Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gastroenterology ; 164(3): 424-438, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36436593

RESUMEN

BACKGROUND & AIMS: In eukaryotes, the ubiquitin-proteasome system and the autophagy-lysosome pathway are essential for maintaining cellular proteostasis and associated with cancer progression. Our previous studies have demonstrated that phosphatase and tensin homolog (PTEN), one of the most frequently mutated genes in human cancers, limits proteasome abundance and determines chemosensitivity to proteasome inhibitors in cholangiocarcinoma (CCA). However, whether PTEN regulates the lysosome pathway remains unclear. METHODS: We tested the effects of PTEN on lysosome biogenesis and exosome secretion using loss- and gain-of-function strategies in CCA cell lines. Using in vitro dephosphorylation assays, we explored the regulatory mechanism between PTEN and the key regulator of lysosome biogenesis, transcription factor EB (TFEB). Using the migration assays, invasion assays, and trans-splenic liver metastasis mouse models, we evaluated the function of PTEN deficiency, TFEB-mediated lysosome biogenesis, and exosome secretion on tumor metastasis. Moreover, we investigated the clinical significance of PTEN expression and exosome secretion by retrospective analysis. RESULTS: PTEN facilitated lysosome biogenesis and acidification through its protein phosphatase activity to dephosphorylate TFEB at Ser211. Notably, PTEN deficiency increased exosome secretion by reducing lysosome-mediated degradation of multi-vesicular bodies, which further facilitated the proliferation and invasion of CCA. TFEB agonist curcumin analog C1 restrained the metastatic phenotype caused by PTEN deficiency in mouse models, and we highlighted the correlation between PTEN deficiency and exosome secretion in clinical cohorts. CONCLUSIONS: In CCA, PTEN deficiency impairs lysosome biogenesis to facilitate exosome secretion and cancer metastasis in a TFEB phosphorylation-dependent manner.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Colangiocarcinoma , Exosomas , Fosfohidrolasa PTEN , Animales , Humanos , Ratones , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Colangiocarcinoma/metabolismo , Modelos Animales de Enfermedad , Exosomas/metabolismo , Lisosomas/fisiología , Complejo de la Endopetidasa Proteasomal , Fosfohidrolasa PTEN/metabolismo , Estudios Retrospectivos
2.
Hepatology ; 71(6): 2005-2022, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31541481

RESUMEN

BACKGROUND AND AIMS: Cancer cell survival depends on the balance between reactive oxygen species production and scavenging, which is regulated primarily by NRF2 during tumorigenesis. Here, we demonstrate that deletion of RBP5-mediating protein (RMP) in an autonomous mouse model of intrahepatic cholangiocarcinoma (ICC) delays tumor progression. APPROACH AND RESULTS: RMP-overexpressing tumor cells exhibited enhanced tolerance to oxidative stress and apoptosis. Mechanistically, RMP competes with NRF2 for binding to the Kelch domain of KEAP1 (Kelch-like ECH-associated protein 1) through the E**E motif, leading to decreased NRF2 degradation via ubiquitination, thus increasing NRF2 nuclear translocation and downstream transactivation of antioxidant genes. This RMP-KEAP1-NRF2 axis promotes ICC tumorigenesis, metastasis, and drug resistance. Consistent with these findings, the RMP level in human ICC is positively correlated with the protein level of NRF2 and is associated with poor prognosis. CONCLUSION: These findings reveal that RMP is involved in the oxidative stress defense program and could be exploited for targeted cancer therapies.


Asunto(s)
Carcinogénesis , Colangiocarcinoma/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Represoras/metabolismo , Animales , Apoptosis , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Línea Celular , Transformación Celular Neoplásica/metabolismo , Colangiocarcinoma/patología , Resistencia a Antineoplásicos , Humanos , Ratones , Estrés Oxidativo
3.
Hepatobiliary Pancreat Dis Int ; 18(6): 525-531, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31564506

RESUMEN

BACKGROUND: Increasing evidence indicates that Six2 contributes to tumorigenesis in various tumor including hepatocellular carcinoma (HCC). This study aimed to determine the role of Six2 in HCC and to elucidate the association of Six2 with clinical pathological characteristics. METHODS: The expressions of Six2 in HCC tumor, para-tumor tissue and portal vein tumor thrombus (PVTT) were detected by tissue microarray technique, immunohistochemistry, real-time RT-PCR and Western blotting. Chi-square and Kaplan-Meier analysis were used to analyze the correlation between Six2 expression and prognosis of HCC patients. Lentivirus mediated Six2 knockdown, spheroid formation assay, proliferation assay and subcutaneous tumor implantation were performed to determine the function of Six2. RESULTS: In 274 HCC samples, Six2 was strongly expressed. Kaplan-Meier analysis revealed that high expression of Six2 was correlated with a shorter overall survival (OS) and disease-free survival (DFS). Moreover, Six2 expression was associated with sex, alpha-fetoprotein, tumor size and portal vein invasion. Six2 was highly expressed in PVTT. Six2 knockdown inhibited HCC cell lines proliferation, migration, and self-renewal in vitro and in vivo. In addition, low-expression of Six2 weakened TGF-ß induced Smad4 activation and epithelial-mesenchymal transition in HCC cell lines. CONCLUSIONS: Elevated Six2 expression in HCC tumor patients was associated with negative prognosis. Upregulated Six2 promoted tumor growth and facilitated HCC metastasis via TGF-ß/Smad signal pathway.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Transición Epitelial-Mesenquimal , Proteínas de Homeodominio/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteína Smad4/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Masculino , Ratones Desnudos , Persona de Mediana Edad , Invasividad Neoplásica , Proteínas del Tejido Nervioso/genética , Carga Tumoral , Regulación hacia Arriba
4.
J Hepatol ; 65(2): 314-24, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27154061

RESUMEN

BACKGROUND & AIMS: Considerable evidence suggests that adrenergic signaling played an essential role in tumor progression. However, its role in hepatocellular carcinoma (HCC) and the underlying mechanisms remain unknown. METHODS: The effect of adrenaline in hepatocarcinogenesis was observed in a classical diethylnitrosamine-induced HCC mouse model. Effects of ADRB2 signaling inhibition in HCC cell lines were analyzed in proliferation, apoptosis, colony formation assays. Autophagy regulation by ADRB2 was assessed in immunoblotting, immunofluorescence and immunoprecipitation assays. In vivo tumorigenic properties and anticancer effects of sorafenib were examined in nude mice. Expression levels of ADRB2 and hypoxia-inducible factor-1α (HIF1α) in 150 human HCC samples were evaluated by immunohistochemistry. RESULTS: We uncovered that adrenaline promoted DEN-induced hepatocarcinogenesis, which was reversed by the ADRB2 antagonist ICI118,551. ADRB2 signaling also played an essential role in sustaining HCC cell proliferation and survival. Notably, ADRB2 signaling negatively regulated autophagy by disrupting Beclin1/VPS34/Atg14 complex in an Akt-dependent manner, leading to HIF1α stabilization, reprogramming of HCC cells glucose metabolism, and the acquisition of resistance to sorafenib. Conversely, inhibition of ADRB2 signaling by ICI118,551, or knockdown ADRB2 expression, led to enhanced autophagy, HIF1α destabilization, tumor growth suppression, and improved anti-tumor activity of sorafenib. Consistently, ADRB2 expression correlated positively with HIF1α in HCC specimens and was associated with HCC outcomes. CONCLUSIONS: Our results uncover an important role of ADRB2 signaling in regulating HCC progression. Given the efficacy of ADRB2 modulation on HCC inhibition and sorafenib resistance, adrenoceptor antagonist appears to be a putative novel treatment for HCC and chemoresistance. LAY SUMMARY: ADRB2 signaling played an essential role in sustaining hepatocellular carcinoma cell proliferation and survival. ADRB2 signaling negatively regulated autophagy, leading to hypoxia-inducible factor-1α stabilization, reprogramming of hepatocellular carcinoma cells glucose metabolism, and the acquisition of resistance to sorafenib. Adrenoceptor antagonist appears to be a putative novel treatment for hepatocellular carcinoma and chemoresistance.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Autofagia , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Humanos , Ratones , Ratones Desnudos , Niacinamida/análogos & derivados , Compuestos de Fenilurea , Receptores Adrenérgicos beta 2 , Transducción de Señal , Sorafenib
5.
Cancer ; 120(10): 1520-31, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24863391

RESUMEN

BACKGROUND: The functions of cytoskeleton-associated membrane protein 4 (CKAP4), one kind of type II transmembrane protein, are associated with the palmitoyl acyltransferase DHHC2. The objective of the current study was to investigate CKAP4/DHHC2 expression and its prognostic significance in patients with hepatocellular carcinoma (HCC). METHODS: Two independent cohorts of 416 patients with HCC were enrolled. All the patients included had defined clinicopathologic and follow-up data. Using real-time polymerase chain reaction and immunohistochemical assay, CKAP4 and DHHC2 expression were evaluated. The association between CKAP4/DHHC2 expression and HCC-specific disease-free survival and overall survival was analyzed by Kaplan-Meier curves, the log-rank test, and Multivariate Cox regression analyses. RESULTS: The data documented that CKAP4 expression was much higher in HCC tumor tissues compared with adjacent normal tissues and its expression was significantly correlated with tumor size, intrahepatic metastases, portal venous invasion, and Barcelona Clinic Liver Cancer stage of disease in 2 cohorts of patients. On survival analysis, patients with high CKAP4 expression appeared to have a favorable overall survival and a longer disease-free survival compared with those with low expression. DHHC2 expression was also examined in tissue microarray analysis by immunohistochemistry and the results demonstrated that 87.6% of the cases had low expression of DHHC2. Kaplan-Meier analysis indicated that a high level of DHHC2 expression predicted favorable overall survival and disease-free survival rates in both the training cohort and validation set. Furthermore, the combination of CKAP4 and DHHC2 was found to have a more powerful efficiency in prognosis prediction than either one alone. CONCLUSIONS: To the best of our knowledge, the current study is the first to demonstrate that the expression of CKAP4 and its palmitoyl acyltransferase DHHC2 correlates with disease progression and metastasis in patients with HCC and may provide prognostic and therapeutic value.


Asunto(s)
Aciltransferasas/análisis , Biomarcadores de Tumor/análisis , Carcinoma Hepatocelular/química , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/química , Neoplasias Hepáticas/patología , Proteínas de la Membrana/análisis , Proteínas Supresoras de Tumor/análisis , Adulto , Anciano , Biomarcadores de Tumor/sangre , Western Blotting , China , Estudios de Cohortes , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Análisis Multivariante , Clasificación del Tumor , Invasividad Neoplásica , Estadificación de Neoplasias , Ácido Palmítico/metabolismo , Vena Porta/patología , Valor Predictivo de las Pruebas , Pronóstico , Modelos de Riesgos Proporcionales , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Matrices Tisulares
6.
Eur J Immunol ; 43(6): 1598-607, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23504624

RESUMEN

Mast cells elicit allergic reaction through degranulation and release of proinflammatory mediators after aggregation of the IgE receptor FcεRI. Here we provide evidence to show that signal regulatory protein α (SIRPα), an ITIM-containing receptor, is an endogenous regulator of IgE-Ag induced mast-cell activation. SIRPα expression is promptly reduced in mast cells in response to FcεRI aggregation. Impaired expression of SIRPα in mast cells facilitates FcεRI-evoked degranulation and de novo synthesis of cytokines (IL-4, IL-13, IL-6, and TNF-α). We further demonstrate that SIRPα knockdown in mast cells accelerates calcium mobilization and affects cytoskeletal rearrangement (F-actin disassembly and polymeric tubulin formation) after FcεRI aggregation. Mechanistic studies highlight the prolonged activation of NF-κB and MAPKs as well as PLC-γ after FcεRI stimulation as a consequence of the inhibition of SIRPα expression in mast cells. Immunoprecipitation analysis shows that SIRPα knockdown markedly increases IgE-induced SHP2 interaction with PI3K regulatory subunit PI3Kp85 or IKK-ß in mast cells, indicating that SIRPα may accomplish this through its association and sequestration of SHP2. Collectively, our results strongly indicate that SIRPα is a biological important regulator of FcεRI signaling.


Asunto(s)
Mastocitos/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Señalización del Calcio/genética , Degranulación de la Célula/genética , Células Cultivadas , Citocinas/metabolismo , Citoesqueleto/genética , Inmunoglobulina E/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Fosfolipasa C gamma/metabolismo , ARN Interferente Pequeño/genética , Agregación de Receptores , Receptores de IgE/inmunología , Receptores de IgE/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología
7.
Hepatology ; 58(2): 680-91, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23504854

RESUMEN

UNLABELLED: Macrophages (Mψ) are the major component of infiltrating leukocytes in tumors and exhibit distinct phenotypes according to the microenvironment. We have recently found that signal regulatory protein α (SIRPα), the inhibitory molecule expressed on myeloid cells, plays a critical role in controlling innate immune activation. Here, we identify that SIRPα is down-regulated on monocytes/Mψ isolated from peritumoral areas of hepatocellular carcinoma (HCC) samples, while its level is moderately recovered in intratumor Mψ. In vitro assays demonstrate that SIRPα expression is significantly reduced on Mψ when cocultured with hepatoma cells. This reduction is partly due to the soluble factors in the tumor microenvironment. Knockdown (KD) of SIRPα prolongs activation of nuclear factor kappa B (NF-κB) and PI3K-Akt pathways as Mψ encounter tumor cells, leading to an increased capacity of Mψ for migration, survival, and proinflammatory cytokine production. Enhanced Stat3 and impaired Stat1 phosphorylation are also observed in tumor-exposed SIRPα-KD Mψ. Adoptive transfer with SIRPα-KD Mψ accelerates mouse hepatoma cells growth in vivo by remolding the inflammatory microenvironment and promoting angiogenesis. SIRPα accomplishes this partly through its sequestration of the signal transducer Src homology 2-containing phosphotyrosine phosphatase (SHP2) from IκB kinase ß (IKKß) and PI3K regulatory subunit p85 (PI3Kp85). CONCLUSION: These findings suggest that SIRPα functions as an important modulator of tumor-polarized Mψ in hepatoma, and the reduction of SIRPα is a novel strategy used by tumor cells to benefit their behavior. Therefore, SIRPα could be utilized as a potential target for HCC therapy.


Asunto(s)
Antígenos de Diferenciación/fisiología , Carcinoma Hepatocelular/fisiopatología , Progresión de la Enfermedad , Neoplasias Hepáticas/fisiopatología , Macrófagos/patología , Fenotipo , Receptores Inmunológicos/fisiología , Animales , Antígenos de Diferenciación/efectos de los fármacos , Carcinoma Hepatocelular/patología , Movimiento Celular/fisiología , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Humanos , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , FN-kappa B/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , ARN Interferente Pequeño/farmacología , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/efectos de los fármacos , Transducción de Señal/fisiología
8.
Tumour Biol ; 35(8): 7999-8005, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24838946

RESUMEN

CKAP4, one kind of type II trans-membrane protein, plays an important role to maintain endoplasmic reticulum structure and inhibits the proliferation of bladder cancer cells by combining its ligand anti-proliferative factor (APF). However, the biological function of CKAP4 in the progression of liver cancer has not been clearly demonstrated. In the present study, we knocked down or overexpressed CKAP4 in hepatocellular carcinoma (HCC) cells and cell proliferation, invasion, and migration capacities were investigated by CCK-8 and transwell assays. In vivo tumor model in mice was used to evaluate the role of CKAP4 on growth and metastasis of HCC. The data documented that HCC cells with high CKAP4 levels were featured by low proliferation capability as well as low invasion potential. Interestingly, we found that CKAP4 suppressed the activation of epithelial growth factor receptor (EGFR) signaling, which may partly explain the role of CKAP4 in cell biological behavior of HCC. Further study revealed that CKAP4 could associate with EGFR at basal status and the complex was reduced upon EGF stimulation, leading to release EGFR into cytoplasm. Thus, we demonstrate the novel mechanism, for the first time, expression of CKAP4 regulates progression and metastasis of HCC and it may provide therapeutic values in this tumor.


Asunto(s)
Carcinoma Hepatocelular/patología , Receptores ErbB/fisiología , Neoplasias Hepáticas/patología , Proteínas de la Membrana/fisiología , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Carcinoma Hepatocelular/secundario , Línea Celular Tumoral , Proliferación Celular , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C
9.
Cell Death Dis ; 15(4): 300, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684648

RESUMEN

The treatment of hepatocellular carcinoma (HCC) is particularly challenging due to the inherent tumoral heterogeneity and easy resistance towards chemotherapy and immunotherapy. Arsenic trioxide (ATO) has emerged as a cytotoxic agent effective for treating solid tumors, including advanced HCC. However, its effectiveness in HCC treatment remains limited, and the underlying mechanisms are still uncertain. Therefore, this study aimed to characterize the effects and mechanisms of ATO in HCC. By evaluating the susceptibilities of human and murine HCC cell lines to ATO treatment, we discovered that HCC cells exhibited a range of sensitivity to ATO treatment, highlighting their inherent heterogeneity. A gene signature comprising 265 genes was identified to distinguish ATO-sensitive from ATO-insensitive cells. According to this signature, HCC patients have also been classified and exhibited differential features of ATO response. Our results showed that ATO treatment induced reactive oxygen species (ROS) accumulation and the activation of multiple cell death modalities, including necroptosis and ferroptosis, in ATO-sensitive HCC cells. Meanwhile, elevated tumoral immunogenicity was also observed in ATO-sensitive HCC cells. Similar effects were not observed in ATO-insensitive cells. We reported that ATO treatment induced mitochondrial injury and mtDNA release into the cytoplasm in ATO-sensitive HCC tumors. This subsequently activated the cGAS-STING-IFN axis, facilitating CD8+ T cell infiltration and activation. However, we found that the IFN pathway also induced tumoral PD-L1 expression, potentially antagonizing ATO-mediated immune attack. Additional anti-PD1 therapy promoted the anti-tumor response of ATO in ATO-sensitive HCC tumors. In summary, our data indicate that heterogeneous ATO responses exist in HCC tumors, and ATO treatment significantly induces immunogenic cell death (ICD) and activates the tumor-derived mtDNA-STING-IFN axis. These findings may offer a new perspective on the clinical treatment of HCC and warrant further study.


Asunto(s)
Trióxido de Arsénico , Carcinoma Hepatocelular , Muerte Celular Inmunogénica , Neoplasias Hepáticas , Proteínas de la Membrana , Nucleotidiltransferasas , Trióxido de Arsénico/farmacología , Trióxido de Arsénico/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Humanos , Animales , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones , Muerte Celular Inmunogénica/efectos de los fármacos , Línea Celular Tumoral , Interferones/metabolismo , Transducción de Señal/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL
10.
Clin Transl Med ; 14(5): e1675, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38689424

RESUMEN

INTRODUCTION: Intrahepatic cholangiocarcinoma (ICC) is characterized by a dismal prognosis with limited therapeutic alternatives. To explore phosphatase and tension homolog (PTEN) as a biomarker for proteasome inhibition in ICC, we conducted a phase II trial to assess the second-line efficacy of bortezomib in PTEN-deficient advanced ICC patients. METHODS: A total of 130 patients with advanced ICC in our centre were screened by PTEN immunohistochemical staining between 1 July 2017, and 31 December 2021, and 16 patients were ultimately enrolled and treated with single-agent bortezomib 1.3 mg/m2 on days 1, 4, 8 and 11 of a 21-day cycle. The primary endpoint was the objective response rate (ORR) according to Response Evaluation Criteria in Solid Tumors v1.1. RESULTS: The median follow-up was 6.55 months (95% confidence interval [CI]: 0.7-19.9 months). Among the 16 enrolled patients, the ORR was 18.75% (3/16) and the disease control rate was 43.75% (7/16). The median progress-free survival was 2.95 months (95% CI: 2.1-5.1 months) and the median overall survival (mOS) was 7.2 months (95% CI: 0.7-21.6 months) in the intent-to-treat-patients. Treatment-related adverse events of any grade were reported in 16 patients, with thrombopenia being the most common toxicity. Patients with PTEN staining scores of 0 were more likely to benefit from bortezomib than those with staining scores > 0. CONCLUSIONS: Bortezomib yielded an encouraging objective response and a favourable OS as a second-line agent in PTEN-deficient ICC patients. Our findings suggest bortezomib as a promising therapeutic option for patients with PTEN-deficient ICC. HIGHLIGHTS: There is a limited strategy for the second-line option of intrahepatic cholangiocarcinoma (ICC). This investigator-initiated phase 2 study evaluated bortezomib in ICC patients with phosphatase and tension homology deficiency. The overall response rate was 18.75% and the overall survival was 7.2 months in the intent-to-treat cohort. These results justify further developing bortezomib in ICC patients with PTEN deficiency.


Asunto(s)
Neoplasias de los Conductos Biliares , Bortezomib , Colangiocarcinoma , Fosfohidrolasa PTEN , Humanos , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Bortezomib/uso terapéutico , Bortezomib/farmacología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Adulto , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
11.
Sci Transl Med ; 15(704): eadd7464, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37437018

RESUMEN

Gemcitabine is a nucleoside analog that has been successfully used in the treatment of multiple cancers. However, intrinsic or acquired resistance reduces the chemotherapeutic potential of gemcitabine. Here, we revealed a previously unappreciated mechanism by which phosphatase and tensin homolog (PTEN), one of the most frequently mutated genes in human cancers, dominates the decision-making process that is central to the regulation of gemcitabine efficacy in cholangiocarcinoma (CCA). By investigating a gemcitabine-treated CCA cohort, we found that PTEN deficiency was correlated with the improved efficacy of gemcitabine-based chemotherapy. Using cell-based drug sensitivity assays, cell line-derived xenograft, and patient-derived xenograft models, we further confirmed that PTEN deficiency or genetic-engineering down-regulation of PTEN facilitated gemcitabine efficacy both in vitro and in vivo. Mechanistically, PTEN directly binds to and dephosphorylates the C terminus of the catalytic subunit of protein phosphatase 2A (PP2Ac) to increase its enzymatic activity, which further dephosphorylates deoxycytidine kinase (DCK) at Ser74 to diminish gemcitabine efficacy. Therefore, PTEN deficiency and high phosphorylation of DCK predict a better response to gemcitabine-based chemotherapy in CCA. We speculate that the combination of PP2A inhibitor and gemcitabine in PTEN-positive tumors could avoid the resistance of gemcitabine, which would benefit a large population of patients with cancer receiving gemcitabine or other nucleoside analogs.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Fosforilación , Gemcitabina , Nucleósidos , Conductos Biliares Intrahepáticos , Fosfohidrolasa PTEN
12.
J Proteome Res ; 11(2): 871-85, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22082227

RESUMEN

We combined culture-derived isotope tags (CDITs) with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) to extensively survey abnormal protein expression associated with hepatocellular carcinoma (HCC) in clinical tissues. This approach yielded an in-depth quantitated proteome of 1360 proteins. Importantly, 267 proteins were significantly regulated with a fold-change of at least 1.5. The proteins up-regulated in HCC tissues are involved in regulatory processes, such as the granzyme A-mediated apoptosis pathway (The GzmA pathway). The SET complex, a central component in the GzmA pathway, was significantly up-regulated in HCC tissue. The elevated expressions of all of the SET complex components were validated by Western blotting. Among them, ANP32A and APEX1 were further investigated by immunohistochemistry staining using tissue microarrays (59 cases), confirming their overexpression in tumors. The up-regulation and nuclear accumulations of APEX1 was associated not only with HCC malignancy but also with HCC differentiation in 96 clinical HCC cases. Our work provided a systematic and quantitative analysis and demonstrated key changes in clinical HCC tissues. These proteomic signatures could help to unveil the underlying mechanisms of hepatocarcinogenesis and may be useful for the discovery of candidate biomarkers.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/metabolismo , Chaperonas de Histonas/metabolismo , Neoplasias Hepáticas/metabolismo , Proteómica/métodos , Factores de Transcripción/metabolismo , Biomarcadores de Tumor/análisis , Western Blotting , Carcinoma Hepatocelular/química , Línea Celular , Cromatografía Liquida , Análisis por Conglomerados , Proteínas de Unión al ADN , Bases de Datos de Proteínas , Células Hep G2 , Chaperonas de Histonas/análisis , Humanos , Hígado/química , Hígado/metabolismo , Neoplasias Hepáticas/química , Fenotipo , Espectrometría de Masas en Tándem , Análisis de Matrices Tisulares , Factores de Transcripción/análisis , Regulación hacia Arriba
13.
Carcinogenesis ; 33(5): 1113-20, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22362728

RESUMEN

The deregulation of microRNA (miRNA) is frequently associated with a variety of cancers, including hepatocellular carcinoma (HCC). In this study, we identified 10 upregulated miRNAs (miR-217, miR-518b, miR-517c, miR-520g, miR-519a, miR-522, miR-518e, miR-525-3p, miR-512-3p and miR-518a-3p) and 10 downregulated miRNAs (miR-138, miR-214, miR-214#, miR-27a#, miR-199a-5p, miR-433, miR-511, miR-592, miR-483-5p and miR-483-3p) by Taqman miRNAs array and quantitative real-time PCR (qRT-PCR) confirmation. Additionally, we investigated the expression and possible role of miR-138 in HCC. qRT-PCR results showed that miR-138 was downregulated in 77.8%(14/18) of HCC tissues compared with adjacent non-tumor tissues. Overexpression of miR-138 reduced cell viability and colony formation by induction of cell arrest in HCC cell lines and inhibited tumor cell growth in xenograft nude mice. The use of miR-138 inhibitor increased cell viability and colony formation in HCC cell lines and tumor cell growth in xenograft nude mice. Using TargetScan predictions, CCND3 was defined as a potential direct target of miR-138. Furthermore, CCND3 protein expression was observed to be negatively correlated with miR-138 expression in HCC tissues. The dual-luciferase reporter gene assay results showed that CCND3 was a direct target of miR-138. The use of miR-138 mimic or inhibitor could decrease or increase CCND3 protein levels in HCC cell lines. We conclude that the frequently downregulated miR-138 can regulate CCND3 and function as a tumor suppressor in HCC. Therefore, miR-138 may serve as a useful therapeutic agent for miRNA-based HCC therapy.


Asunto(s)
Carcinoma Hepatocelular/patología , Puntos de Control del Ciclo Celular/genética , Ciclina D3/biosíntesis , Ciclina D3/genética , Neoplasias Hepáticas/patología , MicroARNs/biosíntesis , MicroARNs/genética , Adulto , Anciano , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Supervivencia Celular/genética , Ciclina D3/metabolismo , Femenino , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/metabolismo , Persona de Mediana Edad , Células Madre Neoplásicas
14.
J Hepatol ; 57(4): 803-12, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22727732

RESUMEN

BACKGROUND & AIMS: Due to its anatomic connection, the liver is constantly exposed to gut-derived bacterial products or metabolites. Disruption of gut homeostasis is associated with many human diseases. The aim of this study was to determine the role of gut homeostasis in initiation and progression of hepatocellular carcinoma (HCC). METHODS: Disruption of intestinal homeostasis by penicillin or dextran sulfate sodium (DSS) and its restoration by probiotics were applied in a diethylnitrosamine (DEN) model of rat hepatocarcinogenesis. RESULTS: Patients with liver cirrhosis and HCC had significantly increased serum endotoxin levels. Chronic DEN treatment of rats was associated with an imbalance of subpopulations of the gut microflora including a significant suppression of Lactobacillus species, Bifidobacterium species and Enterococcus species as well as intestinal inflammation. Induction of enteric dysbacteriosis or intestinal inflammation by penicillin or DSS, respectively, significantly promoted tumor formation. Administration of probiotics dramatically mitigated enteric dysbacteriosis, ameliorated intestinal inflammation, and most importantly, decreased liver tumor growth and multiplicity. Interestingly, probiotics not only inhibited the translocation of endotoxin, which bears pathogen-associated molecular patterns (PAMPs) but also the activation of damage-associated molecular patterns (DAMPs) such as high-mobility group box 1 (HMGB1). As a result, the production of pro- and anti-inflammatory cytokines was skewed in favor of a reduced tumorigenic inflammation in the liver. CONCLUSIONS: The data highlights the importance of gut homeostasis in the pathogenesis of HCC. Modulation of the gut microbiota by probiotics may represent a new avenue for therapeutic intervention to treat or prevent HCC development.


Asunto(s)
Carcinoma Hepatocelular/patología , Endotoxinas/metabolismo , Tracto Gastrointestinal/microbiología , Homeostasis , Neoplasias Hepáticas Experimentales/patología , Probióticos/farmacología , Alquilantes/farmacología , Animales , Antibacterianos/farmacología , Bifidobacterium/efectos de los fármacos , Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/etiología , Citocinas/biosíntesis , Sulfato de Dextran/farmacología , Dietilnitrosamina/farmacología , Dietilnitrosamina/toxicidad , Progresión de la Enfermedad , Endotoxinas/sangre , Enterococcus/efectos de los fármacos , Gastroenteritis/inducido químicamente , Gastroenteritis/tratamiento farmacológico , Gastroenteritis/metabolismo , Tracto Gastrointestinal/fisiopatología , Proteína HMGB1/metabolismo , Homeostasis/efectos de los fármacos , Humanos , Lactobacillus/efectos de los fármacos , Cirrosis Hepática/sangre , Cirrosis Hepática/complicaciones , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/microbiología , Masculino , Penicilinas/farmacología , Probióticos/uso terapéutico , Ratas , Ratas Sprague-Dawley
15.
Lab Invest ; 91(8): 1146-57, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21647092

RESUMEN

Intrahepatic cholangiocellular carcinomas (ICCs) are usually fatal neoplasms originating from bile duct epithelia. However, many cholangiocarcinoma cells are shown to be resistant to chemotherapeutic drugs, which induce cell apoptosis. The role of autophagy and the therapeutic value of autophagy-associated genes are largely unknown in ICC. Here, we showed that autophagy was activated in nutrient starvation and xenograft cholangiocarcinoma cells. Furthermore, expression of autophagic genes and their autophagic activity were higher in clinical ICC specimens than that in normal cholangiocytes separated by laser capture microdissection. Inhibition of autophagy by autophagy inhibitors or siRNA, cholangiocarcinoma cells showed detention of proliferation and increase of apoptosis during nutrient starvation. In addition, autophagy inhibitor treatment or knockdown of beclin 1 suppressed tumor growth and sensitized ICC cells to chemotherapeutic agent-induced cell death. In conclusion, our data showed that autophagy is activated in ICC, and inactivation of autophagy may lead to cell apoptosis and enhance chemotherapy sensitivity.


Asunto(s)
Antineoplásicos/uso terapéutico , Autofagia/efectos de los fármacos , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Colangiocarcinoma/patología , Humanos , Ratones , Ratones Desnudos
16.
BMC Cancer ; 11: 271, 2011 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-21702992

RESUMEN

BACKGROUND: Our previous studies showed that ZBTB20, a new BTB/POZ-domain gene, could negatively regulate α feto-protein and other liver-specific genes, concerning such as bio-transformation, glucose metabolism and the regulation of the somatotropic hormonal axis. The aim of this study is to determine the potential clinical implications of ZBTB20 in hepatocellular carcinoma (HCC). METHODS: Quantitative real-time RT-PCR and Western blot analyses were used to detect expression levels of ZBTB20 in 50 paired HCC tumorous and nontumorous tissues and in 20 normal liver tissues. Moreover, expression of ZBTB20 was assessed by immunohistochemistry of paired tumor and peritumoral liver tissue from 102 patients who had undergone hepatectomy for histologically proven HCC. And its relationship with clinicopathological parameters and prognosis was investigated. RESULTS: Both messenger RNA and protein expression levels of ZBTB20 were elevated significantly in HCC tissues compared with the paired non-tumor tissues and normal liver tissues. Overexpressed ZBTB20 protein in HCC was significantly associated with vein invasion (P=0.016). Importantly, the recurrence or metastasis rates of HCCs with higher ZBTB20 expression were markedly greater than those of HCCs with lower expression (P=0.003, P=0.00015, respectively). Univariate and multivariate analyses revealed that ZBTB20 overexpression was an independent prognostic factor for HCC. The disease-free survival period and over-all survival period in patients with overexpressed ZBTB20 in HCC was significantly reduced. CONCLUSIONS: The expression of ZBTB20 is increased in HCC and associated with poor prognosis in patients with HCC, implicating ZBTB20 as a candidate prognostic marker in HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Factores de Transcripción/biosíntesis , Adulto , Anciano , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/secundario , China/epidemiología , Comorbilidad , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Hepatitis B Crónica/epidemiología , Hepatitis C Crónica/epidemiología , Humanos , Hígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/genética , Proteínas del Tejido Nervioso/genética , Pronóstico , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética , Recurrencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Muestreo , Factores de Transcripción/genética
17.
Cancer Lett ; 501: 187-199, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33220333

RESUMEN

Gallbladder cancer (GBC) is an aggressive malignancy of biliary tract with poor prognosis. Although several studies have shown the frequency of relevant genetic alterations, there are few genetic models or translational studies that really benefit for GBC treatment in the era of precision medicine. By targeted sequencing and immunohistochemistry staining, we identified that phosphate and tension homology deleted on chromosome ten (PTEN) was frequently altered in GBC specimens, and loss of PTEN expression was independently correlated with poor survival outcomes. Further drug screening assays revealed proteasome inhibitor bortezomib as a promising agent for GBC treatment, and knockdown of PTEN increased bortezomib efficacy both in vivo and in vitro. Therapeutic evaluation of patient derived xenografts (PDXs) strongly supported the utilization of bortezomib in PTEN deficient GBC. Mechanically, functional PTEN inhibited ARE-dependent transcriptional activity, the same machinery regulating the transcription of proteasome subunits, thus PTEN suppressed proteasome activity and bortezomib sensitivity. Through siRNA screening, we identified the ARE-related transcriptional suppressor BACH1 involved in PTEN-mediated proteasome inhibition and regulated by PTEN-AKT1 axis. In summary, our study indicates that proteasome activity represents a prime therapeutic target in PTEN-deficient GBC tumors, which is worthy of further clinical validation.


Asunto(s)
Bortezomib/administración & dosificación , Regulación hacia Abajo , Neoplasias de la Vesícula Biliar/tratamiento farmacológico , Mutación , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Adulto , Anciano , Animales , Bortezomib/farmacología , Línea Celular Tumoral , Femenino , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Persona de Mediana Edad , Complejo de la Endopetidasa Proteasomal/metabolismo , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
18.
Phytother Res ; 24(6): 821-6, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20013819

RESUMEN

Ten steroidal alkaloids - cyclopamine, veratramine, jervine, 3, 15-diangyloylgermine, 3-angyloylzygadenine, 3-veratroyl zygadenine, 15-veratroylgermine, germine, veratrosine and pseudojervine - from Veratrum dahuricum, together with the ethanol extract and total alkaloids, were evaluated for their antitumor and antiplatelet activities. Cyclopamine, veratramine and germine significantly inhibited the hedgehog pathway in NIH/3T3 cells. Cyclopamine exerted a potent inhibitory effect against the growth of PANC-1 tumors in mice, with inhibition rates of 40.64%, 44.37%, 46.77% at doses of 5.0, 15.0 and 50.0 mg kg-1, respectively. Veratroylgermine was found to produce the strongest inhibition against the platelet aggregation induced by arachidonic acid, with inhibition rate of 92.0% at 100 microM.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Extractos Vegetales/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Alcaloides de Veratrum/farmacología , Veratrum/química , Animales , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Conejos , Alcaloides de Veratrum/aislamiento & purificación
19.
Biochem Pharmacol ; 177: 113947, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32247850

RESUMEN

Necroptosis is a form of programmed, caspase-independent cell death that is involved in various pathologic disorders such as ischemia/reperfusion injury, acute kidney injury and inflammatory bowel diseases. Identification of necroptosis inhibitors has great therapeutic potential for the treatment of necroptosis-associated diseases. In this study, we identified that the Bcr-Abl inhibitor GNF-7 was a potent inhibitor of necroptosis. GNF-7 inhibited necroptosis in both human and mouse cells, while not protecting cells from apoptosis. Drug affinity responsive target stability assay (DARTS) demonstrated that it binded with RIPK1 and RIPK3. GNF-7 inhibited RIPK1 and RIPK3 kinase activities and thus disrupted RIPK1-RIPK3 necrosome complex formation. In vivo, GNF-7 ameliorated both cisplatin- and ischemia/reperfusion-induced AKI. Orally administration of GNF-7 attenuated renal cell necrosis and reduced pro-inflammatory responses in mouse models of AKI. Taken together, our study shows that GNF-7 is a novel necroptosis inhibitor and has great potential for the treatment of acute renal inflammatory disorders by targeting both RIPK1 and RIPK3 kinases.


Asunto(s)
Lesión Renal Aguda/prevención & control , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Pirimidinonas/farmacología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Línea Celular Tumoral , Células Cultivadas , Cisplatino/farmacología , Cisplatino/toxicidad , Proteínas de Fusión bcr-abl/metabolismo , Células HT29 , Humanos , Masculino , Ratones Endogámicos C57BL , Estructura Molecular , Necroptosis/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinonas/química , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Células U937
20.
Sci Transl Med ; 12(562)2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32967970

RESUMEN

Patient-derived xenografts (PDXs) and PDX-derived cells (PDCs) are useful in preclinical research. We performed a drug screening assay using PDCs and identified proteasome inhibitors as promising drugs for cholangiocarcinoma (CCA) treatment. Furthermore, we determined that phosphate and tensin homology deleted on chromosome ten (PTEN) deficiency promotes protein synthesis and proteasome subunit expression and proteolytic activity, creating a dependency on the proteasome for cancer cell growth and survival. Thus, targeting the proteasome machinery with the inhibitor bortezomib inhibited the proliferation and survival of CCA cells lacking functional PTEN. Therapeutic evaluation of PDXs, autochthonous mouse models, and patients confirmed this dependency on the proteasome. Mechanistically, we found that PTEN promoted the nuclear translocation of FOXO1, resulting in the increased expression of BACH1 and MAFF BACH1 and MAFF are transcriptional regulators that recognize the antioxidant response element, which is present in genes encoding proteasome subunits. PTEN induced the accumulation and nuclear translocation of these proteins, which directly repressed the transcription of genes encoding proteasome subunits. We revealed that the PTEN-proteasome axis is a potential target for therapy in PTEN-deficient CCA and other PTEN-deficient cancers.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Animales , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Conductos Biliares Intrahepáticos , Bortezomib/farmacología , Bortezomib/uso terapéutico , Línea Celular Tumoral , Colangiocarcinoma/tratamiento farmacológico , Humanos , Ratones , Fosfohidrolasa PTEN/genética , Complejo de la Endopetidasa Proteasomal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA