Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Am J Respir Crit Care Med ; 209(11): 1314-1327, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38170674

RESUMEN

Rationale: It is increasingly recognized that adults with preserved ratio impaired spirometry (PRISm) are prone to increased morbidity. However, the underlying pathophysiological mechanisms are unknown. Objectives: Evaluate the mechanisms of increased dyspnea and reduced exercise capacity in PRISm. Methods: We completed a cross-sectional analysis of the CanCOLD (Canadian Cohort Obstructive Lung Disease) population-based study. We compared physiological responses in 59 participants meeting PRISm spirometric criteria (post-bronchodilator FEV1 < 80% predicted and FEV1/FVC ⩾ 0.7), 264 control participants, and 170 ever-smokers with chronic obstructive pulmonary disease (COPD), at rest and during cardiopulmonary exercise testing. Measurements and Main Results: Individuals with PRISm had lower total lung, vital, and inspiratory capacities than healthy controls (all P < 0.05) and minimal small airway, pulmonary gas exchange, and radiographic parenchymal lung abnormalities. Compared with healthy controls, individuals with PRISm had higher dyspnea/[Formula: see text]o2 ratio at peak exercise (4.0 ± 2.2 vs. 2.9 ± 1.9 Borg units/L/min; P < 0.001) and lower [Formula: see text]o2peak (74 ± 22% predicted vs. 96 ± 25% predicted; P < 0.001). At standardized submaximal work rates, individuals with PRISm had greater Vt/inspiratory capacity (Vt%IC; P < 0.001), reflecting inspiratory mechanical constraint. In contrast to participants with PRISm, those with COPD had characteristic small airways dysfunction, dynamic hyperinflation, and pulmonary gas exchange abnormalities. Despite these physiological differences among the three groups, the relationship between increasing dyspnea and Vt%IC during cardiopulmonary exercise testing was similar. Resting IC significantly correlated with [Formula: see text]o2peak (r = 0.65; P < 0.001) in the entire sample, even after adjusting for airflow limitation, gas trapping, and diffusing capacity. Conclusions: In individuals with PRISm, lower exercise capacity and higher exertional dyspnea than healthy controls were mainly explained by lower resting lung volumes and earlier onset of dynamic inspiratory mechanical constraints at relatively low work rates. Clinical trial registered with www.clinicaltrials.gov (NCT00920348).


Asunto(s)
Disnea , Tolerancia al Ejercicio , Enfermedad Pulmonar Obstructiva Crónica , Espirometría , Humanos , Masculino , Disnea/fisiopatología , Disnea/etiología , Femenino , Estudios Transversales , Persona de Mediana Edad , Anciano , Tolerancia al Ejercicio/fisiología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Prueba de Esfuerzo/métodos , Canadá , Volumen Espiratorio Forzado/fisiología
2.
Artículo en Inglés | MEDLINE | ID: mdl-38935874

RESUMEN

Rationale Dysanapsis refers to a mismatch between airway tree caliber and lung size arising early in life. Dysanapsis assessed by computed tomography (CT) is evident by early adulthood and associated with chronic obstructive pulmonary disease (COPD) risk later in life. Objective By examining the genetic factors associated with CT-assessed dysanapsis, we aimed to elucidate its molecular underpinnings and physiological significance across the lifespan. Methods We performed a genome-wide association study (GWAS) of CT-assessed dysanapsis in 11,951 adults, including individuals from two population-based and two COPD-enriched studies. We applied colocalization analysis to integrate GWAS and gene expression data from whole blood and lung. Genetic variants associated with dysanapsis were combined into a genetic risk score that was applied to examine association with lung function in children from a population-based birth cohort (n=1,278) and adults from the UK Biobank (n=369,157). Measurements and Main Results CT-assessed dysanapsis was associated with genetic variants from 21 independent signals in 19 gene regions, implicating HHIP, DSP, and NPNT as potential molecular targets based on colocalization of their expression. Higher dysanapsis genetic risk score was associated with obstructive spirometry among 5 year old children and among adults in the 5th, 6th and 7th decades of life. Conclusions CT-assessed dysanapsis is associated with variation in genes previously implicated in lung development and dysanapsis genetic risk is associated with obstructive lung function from early life through older adulthood. Dysanapsis may represent an endo-phenotype link between the genetic variations associated with lung function and COPD.

3.
Radiology ; 312(1): e233265, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39012250

RESUMEN

Background Pre-existing emphysema is recognized as an indicator of future worsening in patients with chronic obstructive pulmonary disease (COPD) when observed through CT imaging. However, it remains uncertain whether additional factors, such as the spatial compactness of CT emphysema, might also serve as predictors of disease progression. Purpose To evaluate the relationship between the compactness of CT emphysema voxels and emphysema progression. Materials and Methods This secondary analysis uses data from the prospective Canadian Cohort Obstructive Lung Disease (CanCOLD) study, examining CT images obtained in participants with and without COPD at baseline and a 3-year follow-up time point (November 2009 to November 2018). Measurements of forced expiratory volume in first second of expiration (FEV1) and diffusing capacity of lung for carbon monoxide (DLco) were collected. The normalized join-count (NJC) measurement from baseline CT images and lung density (LD) changes were analyzed. Emphysema progression was defined as an annualized LD change of less than half an SD below the mean of the participants without COPD with no smoking history. Multivariable linear and logistic regression models were used to assess the association between baseline CT NJC measurements and the annualized change in LD, FEV1, DLco, and emphysema progression versus nonprogression. Results A total of 524 participants (mean age, 66 years ± 10 [SD]; 293 male) (FEV1 percent predicted, 88% ± 19; FEV1/FVC, 67% ± 9; DLco percent predicted, 105% ± 25) were analyzed, 187 (36%) of whom had COPD. CT NJC was associated with the annualized change in LD (P < .001), FEV1 (P = .02), and DLco (P = .01). Additionally, CT NJC predicted emphysema progression versus nonprogression (odds ratio, 2.24; 95% CI: 1.37, 3.50; P < .001). Conclusion The spatial distribution, or "compactness," of CT emphysema voxels predicted emphysema progression in individuals with and without COPD. ClinicalTrials.gov Identifier: NCT00920348 © RSNA, 2024 Supplemental material is available for this article.


Asunto(s)
Progresión de la Enfermedad , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Tomografía Computarizada por Rayos X , Humanos , Masculino , Femenino , Enfisema Pulmonar/diagnóstico por imagen , Enfisema Pulmonar/fisiopatología , Tomografía Computarizada por Rayos X/métodos , Estudios Prospectivos , Anciano , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Canadá , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Valor Predictivo de las Pruebas
5.
ERJ Open Res ; 10(4)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39040582

RESUMEN

Background: Recent advances in texture-based computed tomography (CT) radiomics have demonstrated its potential for classifying COPD. Methods: Participants from the Canadian Cohort Obstructive Lung Disease (CanCOLD) study were evaluated. A total of 108 features were included: eight quantitative CT (qCT), 95 texture-based radiomic and five demographic features. Machine-learning models included demographics along with texture-based radiomics and/or qCT. Combinations of five feature selection and five classification methods were evaluated; a training dataset was used for feature selection and to train the models, and a testing dataset was used for model evaluation. Models for classifying COPD status and severity were evaluated using the area under the receiver operating characteristic curve (AUC) with DeLong's test for comparison. SHapely Additive exPlanations (SHAP) analysis was used to investigate the features selected. Results: A total of 1204 participants were evaluated (n=602 no COPD; n=602 COPD). There were no differences between the groups for sex (p=0.77) or body mass index (p=0.21). For classifying COPD status, the combination of demographics, texture-based radiomics and qCT performed better (AUC=0.87) than the combination of demographics and texture-based radiomics (AUC=0.81, p<0.05) or qCT alone (AUC=0.84, p<0.05). Similarly, for classifying COPD severity, the combination of demographics, texture-based radiomics and qCT performed better (AUC=0.81) than demographics and texture-based radiomics (AUC=0.72, p<0.05) or qCT alone (AUC=0.79, p<0.05). Texture-based radiomics and qCT features were among the top five features selected (15th percentile of the CT density histogram, CT total airway count, pack-years, CT grey-level distance zone matrix zone distance entropy, CT low-attenuation clusters) for classifying COPD status. Conclusion: Texture-based radiomics and conventional qCT features in combination improve machine­learning models for classification of COPD status and severity.

6.
Acad Radiol ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38627132

RESUMEN

RATIONALE: Although numerous candidate features exist for predicting risk of higher risk of healthcare utilization in patients with chronic obstructive pulmonary disease (COPD), the process for selecting the most discriminative features remains unclear. OBJECTIVE: The objective of this study was to develop a robust feature selection method to identify the most discriminative candidate features for predicting healthcare utilization in COPD, and compare the model performance with other common feature selection methods. MATERIALS AND METHODS: In this retrospective study, demographic, lung function measurements and CT images were collected from 454 COPD participants from the Canadian Cohort Obstructive Lung Disease study from 2010-2017. A follow-up visit was completed approximately 1.5 years later and participants reported healthcare utilization. CT analysis was performed for feature extraction. A two-step hybrid feature selection method was proposed that utilized: (1) sparse subspace learning with nonnegative matrix factorization, and, (2) genetic algorithm. Seven commonly used feature selection methods were also implemented that reported the top 10 or 20 features for comparison. Performance was evaluated using accuracy. RESULTS: Of the 454 COPD participants evaluated, 161 (35%) utilized healthcare services at follow-up. The accuracy for predicting subsequent healthcare utilization for the seven commonly used feature selection methods ranged from 72%-76% with the top 10 features, and 77%-80% with the top 20 features. Relative to these methods, hybrid feature selection obtained significantly higher accuracy for predicting subsequent healthcare utilization at 82% ± 3% (p < 0.05). Selected features with the proposed method included: DLCO, FEV1, RV, FVC, TAC, LAA950, Pi-10, LAA856, LAC total hole count, outer area RB1, wall area RB1, wall area and Jacobian. CONCLUSION: The hybrid feature selection method identified the most discriminative features for classifying individuals with and without future healthcare utilization, and increased the accuracy compared to other state-of-the-art approaches.

7.
Chest ; 166(1): 81-94, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38423279

RESUMEN

BACKGROUND: Exertional breathlessness is a cardinal symptom of cardiorespiratory disease. RESEARCH QUESTION: How does breathlessness abnormality, graded using normative reference equations during cardiopulmonary exercise testing (CPET), relate to self-reported and physiologic responses in people with chronic airflow limitation (CAL)? STUDY DESIGN AND METHODS: An analysis was done of people aged ≥ 40 years with CAL undergoing CPET in the Canadian Cohort Obstructive Lung Disease study. Breathlessness intensity ratings (Borg CR10 scale [0-10 category-ratio scale for breathlessness intensity rating]) were evaluated in relation to power output, rate of oxygen uptake, and minute ventilation at peak exercise, using normative reference equations as follows: (1) probability of breathlessness normality (probability of having an equal or greater Borg CR10 rating among healthy people; lower probability reflecting more severe breathlessness) and (2) presence of abnormal breathlessness (rating above the upper limit of normal). Associations with relevant participant-reported and physiologic outcomes were evaluated. RESULTS: We included 330 participants (44% women): mean ± SD age, 64 ± 10 years (range, 40-89 years); FEV1/FVC, 57.3% ± 8.2%; FEV1, 75.6% ± 17.9% predicted. Abnormally low exercise capacity (peak rate of oxygen uptake < lower limit of normal) was present in 26%. Relative to peak power output, rate of oxygen uptake, and minute ventilation, abnormally high breathlessness was present in 26%, 25%, and 18% of participants. For all equations, abnormally high exertional breathlessness was associated with worse lung function, exercise capacity, self-reported symptom burden, physical activity, and health-related quality of life; and greater physiologic abnormalities during CPET. INTERPRETATION: Abnormal breathlessness graded using CPET normative reference equations was associated with worse clinical, physiological, and functional outcomes in people with CAL, supporting construct validity of abnormal exertional breathlessness.


Asunto(s)
Disnea , Prueba de Esfuerzo , Enfermedad Pulmonar Obstructiva Crónica , Autoinforme , Humanos , Femenino , Masculino , Persona de Mediana Edad , Disnea/fisiopatología , Disnea/diagnóstico , Disnea/etiología , Anciano , Prueba de Esfuerzo/métodos , Adulto , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Anciano de 80 o más Años , Consumo de Oxígeno/fisiología , Tolerancia al Ejercicio/fisiología , Canadá , Volumen Espiratorio Forzado/fisiología
8.
ERJ Open Res ; 10(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38259805

RESUMEN

Background: Computed tomography (CT)-derived pectoralis muscle area (PMA) measurements are prognostic in people with or at-risk of COPD, but fully automated PMA extraction has yet to be developed. Our objective was to develop and validate a PMA extraction pipeline that can automatically: 1) identify the aortic arch slice; and 2) perform pectoralis segmentation at that slice. Methods: CT images from the Canadian Cohort of Obstructive Lung Disease (CanCOLD) study were used for pipeline development. Aorta atlases were used to automatically identify the slice containing the aortic arch by group-based registration. A deep learning model was trained to segment the PMA. The pipeline was evaluated in comparison to manual segmentation. An external dataset was used to evaluate generalisability. Model performance was assessed using the Dice-Sorensen coefficient (DSC) and PMA error. Results: In total 90 participants were used for training (age 67.0±9.9 years; forced expiratory volume in 1 s (FEV1) 93±21% predicted; FEV1/forced vital capacity (FVC) 0.69±0.10; 47 men), and 32 for external testing (age 68.6±7.4 years; FEV1 65±17% predicted; FEV1/FVC 0.50±0.09; 16 men). Compared with manual segmentation, the deep learning model achieved a DSC of 0.94±0.02, 0.94±0.01 and 0.90±0.04 on the true aortic arch slice in the train, validation and external test sets, respectively. Automated aortic arch slice detection obtained distance errors of 1.2±1.3 mm and 1.6±1.5 mm on the train and test data, respectively. Fully automated PMA measurements were not different from manual segmentation (p>0.05). PMA measurements were different between people with and without COPD (p=0.01) and correlated with FEV1 % predicted (p<0.05). Conclusion: A fully automated CT PMA extraction pipeline was developed and validated for use in research and clinical practice.

9.
J Appl Physiol (1985) ; 136(5): 1144-1156, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38420676

RESUMEN

Smaller mean airway tree caliber is associated with airflow obstruction and chronic obstructive pulmonary disease (COPD). We investigated whether airway tree caliber heterogeneity was associated with airflow obstruction and COPD. Two community-based cohorts (MESA Lung, CanCOLD) and a longitudinal case-control study of COPD (SPIROMICS) performed spirometry and computed tomography measurements of airway lumen diameters at standard anatomical locations (trachea-to-subsegments) and total lung volume. Percent-predicted airway lumen diameters were calculated using sex-specific reference equations accounting for age, height, and lung volume. The association of airway tree caliber heterogeneity, quantified as the standard deviation (SD) of percent-predicted airway lumen diameters, with baseline forced expired volume in 1-second (FEV1), FEV1/forced vital capacity (FEV1/FVC) and COPD, as well as longitudinal spirometry, were assessed using regression models adjusted for age, sex, height, race-ethnicity, and mean airway tree caliber. Among 2,505 MESA Lung participants (means ± SD age: 69 ± 9 yr; 53% female, mean airway tree caliber: 99 ± 10% predicted, airway tree caliber heterogeneity: 14 ± 5%; median follow-up: 6.1 yr), participants in the highest quartile of airway tree caliber heterogeneity exhibited lower FEV1 (adjusted mean difference: -125 mL, 95%CI: -171,-79), lower FEV1/FVC (adjusted mean difference: -0.01, 95%CI: -0.02,-0.01), and higher odds of COPD (adjusted odds ratio: 1.42, 95%CI: 1.01-2.02) when compared with the lowest quartile, whereas longitudinal changes in FEV1 and FEV1/FVC did not differ significantly. Observations in CanCOLD and SPIROMICS were consistent. Among older adults, airway tree caliber heterogeneity was associated with airflow obstruction and COPD at baseline but was not associated with longitudinal changes in spirometry.NEW & NOTEWORTHY In this study, by leveraging two community-based samples and a case-control study of heavy smokers, we show that among older adults, airway tree caliber heterogeneity quantified by CT is associated with airflow obstruction and COPD independent of age, sex, height, race-ethnicity, and dysanapsis. These observations suggest that airway tree caliber heterogeneity is a structural trait associated with low baseline lung function and normal decline trajectory that is relevant to COPD.


Asunto(s)
Pulmón , Enfermedad Pulmonar Obstructiva Crónica , Espirometría , Humanos , Femenino , Masculino , Anciano , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Espirometría/métodos , Pulmón/fisiopatología , Pulmón/diagnóstico por imagen , Volumen Espiratorio Forzado/fisiología , Estudios de Casos y Controles , Capacidad Vital/fisiología , Persona de Mediana Edad , Estudios Longitudinales , Tomografía Computarizada por Rayos X/métodos , Obstrucción de las Vías Aéreas/fisiopatología , Anciano de 80 o más Años
10.
EClinicalMedicine ; 68: 102423, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38268532

RESUMEN

Background: Chronic cough is a common respiratory symptom with an impact on daily activities and quality of life. Global prevalence data are scarce and derive mainly from European and Asian countries and studies with outcomes other than chronic cough. In this study, we aimed to estimate the prevalence of chronic cough across a large number of study sites as well as to identify its main risk factors using a standardised protocol and definition. Methods: We analysed cross-sectional data from 33,983 adults (≥40 years), recruited between Jan 2, 2003 and Dec 26, 2016, in 41 sites (34 countries) from the Burden of Obstructive Lung Disease (BOLD) study. We estimated the prevalence of chronic cough for each site accounting for sampling design. To identify risk factors, we conducted multivariable logistic regression analysis within each site and then pooled estimates using random-effects meta-analysis. We also calculated the population attributable risk (PAR) associated with each of the identifed risk factors. Findings: The prevalence of chronic cough varied from 3% in India (rural Pune) to 24% in the United States of America (Lexington,KY). Chronic cough was more common among females, both current and passive smokers, those working in a dusty job, those with a history of tuberculosis, those who were obese, those with a low level of education and those with hypertension or airflow limitation. The most influential risk factors were current smoking and working in a dusty job. Interpretation: Our findings suggested that the prevalence of chronic cough varies widely across sites in different world regions. Cigarette smoking and exposure to dust in the workplace are its major risk factors. Funding: Wellcome Trust.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA