying cell releases cytokines and damage-associated molecular patterns, acting as adjuvants, and expresses Ags that induce a specific antitumor immune response. ICD is studied mainly in the context of regulated cell death pathways, especially caspase-mediated apoptosis marked by endoplasmic reticulum stress and calreticulin exposure and, more recently, also in relation to receptor-interacting protein kinase-driven necroptosis, whereas unregulated cell death like accidental necrosis is nonimmunogenic. Importantly, the murine cancer cell lines used in ICD studies often express virally derived peptides that are recognized by the immune system as tumor-associated Ags. However, it is unknown how different cell death pathways may affect neoepitope cross-presentation and Ag recognition of cancer cells. We used a prophylactic tumor vaccination model and observed that both apoptotic and necroptotic colon carcinoma CT26 cells efficiently immunized mice against challenge with a breast cancer cell line that expresses the same immunodominant tumor Ag, AH1, but only necroptotic CT26 cells would mount an immune response against CT26-specific neoepitopes. By CRISPR/Cas9 genome editing, we knocked out AH1 and saw that only necroptotic CT26 cells were still able to protect mice against tumor challenge. Hence, in this study, we show that endogenous AH1 tumor Ag expression can mask the strength of immunogenicity induced by different cell death pathways and that upon knockout of AH1, necroptosis was more immunogenic than apoptosis in a prophylactic tumor vaccination model. This work highlights necroptosis as a possible preferred ICD form over apoptosis in the treatment of cancer.


Asunto(s)
Antígenos de Neoplasias/inmunología , Apoptosis/inmunología , Epítopos Inmunodominantes/inmunología , Necroptosis/inmunología , Neoplasias Experimentales/inmunología , Animales , Línea Celular Tumoral , Femenino , Ratones , Ratones Endogámicos BALB C
2.
BMC Cancer ; 19(1): 598, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31208373

RESUMEN

BACKGROUND: NANOS3 is a gene conserved throughout evolution. Despite the quite low conservation of Nanos sequences between different organisms and even between Nanos paralogs, their role in germ cell development is remarkably universal. Human Nanos3 expression is normally restricted to the gonads and the brain. However, ectopic activation of this gene has been detected in various human cancers. Until now, Nanos3 and other Nanos proteins have been studied almost exclusively in germ cell development. METHODS: Transgenic mice were generated by targeted insertion of a human Nanos3 cDNA into the ROSA26 locus. The transgene could be spatiotemporally induced by Cre recombinase activity removing an upstream floxed STOP cassette. A lung tumor model with ectopic Nanos3 expression was based on the lung-specific activation of the reverse tetracycline transactivator gene, in combination with a tetO-CMV promoter controlling Cre expression. When doxycycline was provided to the mice, Cre was activated leading to deletion of TP53 alleles and activation of both oncogenic KRasG12D and Nanos3. Appropriate controls were foreseen. Tumors and tumor-derived cell cultures were analyzed in various ways. RESULTS: We describe the successful generation of Nanos3LSL/- and Nanos3LSL/LSL mice in which an exogenous human NANOS3 gene can be activated in vivo upon Cre expression. These mice, in combination with different conditional and doxycycline-inducible Cre lines, allow the study of the role of ectopic Nanos3 expression in several cancer types. The Nanos3LSL mice were crossed with a non-small cell lung cancer (NSCLC) mouse model based on conditional expression of oncogenic KRas and homozygous loss of p53. This experiment demonstrated that ectopic expression of Nanos3 in the lungs has a significant negative effect on survival. Enhanced bronchiolar dysplasia was observed when Nanos3-expressing NSCLC mice were compared with control NSCLC mice. An allograft experiment, performed with cell cultures derived from primary lung tumors of control and Nanos3-expressing NSCLC mice, revealed lymph node metastasis in mice injected with Nanos3-expressing NSCLC cells. CONCLUSIONS: A new mouse model was generated allowing examination of Nanos3-associated pathways and investigation of the influence of ectopic Nanos3 expression in various cancer types. This model might identify Nanos3 as an interesting target in cancer therapeutics.


Asunto(s)
Expresión Génica Ectópica , Ratones , Neoplasias Experimentales/genética , Proteínas de Unión al ARN/genética , Aloinjertos , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Doxiciclina/farmacología , Femenino , Humanos , Integrasas , Estimación de Kaplan-Meier , Neoplasias Pulmonares/genética , Masculino , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones Transgénicos , Transducción de Señal/efectos de los fármacos , Transgenes , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética
3.
Cell Mol Life Sci ; 71(18): 3599-609, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24573695

RESUMEN

Epithelial homeostasis within the epidermis is maintained by means of multiple cell-cell adhesion complexes such as adherens junctions, tight junctions, gap junctions, and desmosomes. These complexes co-operate in the formation and the regulation of the epidermal barrier. Disruption of the epidermal barrier through the deregulation of the above complexes is the cause behind a number of skin disorders such as psoriasis, dermatitis, keratosis, and others. During epithelial-to-mesenchymal transition (EMT), epithelial cells lose their adhesive capacities and gain mesenchymal properties. ZEB transcription factors are key inducers of EMT. In order to gain a better understanding of the functional role of ZEB2 in epidermal homeostasis, we generated a mouse model with conditional overexpression of Zeb2 in the epidermis. Our analysis revealed that Zeb2 expression in the epidermis leads to hyperproliferation due to the combined downregulation of different tight junction proteins compromising the epidermal barrier. Using two epidermis-specific in vivo models and in vitro promoter assays, we identified occludin as a new Zeb2 target gene. Immunohistological analysis performed on human skin biopsies covering various pathogeneses revealed ZEB2 expression in the epidermis of pemphigus vulgaris. Collectively, our data support the notion for a potential role of ZEB2 in intracellular signaling of this disease.


Asunto(s)
Proteínas de Homeodominio/fisiología , Proteínas Represoras/fisiología , Piel/metabolismo , Uniones Estrechas/metabolismo , Animales , Línea Celular , Transición Epitelial-Mesenquimal/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ocludina/metabolismo , Pénfigo/genética , Pénfigo/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Piel/patología , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc
4.
Mol Cancer Res ; 20(10): 1532-1547, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-35749080

RESUMEN

High-grade serous ovarian cancer (HGSOC) is responsible for the largest number of ovarian cancer deaths. The frequent therapy-resistant relapses necessitate a better understanding of mechanisms driving therapy resistance. Therefore, we mapped more than a hundred thousand cells of HGSOC patients in different phases of the disease, using single-cell RNA sequencing. Within patients, we compared chemonaive with chemotreated samples. As such, we were able to create a single-cell atlas of different HGSOC lesions and their treatment. This revealed a high intrapatient concordance between spatially distinct metastases. In addition, we found remarkable baseline differences in transcriptomics of ascitic and solid cancer cells, resulting in a different response to chemotherapy. Moreover, we discovered different robust subtypes of cancer-associated fibroblasts (CAF) in all patients. Besides inflammatory CAFs, vascular CAFs, and matrix CAFs, we identified a new CAF subtype that was characterized by high expression of STAR, TSPAN8, and ALDH1A1 and clearly enriched after chemotherapy. Together, tumor heterogeneity in both cancer and stromal cells contributes to therapy resistance in HGSOC and could form the basis of novel therapeutic strategies that differentiate between ascitic and solid disease. IMPLICATIONS: The newly characterized differences between ascitic and solid cancer cells before and after chemotherapy could inform novel treatment strategies for metastatic HGSOC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Cistadenocarcinoma Seroso , Neoplasias Ováricas , Fibroblastos Asociados al Cáncer/metabolismo , Línea Celular Tumoral , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Femenino , Humanos , Recurrencia Local de Neoplasia , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Tetraspaninas
5.
Sci Rep ; 10(1): 6688, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317693

RESUMEN

Peritoneal spread indicates poor prognosis in patients with serous ovarian carcinoma (SOC) and is generally treated by surgical cytoreduction and chemotherapy. Novel treatment options are urgently needed to improve patient outcome. Clinically relevant cell lines and patient-derived xenograft (PDX) models are of critical importance to therapeutic regimen evaluation. Here, a PDX model was established, by orthotopic engraftment after subperitoneal tumor slurry injection of low-grade SOC, resulting in an early-stage transplantable peritoneal metastasis (PM)-PDX model. Histology confirmed the micropapillary and cribriform growth pattern with intraluminal tumor budding and positivity for PAX8 and WT1. PM-PDX dissociated cells show an epithelial morphotype with a 42 h doubling time and 40% colony forming efficiency, they are low sensitive to platinum derivatives and highly sensitive to paclitaxel (IC50: 6.3 ± 2.2 nM, mean ± SEM). The patient primary tumor, PM, PM-PDX and derived cell line all show a KRAS c.35 G > T (p.(Gly12Val)) mutation and show sensitivity to the MEK inhibitor trametinib in vitro (IC50: 7.2 ± 0.5 nM, mean ± SEM) and in the PM mouse model. These preclinical models closely reflecting patient tumors are useful to further elucidate LGSOC disease progression, therapy response and resistance mechanisms.


Asunto(s)
Cistadenocarcinoma Seroso/patología , Neoplasias Ováricas/patología , Neoplasias Peritoneales/secundario , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Línea Celular Tumoral , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/genética , Femenino , Humanos , Ratones SCID , Repeticiones de Microsatélite/genética , Mutación/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Piridonas/uso terapéutico , Pirimidinonas/uso terapéutico
6.
Nat Cancer ; 1(6): 620-634, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-35121975

RESUMEN

Colorectal cancer (CRC) is highly prevalent in Western society, and increasing evidence indicates strong contributions of environmental factors and the intestinal microbiota to CRC initiation, progression and even metastasis. We have identified a synergistic inflammatory tumor-promoting mechanism through which the resident intestinal microbiota boosts invasive CRC development in an epithelial-to-mesenchymal transition-prone tissue environment. Intestinal epithelial cell (IEC)-specific transgenic expression of the epithelial-to-mesenchymal transition regulator Zeb2 in mice (Zeb2IEC-Tg/+) leads to increased intestinal permeability, myeloid cell-driven inflammation and spontaneous invasive CRC development. Zeb2IEC-Tg/+ mice develop a dysplastic colonic epithelium, which progresses to severely inflamed neoplastic lesions while the small intestinal epithelium remains normal. Zeb2IEC-Tg/+ mice are characterized by intestinal dysbiosis, and microbiota depletion with broad-spectrum antibiotics or germ-free rederivation completely prevents cancer development. Zeb2IEC-Tg/+ mice represent the first mouse model of spontaneous microbiota-dependent invasive CRC and will help us to better understand host-microbiome interactions driving CRC development in humans.


Asunto(s)
Carcinoma , Microbiota , Animales , Carcinoma/metabolismo , Colon/metabolismo , Ratones
7.
Cancer Res ; 80(14): 2983-2995, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32503808

RESUMEN

Epithelial-to-mesenchymal transition (EMT)-inducing transcription factors (TF) are well known for their ability to induce mesenchymal states associated with increased migratory and invasive properties. Unexpectedly, nuclear expression of the EMT-TF ZEB2 in human primary melanoma has been shown to correlate with reduced invasion. We report here that ZEB2 is required for outgrowth for primary melanomas and metastases at secondary sites. Ablation of Zeb2 hampered outgrowth of primary melanomas in vivo, whereas ectopic expression enhanced proliferation and growth at both primary and secondary sites. Gain of Zeb2 expression in pulmonary-residing melanoma cells promoted the development of macroscopic lesions. In vivo fate mapping made clear that melanoma cells undergo a conversion in state where ZEB2 expression is replaced by ZEB1 expression associated with gain of an invasive phenotype. These findings suggest that reversible switching of the ZEB2/ZEB1 ratio enhances melanoma metastatic dissemination. SIGNIFICANCE: ZEB2 function exerts opposing behaviors in melanoma by promoting proliferation and expansion and conversely inhibiting invasiveness, which could be of future clinical relevance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/14/2983/F1.large.jpg.


Asunto(s)
Proliferación Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/secundario , Melanoma/patología , Factores de Transcripción/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Animales , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Melanoma/genética , Melanoma/metabolismo , Ratones , Invasividad Neoplásica , Factores de Transcripción/genética , Células Tumorales Cultivadas , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética
8.
Epigenetics Chromatin ; 11(1): 70, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30445998

RESUMEN

BACKGROUND: Epithelial mesenchymal transition (EMT) is tightly regulated by a network of transcription factors (EMT-TFs). Among them is the nuclear factor ZEB2, a member of the zinc-finger E-box binding homeobox family. ZEB2 nuclear localization has been identified in several cancer types, and its overexpression is correlated with the malignant progression. ZEB2 transcriptionally represses epithelial genes, such as E-cadherin (CDH1), by directly binding to the promoter of the genes it regulates and activating mesenchymal genes by a mechanism in which there is no full agreement. Recent studies showed that EMT-TFs interact with epigenetic regulatory enzymes that alter the epigenome, thereby providing another level of control. The role of epigenetic regulation on ZEB2 function is not well understood. In this study, we aimed to characterize the epigenetic effect of ZEB2 repressive function on the regulation of a small Rab GTPase RAB25. RESULTS: Using cellular models with conditional ZEB2 expression, we show a clear transcriptional repression of RAB25 and CDH1. RAB25 contributes to the partial suppression of ZEB2-mediated cell migration. Furthermore, a highly significant reverse correlation between RAB25 and ZEB2 expression in several human cancer types could be identified. Mechanistically, ZEB2 binds specifically to E-box sequences on the RAB25 promoter. ZEB2 binding is associated with the local increase in DNA methylation requiring DNA methyltransferases as well as histone deacetylation (H3K9Ac) depending on the activity of SIRT1. Surprisingly, SIRT1 and DNMTs did not interact directly with ZEB2, and while SIRT1 inhibition decreased the stability of long-term repression, it did not prevent down-regulation of RAB25 and CDH1 by ZEB2. CONCLUSIONS: ZEB2 expression is resulting in drastic changes at the chromatin level with both clear DNA hypermethylation and histone modifications. Here, we revealed that SIRT1-mediated H3K9 deacetylation helps to maintain gene repression but is not required for the direct ZEB2 repressive function. Targeting epigenetic enzymes to prevent EMT is an appealing approach to limit cancer dissemination, but inhibiting SIRT1 activity alone might have limited effect and will require drug combination to efficiently prevent EMT.


Asunto(s)
Epigénesis Genética , Transición Epitelial-Mesenquimal/fisiología , Sirtuina 1/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Proteínas de Unión al GTP rab/genética , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Metilación de ADN , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Molécula de Adhesión Celular Epitelial/genética , Molécula de Adhesión Celular Epitelial/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Regiones Promotoras Genéticas , Sirtuina 1/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Proteínas de Unión al GTP rab/metabolismo
9.
J Exp Med ; 213(6): 897-911, 2016 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-27185854

RESUMEN

Plasmacytoid dendritic cells (DCs [pDCs]) develop from pre-pDCs, whereas two lineages of conventional DCs (cDCs; cDC1s and cDC2s) develop from lineage-committed pre-cDCs. Several transcription factors (TFs) have been implicated in regulating the development of pDCs (E2-2 and Id2) and cDC1s (Irf8, Id2, and Batf3); however, those required for the early commitment of pre-cDCs toward the cDC2 lineage are unknown. Here, we identify the TF zinc finger E box-binding homeobox 2 (Zeb2) to play a crucial role in regulating DC development. Zeb2 was expressed from the pre-pDC and pre-cDC stage onward and highly expressed in mature pDCs and cDC2s. Mice conditionally lacking Zeb2 in CD11c(+) cells had a cell-intrinsic reduction in pDCs and cDC2s, coupled with an increase in cDC1s. Conversely, mice in which CD11c(+) cells overexpressed Zeb2 displayed a reduction in cDC1s. This was accompanied by altered expression of Id2, which was up-regulated in cDC2s and pDCs from conditional knockout mice. Zeb2 chromatin immunoprecipitation analysis revealed Id2 to be a direct target of Zeb2. Thus, we conclude that Zeb2 regulates commitment to both the cDC2 and pDC lineages through repression of Id2.


Asunto(s)
Células Dendríticas/inmunología , Proteínas de Homeodominio/inmunología , Proteína 2 Inhibidora de la Diferenciación/inmunología , Células Plasmáticas/inmunología , Proteínas Represoras/inmunología , Regulación hacia Arriba/inmunología , Animales , Células Dendríticas/citología , Proteínas de Homeodominio/genética , Proteína 2 Inhibidora de la Diferenciación/genética , Ratones , Ratones Noqueados , Células Plasmáticas/citología , Proteínas Represoras/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc
10.
Cell Rep ; 15(2): 274-87, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27050509

RESUMEN

Successful immunogenic apoptosis in experimental cancer therapy depends on the induction of strong host anti-tumor responses. Given that tumors are often resistant to apoptosis, it is important to identify alternative molecular mechanisms that elicit immunogenic cell death. We have developed a genetic model in which direct dimerization of FADD combined with inducible expression of RIPK3 promotes necroptosis. We report that necroptotic cancer cells release damage-associated molecular patterns and promote maturation of dendritic cells, the cross-priming of cytotoxic T cells, and the production of IFN-γ in response to tumor antigen stimulation. Using both FADD-dependent and FADD-independent RIPK3 induction systems, we demonstrate the efficient vaccination potential of immunogenic necroptotic cells. Our study broadens the current concept of immunogenic cell death and opens doors for the development of new strategies in cancer therapy.


Asunto(s)
Antineoplásicos/inmunología , Apoptosis , Inmunidad , Neoplasias/inmunología , Vacunación , Alarminas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quimiocinas/metabolismo , Reactividad Cruzada/efectos de los fármacos , Reactividad Cruzada/inmunología , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Inmunidad/efectos de los fármacos , Ligandos , Ratones , Modelos Biológicos , FN-kappa B/metabolismo , Necrosis , Fagocitosis/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Tetraciclina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA