Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 144(5): 552-564, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38820589

RESUMEN

ABSTRACT: Chronic kidney disease (CKD) is a major contributor to morbidity and mortality in sickle cell disease (SCD). Anemia, induced by chronic persistent hemolysis, is associated with the progressive deterioration of renal health, resulting in CKD. Moreover, patients with SCD experience acute kidney injury (AKI), a risk factor for CKD, often during vaso-occlusive crisis associated with acute intravascular hemolysis. However, the mechanisms of hemolysis-driven pathogenesis of the AKI-to-CKD transition in SCD remain elusive. Here, we investigated the role of increased renovascular rarefaction and the resulting substantial loss of the vascular endothelial protein C receptor (EPCR) in the progressive deterioration of renal function in transgenic SCD mice. Multiple hemolytic events raised circulating levels of soluble EPCR (sEPCR), indicating loss of EPCR from the cell surface. Using bone marrow transplantation and super-resolution ultrasound imaging, we demonstrated that SCD mice overexpressing EPCR were protective against heme-induced CKD development. In a cohort of patients with SCD, plasma sEPCR was significantly higher in individuals with CKD than in those without CKD. This study concludes that multiple hemolytic events may trigger CKD in SCD through the gradual loss of renovascular EPCR. Thus, the restoration of EPCR may be a therapeutic target, and plasma sEPCR can be developed as a prognostic marker for sickle CKD.


Asunto(s)
Anemia de Células Falciformes , Receptor de Proteína C Endotelial , Hemo , Ratones Transgénicos , Insuficiencia Renal Crónica , Animales , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/patología , Anemia de Células Falciformes/metabolismo , Anemia de Células Falciformes/sangre , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/etiología , Receptor de Proteína C Endotelial/metabolismo , Receptor de Proteína C Endotelial/genética , Ratones , Hemo/metabolismo , Humanos , Masculino , Femenino , Hemólisis , Riñón/metabolismo , Riñón/patología
2.
Artículo en Inglés | MEDLINE | ID: mdl-39361724

RESUMEN

Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases with important roles in kidney homeostasis and pathology. While capable of collectively degrading each component of the extracellular matrix, MMPs also degrade nonmatrix substrates to regulate inflammation, epithelial plasticity, proliferation, apoptosis, and angiogenesis. More recently, intriguing mechanisms that directly alter podocyte biology have been described. There is now irrefutable evidence for MMP dysregulation in many types of kidney disease including acute kidney injury, diabetic and hypertensive nephropathy, polycystic kidney disease and Alport syndrome. This updated review will detail the complex biology of MMPs in kidney disease.

3.
J Am Soc Nephrol ; 34(4): 619-640, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36758125

RESUMEN

SIGNIFICANCE STATEMENT: Loss of function of the 2Cl - /H + antiporter ClC-5 in Dent disease causes an unknown impairment in endocytic traffic, leading to tubular proteinuria. The authors integrated data from biochemical and quantitative imaging studies in proximal tubule cells into a mathematical model to determine that loss of ClC-5 impairs endosome acidification and delays early endosome maturation in proximal tubule cells, resulting in reduced megalin recycling, surface expression, and half-life. Studies in a Dent mouse model also revealed subsegment-specific differences in the effects of ClC-5 knockout on proximal tubule subsegments. The approach provides a template to dissect the effects of mutations or perturbations that alter tubular recovery of filtered proteins from the level of individual cells to the entire proximal tubule axis. BACKGROUND: Loss of function of the 2Cl - /H + antiporter ClC-5 in Dent disease impairs the uptake of filtered proteins by the kidney proximal tubule, resulting in tubular proteinuria. Reduced posttranslational stability of megalin and cubilin, the receptors that bind to and recover filtered proteins, is believed to underlie the tubular defect. How loss of ClC-5 leads to reduced receptor expression remains unknown. METHODS: We used biochemical and quantitative imaging data to adapt a mathematical model of megalin traffic in ClC-5 knockout and control cells. Studies in ClC-5 knockout mice were performed to describe the effect of ClC-5 knockout on megalin traffic in the S1 segment and along the proximal tubule axis. RESULTS: The model predicts that ClC-5 knockout cells have reduced rates of exit from early endosomes, resulting in decreased megalin recycling, surface expression, and half-life. Early endosomes had lower [Cl - ] and higher pH. We observed more profound effects in ClC-5 knockout cells expressing the pathogenic ClC-5 E211G mutant. Alterations in the cellular distribution of megalin in ClC-5 knockout mice were consistent with delayed endosome maturation and reduced recycling. Greater reductions in megalin expression were observed in the proximal tubule S2 cells compared with S1, with consequences to the profile of protein retrieval along the proximal tubule axis. CONCLUSIONS: Delayed early endosome maturation due to impaired acidification and reduced [Cl - ] accumulation is the primary mediator of reduced proximal tubule receptor expression and tubular proteinuria in Dent disease. Rapid endosome maturation in proximal tubule cells is critical for the efficient recovery of filtered proteins.


Asunto(s)
Enfermedad de Dent , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad , Ratones , Animales , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Enfermedad de Dent/genética , Enfermedad de Dent/metabolismo , Endocitosis , Proteinuria/patología , Endosomas/metabolismo , Túbulos Renales Proximales/metabolismo , Modelos Animales de Enfermedad , Ratones Noqueados , Técnicas de Cultivo de Célula , Antiportadores
4.
Int J Mol Sci ; 25(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732210

RESUMEN

Investigating the role of podocytes in proteinuric disease is imperative to address the increasing global burden of chronic kidney disease (CKD). Studies strongly implicate increased levels of monocyte chemoattractant protein-1 (MCP-1/CCL2) in proteinuric CKD. Since podocytes express the receptor for MCP-1 (i.e., CCR2), we hypothesized that podocyte-specific MCP-1 production in response to stimuli could activate its receptor in an autocrine manner, leading to further podocyte injury. To test this hypothesis, we generated podocyte-specific MCP-1 knockout mice (Podo-Mcp-1fl/fl) and exposed them to proteinuric injury induced by either angiotensin II (Ang II; 1.5 mg/kg/d, osmotic minipump) or Adriamycin (Adr; 18 mg/kg, intravenous bolus). At baseline, there were no between-group differences in body weight, histology, albuminuria, and podocyte markers. After 28 days, there were no between-group differences in survival, change in body weight, albuminuria, kidney function, glomerular injury, and tubulointerstitial fibrosis. The lack of protection in the knockout mice suggests that podocyte-specific MCP-1 production is not a major contributor to either Ang II- or Adr-induced glomerular disease, implicating that another cell type is the source of pathogenic MCP-1 production in CKD.


Asunto(s)
Angiotensina II , Quimiocina CCL2 , Doxorrubicina , Ratones Noqueados , Podocitos , Animales , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Podocitos/metabolismo , Podocitos/patología , Podocitos/efectos de los fármacos , Doxorrubicina/efectos adversos , Ratones , Masculino , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Eliminación de Gen , Modelos Animales de Enfermedad
5.
Am J Physiol Renal Physiol ; 322(1): F14-F26, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34747197

RESUMEN

The multiligand receptors megalin (Lrp2) and cubilin (Cubn) and their endocytic adaptor protein Dab2 (Dab2) play essential roles in maintaining the integrity of the apical endocytic pathway of proximal tubule (PT) cells and have complex and poorly understood roles in the development of chronic kidney disease. Here, we used RNA-sequencing and CRISPR/Cas9 knockout (KO) technology in a well-differentiated cell culture model to identify PT-specific transcriptional changes that are directly consequent to the loss of megalin, cubilin, or Dab2 expression. KO of Lrp2 had the greatest transcriptional effect, and nearly all genes whose expression was affected in Cubn KO and Dab2 KO cells were also changed in Lrp2 KO cells. Pathway analysis and more granular inspection of the altered gene profiles suggested changes in pathways with immunomodulatory functions that might trigger the pathological changes observed in KO mice and patients with Donnai-Barrow syndrome. In addition, differences in transcription patterns between Lrp2 and Dab2 KO cells suggested the possibility that altered spatial signaling by aberrantly localized receptors contributes to transcriptional changes upon the disruption of PT endocytic function. A reduction in transcripts encoding sodium-glucose cotransporter isoform 2 was confirmed in Lrp2 KO mouse kidney lysates by quantitative PCR analysis. Our results highlight the role of megalin as a master regulator and coordinator of ion transport, metabolism, and endocytosis in the PT. Compared with the studies in animal models, this approach provides a means to identify PT-specific transcriptional changes that are directly consequent to the loss of these target genes.NEW & NOTEWORTHY Megalin and cubilin receptors together with their adaptor protein Dab2 represent major components of the endocytic machinery responsible for efficient uptake of filtered proteins by the proximal tubule (PT). Dab2 and megalin expression have been implicated as both positive and negative modulators of kidney disease. We used RNA sequencing to knock out CRISPR/Cas9 cubilin, megalin, and Dab2 in highly differentiated PT cells to identify PT-specific changes that are directly consequent to knockout of each component.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Túbulos Renales Proximales/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Receptores de Superficie Celular/metabolismo , Transcripción Genética , Proteínas Adaptadoras Transductoras de Señales/genética , Agenesia del Cuerpo Calloso/genética , Agenesia del Cuerpo Calloso/metabolismo , Agenesia del Cuerpo Calloso/patología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Células Cultivadas , Bases de Datos Genéticas , Redes Reguladoras de Genes , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/metabolismo , Pérdida Auditiva Sensorineural/patología , Hernias Diafragmáticas Congénitas/genética , Hernias Diafragmáticas Congénitas/metabolismo , Hernias Diafragmáticas Congénitas/patología , Humanos , Túbulos Renales Proximales/patología , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Masculino , Ratones Noqueados , Monodelphis , Miopía/genética , Miopía/metabolismo , Miopía/patología , Proteinuria/genética , Proteinuria/metabolismo , Proteinuria/patología , Receptores de Superficie Celular/genética , Defectos Congénitos del Transporte Tubular Renal/genética , Defectos Congénitos del Transporte Tubular Renal/metabolismo , Defectos Congénitos del Transporte Tubular Renal/patología
6.
Kidney Int ; 101(1): 18-20, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34991804

RESUMEN

The effect of spaceflight on kidney function requires additional study. The nuclear factor erythroid 2-related factor 2 knockout mouse became the first genetically engineered strain sent into orbit and to return to earth alive. In this issue, Suzuki et al. provide kidney analyses of these knockout and wild-type mice. All spaceflight mice exhibited gene changes that could suppress levels of active vitamin D and increase blood pressure. Nuclear factor erythroid 2-related factor 2 may alter expression of genes related to lipid excretion and metabolism.


Asunto(s)
Líquidos Corporales , Vuelo Espacial , Animales , Riñón , Ratones , Ratones Noqueados
7.
Kidney Int ; 102(5): 1042-1056, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35931300

RESUMEN

Defective DNA repair pathways contribute to the development of chronic kidney disease (CKD) in humans. However, the molecular mechanisms underlying DNA damage-induced CKD pathogenesis are not well understood. Here, we investigated the role of tubular cell DNA damage in the pathogenesis of CKD using mice in which the DNA repair protein Fan1 was knocked out. The phenotype of these mice is orthologous to the human DNA damage syndrome, karyomegalic interstitial nephritis (KIN). Inactivation of Fan1 in kidney proximal tubule cells sensitized the kidneys to genotoxic and obstructive injury characterized by replication stress and persistent DNA damage response activity. Accumulation of DNA damage in Fan1 tubular cells induced epithelial dedifferentiation and tubular injury. Characteristic to KIN, cells with chronic DNA damage failed to complete mitosis and underwent polyploidization. In vitro and in vivo studies showed that polyploidization was caused by the overexpression of DNA replication factors CDT1 and CDC6 in FAN1 deficient cells. Mechanistically, inhibiting DNA replication with Roscovitine reduced tubular injury, blocked the development of KIN and mitigated kidney function in these Fan1 knockout mice. Thus, our data delineate a mechanistic pathway by which persistent DNA damage in the kidney tubular cells leads to kidney injury and development of CKD. Furthermore, therapeutic modulation of cell cycle activity may provide an opportunity to mitigate the DNA damage response induced CKD progression.


Asunto(s)
Nefritis Intersticial , Insuficiencia Renal Crónica , Animales , Humanos , Ratones , Daño del ADN , Reparación del ADN , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Fibrosis , Riñón/patología , Ratones Noqueados , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , Nefritis Intersticial/patología , Insuficiencia Renal Crónica/etiología , Roscovitina
8.
Blood ; 135(13): 1044-1048, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32043112

RESUMEN

Acute kidney injury (AKI) is a major clinical concern in sickle cell disease (SCD). Clinical evidence suggests that red cell alarmins may cause AKI in SCD, however, the sterile inflammatory process involved has hitherto not been defined. We discovered that hemopexin deficiency in SCD is associated with a compensatory increase in α-1-microglobulin (A1M), resulting in an up to 10-fold higher A1M-to-hemopexin ratio in SCD compared with healthy controls. The A1M-to-hemopexin ratio is associated with markers of hemolysis and AKI in both humans and mice with SCD. Studies in mice showed that excess heme is directed to the kidneys in SCD in a process involving A1M causing AKI, whereas excess heme in controls is transported to the liver as expected. Using genetic and bone marrow chimeric tools, we confirmed that hemopexin deficiency promotes AKI in sickle mice under hemolytic stress. However, AKI was blocked when hemopexin deficiency in sickle mice was corrected with infusions of purified hemopexin prior to the induction of hemolytic stress. This study identifies acquired hemopexin deficiency as a risk factor of AKI in SCD and hemopexin replacement as a potential therapy.


Asunto(s)
Lesión Renal Aguda/etiología , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/genética , Susceptibilidad a Enfermedades , Hemopexina/deficiencia , Lesión Renal Aguda/diagnóstico , Animales , Biopsia , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Eritrocitos/metabolismo , Tasa de Filtración Glomerular , Hemo/metabolismo , Humanos , Pruebas de Función Renal , Ratones , Modelos Biológicos
9.
J Biol Chem ; 295(15): 4950-4962, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32079677

RESUMEN

The paraoxonase (PON) family comprises three highly conserved members: PON1, PON2, and PON3. They are orthologs of Caenorhabditis elegans MEC-6, an endoplasmic reticulum-resident chaperone that has a critical role in proper assembly and surface expression of the touch-sensing degenerin channel in nematodes. We have shown recently that MEC-6 and PON2 negatively regulate functional expression of the epithelial Na+ channel (ENaC), suggesting that the chaperone function is conserved within this family. We hypothesized that other PON family members also modulate ion channel expression. Pon3 is specifically expressed in the aldosterone-sensitive distal tubules in the mouse kidney. We found here that knocking down endogenous Pon3 in mouse cortical collecting duct cells enhanced Na+ transport, which was associated with increased γENaC abundance. We further examined Pon3 regulation of ENaC in two heterologous expression systems, Fisher rat thyroid cells and Xenopus oocytes. Pon3 coimmunoprecipitated with each of the three ENaC subunits in Fisher rat thyroid cells. As a result of this interaction, the whole-cell and surface abundance of ENaC α and γ subunits was reduced by Pon3. When expressed in oocytes, Pon3 inhibited ENaC-mediated amiloride-sensitive Na+ currents, in part by reducing the surface expression of ENaC. In contrast, Pon3 did not alter the response of ENaC to chymotrypsin-mediated proteolytic activation or [2-(trimethylammonium)ethyl]methanethiosulfonate-induced activation of αßS518Cγ, suggesting that Pon3 does not affect channel open probability. Together, our results suggest that PON3 regulates ENaC expression by inhibiting its biogenesis and/or trafficking.


Asunto(s)
Arildialquilfosfatasa/metabolismo , Membrana Celular/metabolismo , Canales Epiteliales de Sodio/metabolismo , Oocitos/metabolismo , Sodio/metabolismo , Glándula Tiroides/metabolismo , Animales , Arildialquilfosfatasa/genética , Canales Epiteliales de Sodio/genética , Transporte Iónico , Ratones , Chaperonas Moleculares , Oocitos/citología , Ratas , Transducción de Señal , Glándula Tiroides/citología , Xenopus laevis
10.
Kidney Int ; 99(1): 102-116, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32818518

RESUMEN

The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway upregulates key cellular defenses. Clinical trials are utilizing pharmacologic Nrf2 inducers such as bardoxolone methyl to treat chronic kidney disease, but Nrf2 activation has been linked to a paradoxical increase in proteinuria. To understand this effect, we examined genetically engineered mice with elevated Nrf2 signaling due to reduced expression of the Nrf2 inhibitor, Kelch-like ECH-associated protein 1 (Keap1). These Keap1FA/FA mice lacked baseline proteinuria but exhibited increased proteinuria in experimental models evoked by adriamycin, angiotensin II, or protein overload. After injury, Keap1FA/FA mice had increased glomerulosclerosis, nephrin disruption and shedding, podocyte injury, foot process effacement, and interstitial fibrosis. Keap1FA/FA mice also had higher daytime blood pressures and lower heart rates measured by radiotelemetry. Conversely, Nrf2 knockout mice were protected from proteinuria. We also examined the pharmacologic Nrf2 inducer CDDO-Im. Compared to angiotensin II alone, the combination of angiotensin II and CDDO-Im significantly increased proteinuria, a phenomenon not observed in Nrf2 knockout mice. This effect was not accompanied by additional increases in blood pressure. Finally, Nrf2 was found to be upregulated in the glomeruli of patients with focal segmental glomerulosclerosis, diabetic nephropathy, fibrillary glomerulonephritis, and membranous nephropathy. Thus, our studies demonstrate that Nrf2 induction in mice may exacerbate proteinuria in chronic kidney disease.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Insuficiencia Renal Crónica , Animales , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteinuria/genética , Insuficiencia Renal Crónica/genética
11.
Int J Mol Sci ; 22(20)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34681576

RESUMEN

Acute kidney injury due to renal ischemia-reperfusion injury (IRI) may lead to chronic or end stage kidney disease. A greater understanding of the cellular mechanisms underlying IRI are required to develop therapeutic options aimed at limiting or reversing damage from IRI. Prior work has shown that deletion of the α subunit of the epithelial Na+ channel (ENaC) in endothelial cells protects from IRI by increasing the availability of nitric oxide. While canonical ENaCs consist of an α, ß, and γ subunit, there is evidence of non-canonical ENaC expression in endothelial cells involving the α subunit. We therefore tested whether the deletion of the γ subunit of ENaC also protects mice from IRI to differentiate between these channel configurations. Mice with endothelial-specific deletion of the γ subunit and control littermates were subjected to unilateral renal artery occlusion followed by 48 h of reperfusion. No significant difference was noted in injury between the two groups as assessed by serum creatinine and blood urea nitrogen, levels of specific kidney injury markers, and histological examination. While deletion of the γ subunit did not alter infiltration of immune cells or cytokine message, it was associated with an increase in levels of total and phosphorylated endothelial nitric oxide synthase (eNOS) in the injured kidneys. Our studies demonstrate that even though deletion of the γ subunit of ENaC may allow for greater activation of eNOS, this is not sufficient to prevent IRI, suggesting the protective effects of α subunit deletion may be due, in part, to other mechanisms.


Asunto(s)
Lesión Renal Aguda/genética , Células Endoteliales/metabolismo , Canales Epiteliales de Sodio/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Daño por Reperfusión/genética , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Animales , Nitrógeno de la Urea Sanguínea , Estudios de Casos y Controles , Línea Celular , Creatinina/sangre , Citocinas/metabolismo , Modelos Animales de Enfermedad , Canales Epiteliales de Sodio/metabolismo , Eliminación de Gen , Masculino , Ratones , Fosforilación , Daño por Reperfusión/complicaciones , Daño por Reperfusión/metabolismo
12.
Am J Physiol Renal Physiol ; 318(5): F1284-F1294, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32200668

RESUMEN

Proximal tubule (PT) cells express a single saturable albumin-binding site whose affinity matches the estimated tubular concentration of albumin; however, albumin uptake capacity is greatly increased under nephrotic conditions. Deciphering the individual contributions of megalin and cubilin to the uptake of normal and nephrotic levels of albumin is impossible in vivo, as knockout of megalin in mice globally disrupts PT endocytic uptake. We quantified concentration-dependent albumin uptake in an optimized opossum kidney cell culture model and fit the kinetic profiles to identify albumin-binding affinities and uptake capacities. Mathematical deconvolution fit best to a three-component model that included saturable high- and low-affinity uptake sites for albumin and underlying nonsaturable uptake consistent with passive uptake of albumin in the fluid phase. Knockdown of cubilin or its chaperone amnionless selectively reduced the binding capacity of the high-affinity site, whereas knockdown of megalin impacted the low-affinity site. Knockdown of disabled-2 decreased the capacities of both binding sites. Additionally, knockdown of megalin or disabled-2 profoundly inhibited the uptake of a fluid phase marker, with cubilin knockdown having a more modest effect. We propose a novel model for albumin retrieval along the PT in which cubilin and megalin receptors have different functions in recovering filtered albumin in proximal tubule cells. Cubilin binding to albumin is tuned to capture normally filtered levels of the protein. In contrast, megalin binding to albumin is of lower affinity, and its expression is also essential for enabling the recovery of high concentrations of albumin in the fluid phase.


Asunto(s)
Albuminuria/metabolismo , Túbulos Renales Proximales/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Nefrosis/metabolismo , Receptores de Superficie Celular/metabolismo , Albúmina Sérica/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Albuminuria/genética , Albuminuria/fisiopatología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Endocitosis , Femenino , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Túbulos Renales Proximales/fisiopatología , Cinética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/deficiencia , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Modelos Biológicos , Nefrosis/genética , Nefrosis/fisiopatología , Zarigüeyas , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/genética
13.
Kidney Int ; 98(2): 355-365, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32600826

RESUMEN

Acute kidney injury (AKI) is a risk factor for the development of chronic kidney disease (CKD). One mechanism for this phenomenon is renal microvascular rarefaction and subsequent chronic impairment in perfusion. However, diagnostic tools to monitor the renal microvasculature in a noninvasive and quantitative manner are still lacking. Ultrasound super-resolution imaging is an emerging technology that can identify microvessels with unprecedented resolution. Here, we applied this imaging technique to identify microvessels in the unilateral ischemia-reperfusion injury mouse model of AKI-to-CKD progression in vivo. Kidneys from 21 and 42 day post- ischemia-reperfusion injury, the contralateral uninjured kidneys, and kidneys from sham-operated mice were examined by ultrasound super-resolution and histology. Renal microvessels were successfully identified by this imaging modality with a resolution down to 32 µm. Renal fibrosis was observed in all kidneys with ischemia-reperfusion injury and was associated with a significant reduction in kidney size, cortical thickness, relative blood volume, and microvascular density as assessed by this imaging. Tortuosity of the cortical microvasculature was also significantly increased at 42 days compared to sham. These vessel density measurements correlated significantly with CD31 immunohistochemistry (R2=0.77). Thus, ultrasound super-resolution imaging provides unprecedented resolution and is capable of noninvasive quantification of renal vasculature changes associated with AKI-to-CKD progression in mice. Hence, this technique could be a promising diagnostic tool for monitoring progressive kidney disease.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Daño por Reperfusión , Lesión Renal Aguda/diagnóstico por imagen , Animales , Modelos Animales de Enfermedad , Riñón/diagnóstico por imagen , Ratones , Microvasos/diagnóstico por imagen , Daño por Reperfusión/diagnóstico por imagen
15.
J Neurophysiol ; 122(1): 358-367, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31091159

RESUMEN

Renal denervation lowers arterial blood pressure (ABP) in multiple clinical trials and some experimental models of hypertension. These antihypertensive effects have been attributed to the removal of renal afferent nerves. The purpose of the present study was to define the function, anatomy, and contribution of mouse renal sensory neurons to a renal nerve-dependent model of hypertension. First, electrical stimulation of mouse renal afferent nerves produced frequency-dependent increases in ABP that were eliminated by ganglionic blockade. Stimulus-triggered averaging revealed renal afferent stimulation significantly increased splanchnic, renal, and lumbar sympathetic nerve activity (SNA). Second, kidney injection of wheat germ agglutinin into male C57Bl6 mice (12-14 wk; Jackson Laboratories) produced ipsilateral labeling in the T11-L2 dorsal root ganglia. Next, 2-kidney 1-clip (2K1C) hypertension was produced in male C57Bl6 mice (12-14 wk; Jackson Laboratories) by placement of a 0.5-mm length of polytetrafluoroethylene tubing around the left renal artery. 2K1C mice displayed an elevated ABP measured via telemetry and a greater fall in mean ABP to ganglionic blockade at day 14 or 21 vs. day 0. Renal afferent discharge was significantly higher in 2K1C-clipped vs. 2K1C-unclipped or sham kidneys. In addition, 2K1C-clipped vs. 2K1C-unclipped or sham kidneys had lower renal mass and higher mRNA levels of several proinflammatory cytokines. Finally, both ipsilateral renal denervation (10% phenol) or selective denervation of renal afferent nerves (periaxonal application of 33 mM capsaicin) at time of clipping resulted in lower ABP of 2K1C mice at day 14 or 21. These findings suggest mouse renal sensory neurons are activated to increase SNA and ABP in 2K1C hypertension. NEW & NOTEWORTHY This study documents the function, anatomy, and contribution of mouse renal sensory nerves to neurogenic hypertension produced by renal stenosis. Activation of renal afferents increased sympathetic nerve activity and blood pressure. Renal afferent activity was elevated in hypertensive mice, and renal afferent denervation lowered blood pressure. Clinically, patients with renal stenosis have been excluded from clinical trials for renal denervation, but this study highlights the potential therapeutic efficacy to target renal nerves in these patients.


Asunto(s)
Presión Sanguínea , Hipertensión Renal/fisiopatología , Células Receptoras Sensoriales/fisiología , Sistema Nervioso Simpático/fisiopatología , Animales , Ganglios Espinales/fisiopatología , Hipertensión Renal/cirugía , Riñón/inervación , Riñón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Simpatectomía
17.
Adv Exp Med Biol ; 1165: 253-283, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31399969

RESUMEN

Renal fibrosis is characterized by excessive deposition of extracellular matrix (ECM), leading to destruction of normal kidney architecture and loss of renal function. The activation of α-smooth muscle actin-positive myofibroblasts plays a key role in this process. After kidney injury, profibrotic factors are secreted by injured tubular epithelia and infiltrated inflammatory cells to promote complex cascades of signaling events leading to myofibroblastic activation, proliferation, and ECM production. The origins of myofibroblasts remain controversial, and possibilities include resident fibroblasts, pericytes, bone marrow-derived cells, and endothelial cells. Recent evidence supports the existence of localized fibrogenic niches, which provides a specialized tissue microenvironment for myofibroblastic activation and expansion. Myofibroblasts often undergo epigenetic modifications, leading to their sustained activation and resistance to apoptosis. In this chapter, we discuss the origins, heterogeneity, and activation of myofibroblasts in diseased kidneys. We also highlight novel strategies for the treatment of patients with fibrotic kidney diseases.


Asunto(s)
Enfermedades Renales/fisiopatología , Miofibroblastos/citología , Linaje de la Célula , Matriz Extracelular , Fibrosis , Humanos , Riñón/patología
18.
Nitric Oxide ; 2018 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-29605557

RESUMEN

The kidneys are vital organs responsible for maintaining body fluid homeostasis within proper physiologic ranges. Kidney disease is an epidemic clinical problem causing significant morbidity and mortality, and current treatments are limited to renin-angiotensin system blockade or renal replacement therapy for the majority of affected individuals. There is a critical, unmet need for novel pharmacological agents to improve the outcome of patients with kidney disease. Nitro-oleic acid (NO2-OA) is an endogenously generated electrophilic compound with the capacity to modify thiols in proteins, altering their function. The most important targets appear to be the Keap1/Nrf2 and NF-κB pathways, which have widespread effects on antioxidant, detoxifying, and inflammatory responses in cells and tissues. Through these and potentially additional protective actions, NO2-OA may be capable of preserving or enhancing kidney function in acute and chronic kidney diseases.

19.
Mediators Inflamm ; 2018: 5103672, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30405320

RESUMEN

Chronic inflammation has an important role in the development and progression of most fibrotic diseases, for which no effective treatments exist. Tubulointerstitial fibrosis (TF) is characterized by irreversible deposition of fibrous tissue in chronic kidney diseases. Prolonged injurious stimuli and chronic inflammation regulate downstream events that lead to TF. In recent years, interleukin-17 (IL-17) has been strongly linked to organ fibrosis. However, the role of IL-17 receptor signaling in TF is an active area of debate. Using the unilateral ureteral obstruction (UUO) mouse model of TF, we show that IL-17 receptor A-deficient mice (Il17ra-/- ) exhibit increased TF in the obstructed kidney. Consequently, overexpression of IL-17 restored protection in mice with UUO. Reduced renal expression of matrix-degrading enzymes results in failure to degrade ECM proteins, thus contributing to the exaggerated TF phenotype in Il17ra -/- mice. We demonstrate that the antifibrotic kallikrein-kinin system (KKS) is activated in the obstructed kidney in an IL-17-dependent manner. Accordingly, Il17ra-/- mice receiving bradykinin, the major end-product of KKS activation, prevents TF development by upregulating the expression of matrix-degrading enzymes. Finally, we show that treatment with specific agonists for bradykinin receptor 1 or 2 confers renal protection against TF. Overall, our results highlight an intriguing link between IL-17 and activation of KKS in protection against TF, the common final outcome of chronic kidney conditions leading to devastating end-stage renal diseases.


Asunto(s)
Fibrosis/metabolismo , Fibrosis/patología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Riñón/metabolismo , Riñón/patología , Receptores de Interleucina-17/metabolismo , Animales , Western Blotting , Enfermedades Renales/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Interleucina-17/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
20.
J Am Soc Nephrol ; 28(3): 785-801, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27612995

RESUMEN

Kidney fibrosis initiates at certain focal sites in which the fibrogenic niche provides a specialized microenvironment that facilitates fibroblast activation and proliferation. However, the molecular identity of these fibrogenic niches is poorly characterized. Here, we determined whether tenascin-C (TNC), an extracellular matrix glycoprotein, is a component of the fibrogenic niche in kidney fibrosis. In vivo, TNC expression increased rapidly in kidneys subjected to unilateral ureteral obstruction or ischemia/reperfusion injury and predominantly localized at the foci rich in fibroblasts in renal interstitium. In vitro, TNC selectively promoted renal interstitial fibroblast proliferation, bromodeoxyuridine incorporation, and the expression of proliferation-related genes. The mitogenic activity of TNC required the integrin/focal adhesion kinase/mitogen-activated protein kinase signaling cascade. Using decellularized extracellular matrix scaffolds, we found that TNC-enriched scaffolds facilitated fibroblast proliferation, whereas TNC-deprived scaffolds inhibited proliferation. Matrix scaffold prepared from fibrotic kidney also promoted greater ex vivo fibroblast proliferation than did scaffolds prepared from healthy kidney. Conversely, small interfering RNA-mediated knockdown of TNC in vivo repressed injury-induced fibroblast expansion and renal fibrosis. These studies identify TNC as a major constituent of the fibrogenic niche that promotes fibroblast proliferation, and illustrate a pivotal role for the TNC-enriched microenvironment in kidney fibrogenesis.


Asunto(s)
Enfermedades Renales/etiología , Enfermedades Renales/patología , Riñón/patología , Tenascina/análisis , Animales , Proliferación Celular , Fibroblastos/patología , Fibrosis/etiología , Riñón/química , Masculino , Ratones , Ratones Endogámicos C57BL , Tenascina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA