Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Pulm Med ; 23(1): 142, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37106322

RESUMEN

BACKGROUND: Diabetes mellitus is a major cause of high mortality and poor prognosis in patients with pulmonary infections. However, limited data on the application of metagenomic next-generation sequencing (mNGS) are available for diabetic patients. This study aimed to evaluate the diagnostic performance of mNGS in diabetic patients with pulmonary infections. METHODS: We retrospectively reviewed 184 hospitalized patients with pulmonary infections at Guizhou Provincial People's Hospital between January 2020 to October 2021. All patients were subjected to both mNGS analysis of bronchoalveolar lavage fluid (BALF) and conventional testing. Positive rate by mNGS and the consistency between mNGS and conventional testing results were evaluated for diabetic and non-diabetic patients. RESULTS: A total of 184 patients with pulmonary infections were enrolled, including 43 diabetic patients and 141 non-diabetic patients. For diabetic patients, the microbial positive rate by mNGS was significantly higher than that detected by conventional testing methods, primarily driven by bacterial detection (microbes: 95.3% vs. 67.4%, P = 0.001; bacteria: 72.1% vs. 37.2%, P = 0.001). mNGS and traditional tests had similar positive rates with regard to fungal and viral detection in diabetic patients. Klebsiella pneumoniae was the most common pathogen identified by mNGS in patients with diabetes. Moreover, mNGS identified pathogens in 92.9% (13/14) of diabetic patients who were reported negative by conventional testing. No significant difference was found in the consistency of the two tests between diabetic and non-diabetic groups. CONCLUSIONS: mNGS is superior to conventional microbiological tests for bacterial detection in diabetic patients with pulmonary infections. mNGS is a valuable tool for etiological diagnosis of pulmonary infections in diabetic patients.


Asunto(s)
Diabetes Mellitus , Neumonía , Humanos , Estudios Retrospectivos , Secuenciación de Nucleótidos de Alto Rendimiento , Líquido del Lavado Bronquioalveolar , Klebsiella pneumoniae/genética , Sensibilidad y Especificidad
2.
Front Cell Infect Microbiol ; 14: 1402348, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135639

RESUMEN

Objective: Although the mechanism is unclear, Pseudomonas aeruginosa (PA) infection directly affects the frequency of acute exacerbations in patients with bronchiectasis. The aims of this article are to analyze the genetic mutation characteristics of the algUmucABD operon in PA, isolated from hospitalized patients with bronchiectasis, and to explore independent risk factors for frequent acute exacerbations of bronchiectasis. Methods: Based on the number of acute exacerbations that occurred in the past year, these patients with bronchiectasis were divided into those with frequent acute exacerbations (Group A) and those with non-frequent acute exacerbations (Group B). We identified the distribution of mucoid phenotypes (MPs) and alginate morphotypes (AMs) in PA, and classified them into I-IV categories based on their different AMs; otherwise, the gene mutation types (GMTs) of the algUmucABD operon were tested. Subsequently, the relationship between GMT, MP, and AM and the independent risk factors for frequent acute exacerbations in patients with bronchiectasis were explored. Results: A total of 93 patients and 75 PA strains, from January 2019 to August 2023, were included in this study. The MP and AM distributions of PA were as follows: 64 strains (85.33%) of mucoid (the AMs were 38 strains of type I, 3 strains of type II, and 23 strains of type IV) and 11 strains of non-mucoid (the AM was type III only). Mucoid PA with algU, mucA, mucB, and mucD mutations accounted for 19.61%, 74.51%, 31.37%, and 50.98%, respectively. GMT was divided into the following: mucA mutations only, mucA combined with other gene mutations, other gene mutations without mucA mutations, and without gene mutations. In 91.7% of PA with type I of AM, only mucA mutations occurred, and in both separate MP and AM, the GMT differences were statistically significant. Lastly, the number of lung lobes with bronchiectasis and the number of PA with mucA mutations only were the independent risk factors for frequent acute exacerbations. Conclusion: The mucA mutation was primarily responsible for the mucoid of MP and type I of AM in PA, and it was also an independent risk factor for frequent exacerbations of bronchiectasis.


Asunto(s)
Proteínas Bacterianas , Bronquiectasia , Mutación , Operón , Fenotipo , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Bronquiectasia/microbiología , Bronquiectasia/genética , Femenino , Masculino , Infecciones por Pseudomonas/microbiología , Persona de Mediana Edad , Proteínas Bacterianas/genética , Factores de Riesgo , Anciano , Pacientes Internos , Alginatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA