Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Evol ; 39(4)2022 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-35417559

RESUMEN

Horizontal transfer (HT) of genes between multicellular animals, once thought to be extremely rare, is being more commonly detected, but its global geographic trend and transfer mechanism have not been investigated. We discovered a unique HT pattern of Bovine-B (BovB) LINE retrotransposons in vertebrates, with a bizarre transfer direction from predators (snakes) to their prey (frogs). At least 54 instances of BovB HT were detected, which we estimate to have occurred across time between 85 and 1.3 Ma. Using comprehensive transcontinental sampling, our study demonstrates that BovB HT is highly prevalent in one geographical region, Madagascar, suggesting important regional differences in the occurrence of HTs. We discovered parasite vectors that may plausibly transmit BovB and found that the proportion of BovB-positive parasites is also high in Madagascar where BovB thus might be physically transported by parasites to diverse vertebrates, potentially including humans. Remarkably, in two frog lineages, BovB HT occurred after migration from a non-HT area (Africa) to the HT hotspot (Madagascar). These results provide a novel perspective on how the prevalence of parasites influences the occurrence of HT in a region, similar to pathogens and their vectors in some endemic diseases.


Asunto(s)
Transferencia de Gen Horizontal , Parásitos , Animales , Bovinos , Geografía , Parásitos/genética , Filogenia , Conducta Predatoria , Retroelementos , Vertebrados/genética
2.
Genes Cells ; 26(12): 979-986, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34570411

RESUMEN

Alpha satellite DNA is a major DNA component of primate centromeres. We previously reported that Azara's owl monkey has two types of alpha satellite DNA, OwlAlp1 and OwlAlp2. OwlAlp2 (344 bp) exhibits a sequence similarity throughout its entire length with alpha satellite DNA of closely related species. OwlAlp1 (185 bp) corresponds to the part of OwlAlp2. Based on the observation that the CENP-A protein binds to OwlAlp1, we proposed that OwlAlp1 is a relatively new repetitive DNA that replaced OwlAlp2 as the centromeric satellite DNA. However, a detailed picture of the evolutionary process of this centromere DNA replacement remains largely unknown. Here, we performed a phylogenetic analysis of OwlAlp1 and OwlAlp2 sequences, and also compared our results to alpha satellite DNA sequences of other primate species. We found that: (i) OwlAlp1 exhibits a higher similarity to OwlAlp2 than to alpha satellite DNA of other species, (ii) OwlAlp1 has a single origin, and (iii) sequence variation is lower in OwlAlp1 than in OwlAlp2. We conclude that OwlAlp1 underwent a recent and rapid expansion in the owl monkey lineage. This centromere DNA replacement could have been facilitated by the heterochromatin reorganization that is associated with the adaptation of owl monkeys to a nocturnal lifestyle.


Asunto(s)
Aotidae , Centrómero , Animales , Aotidae/genética , Centrómero/genética , Proteína A Centromérica , ADN Satélite/genética , Filogenia
3.
Cytogenet Genome Res ; 161(5): 243-248, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34265761

RESUMEN

A female cynomolgus monkey (Macaca fascicularis) with facial features characteristic of Down syndrome showed abnormal behavior, unwariness toward humans, and poor concentration. The number of metaphase chromosomes in blood lymphocytes was examined and found to be 43, which indicated one extra chromosome to the normal diploid number (2n = 42). We then used Q-banding and multicolor FISH techniques to identify the extra chromosome. The results revealed an additional chromosome 17, with no other chromosomal rearrangements, such as translocations. Since no mosaicism or heterozygous variant chromosomes were observed, full trisomy 17 was assessed in this female cynomolgus monkey. Chromosome 17 corresponds to human chromosome 13, and human trisomy 13, known as Patau syndrome, results in severe clinical signs and, often, a short life span; however, this individual has reached an age of 10 years with only mild clinical signs. Although genomic differences exist between human and macaques, this individual's case could help to reveal the pathological and genetic mechanisms of Patau syndrome.


Asunto(s)
Cromosomas de los Mamíferos/ultraestructura , Macaca fascicularis/genética , Animales , Bandeo Cromosómico , Cromosomas Humanos Par 13 , Cromosomas Humanos Par 17 , Femenino , Humanos , Hibridación Fluorescente in Situ , Cariotipificación , Macaca fascicularis/anomalías , Mosaicismo/veterinaria , Especificidad de la Especie , Trisomía , Síndrome de la Trisomía 13/genética , Síndrome de la Trisomía 13/patología
4.
Biol Reprod ; 100(6): 1440-1452, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30869744

RESUMEN

Nonhuman primates (NHPs) are considered to be the most valuable models for human transgenic (Tg) research into disease because human pathology is more closely recapitulated in NHPs than rodents. Previous studies have reported the generation of Tg NHPs that ubiquitously overexpress a transgene using various promoters, but it is not yet clear which promoter is most suitable for the generation of NHPs overexpressing a transgene ubiquitously and persistently in various tissues. To clarify this issue, we evaluated four putative ubiquitous promoters, cytomegalovirus (CMV) immediate-early enhancer and chicken beta-actin (CAG), elongation factor 1α (EF1α), ubiquitin C (UbC), and CMV, using an in vitro differentiation system of cynomolgus monkey embryonic stem cells (ESCs). While the EF1α promoter drove Tg expression more strongly than the other promoters in undifferentiated pluripotent ESCs, the CAG promoter was more effective in differentiated cells such as embryoid bodies and ESC-derived neurons. When the CAG and EF1α promoters were used to generate green fluorescent protein (GFP)-expressing Tg monkeys, the CAG promoter drove GFP expression in skin and hematopoietic tissues more strongly than in ΕF1α-GFP Tg monkeys. Notably, the EF1α promoter underwent more silencing in both ESCs and Tg monkeys. Thus, the CAG promoter appears to be the most suitable for ubiquitous and stable expression of transgenes in the differentiated tissues of Tg cynomolgus monkeys and appropriate for the establishment of human disease models.


Asunto(s)
Animales Modificados Genéticamente , Vectores Genéticos , Macaca fascicularis/genética , Regiones Promotoras Genéticas , Transgenes , Actinas/genética , Animales , Antígenos Virales/genética , Células Cultivadas , Pollos/genética , Clonación de Organismos/métodos , Clonación de Organismos/normas , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Elementos de Facilitación Genéticos/genética , Femenino , Técnicas de Transferencia de Gen/normas , Vectores Genéticos/genética , Proteínas Inmediatas-Precoces/genética , Masculino , Ratones , Factor 1 de Elongación Peptídica/genética
5.
BMC Biol ; 16(1): 45, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29690872

RESUMEN

BACKGROUND: Fear conditioning is a form of learning essential for animal survival and used as a behavioral paradigm to study the mechanisms of learning and memory. In mammals, the amygdala plays a crucial role in fear conditioning. In teleost, the medial zone of the dorsal telencephalon (Dm) has been postulated to be a homolog of the mammalian amygdala by anatomical and ablation studies, showing a role in conditioned avoidance response. However, the neuronal populations required for a conditioned avoidance response via the Dm have not been functionally or genetically defined. RESULTS: We aimed to identify the neuronal population essential for fear conditioning through a genetic approach in zebrafish. First, we performed large-scale gene trap and enhancer trap screens, and created transgenic fish lines that expressed Gal4FF, an engineered version of the Gal4 transcription activator, in specific regions in the brain. We then crossed these Gal4FF-expressing fish with the effector line carrying the botulinum neurotoxin gene downstream of the Gal4 binding sequence UAS, and analyzed the double transgenic fish for active avoidance fear conditioning. We identified 16 transgenic lines with Gal4FF expression in various brain areas showing reduced performance in avoidance responses. Two of them had Gal4 expression in populations of neurons located in subregions of the Dm, which we named 120A-Dm neurons. Inhibition of the 120A-Dm neurons also caused reduced performance in Pavlovian fear conditioning. The 120A-Dm neurons were mostly glutamatergic and had projections to other brain regions, including the hypothalamus and ventral telencephalon. CONCLUSIONS: Herein, we identified a subpopulation of neurons in the zebrafish Dm essential for fear conditioning. We propose that these are functional equivalents of neurons in the mammalian pallial amygdala, mediating the conditioned stimulus-unconditioned stimulus association. Thus, the study establishes a basis for understanding the evolutionary conservation and diversification of functional neural circuits mediating fear conditioning in vertebrates.


Asunto(s)
Miedo/fisiología , Neuronas/metabolismo , Telencéfalo/citología , Telencéfalo/metabolismo , Animales , Animales Modificados Genéticamente , Toxinas Botulínicas/metabolismo , Encéfalo/metabolismo , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Pez Cebra
6.
Microbiology (Reading) ; 163(5): 678-691, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28535846

RESUMEN

Recent progress in molecular techniques has begun to alter traditional recognition of lichens as symbiotic organisms comprised of a fungus and photosynthetic partners (green algae and/or cyanobacteria). Diverse organisms, especially various non-photosynthetic bacteria, are now indicated to be integral components of lichen symbiosis. Although lichen-associated bacteria are inferred to have functions that could support the symbiosis, little is known about their physical and nutritional interaction with fungi and algae. In the present study, we identified specific interaction between a lichen-forming alga and a novel bacterium. Trebouxia alga was isolated from a lichen, Usnea hakonensis, and kept as a strain for 8 years. Although no visible bacterial colonies were observed in this culture, high-throughput sequencing of DNA isolated from the culture revealed that the strain is composed of a Trebouxia alga and an Alphaproteobacterium species. In situ hybridization showed that bacterial cells were localized on the surface of the algal cells. Physiological assays revealed that the bacterium was able to use ribitol, glucose and mannitol, all of which are known to exist abundantly in lichens. It was resistant to three antibiotics. Bacteria closely related to this species were also identified in lichen specimens, indicating that U. hakonensis may commonly associate with this group of bacteria. These features of the novel bacterium suggest that it may be involved in carbon cycling of U. hakonensis as a member of lichen symbiosis and less likely to have become associated with the alga after isolation from a lichen.


Asunto(s)
Alphaproteobacteria/clasificación , Alphaproteobacteria/metabolismo , Chlorophyta/metabolismo , Simbiosis/fisiología , Alphaproteobacteria/genética , Chlorophyta/genética , ADN Bacteriano/genética , ADN de Plantas/genética , Glucosa/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Líquenes/microbiología , Manitol/metabolismo , Filogenia , Ribitol/metabolismo , Análisis de Secuencia de ADN
7.
J Reprod Dev ; 63(2): 167-174, 2017 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-28190810

RESUMEN

The fertilized oocyte begins cleavage, leading to zygotic gene activation (ZGA), which re-activates the resting genome to acquire totipotency. In this process, genomic function is regulated by the dynamic structural conversion in the nucleus. Indeed, a considerable number of genes that are essential for embryonic development are located near the pericentromeric regions, wherein the heterochromatin is formed. These genes are repressed transcriptionally in somatic cells. Three-dimensional fluorescence in situ hybridization (3D-FISH) enables the visualization of the intranuclear spatial arrangement, such as gene loci, chromosomal domains, and chromosome territories (CTs). However, the 3D-FISH approach in mammalian embryos has been limited to certain repeated sequences because of its unfavorable properties. In this study, we developed an easy-to-use chamber device (EASI-FISH chamber) for 3D-FISH in early embryos, and visualized, for the first time, the spatial arrangements of pericentromeric regions, the ZGA-activated gene (Zscan4) loci, and CTs (chromosome 7), simultaneously during the early cleavage stage of mouse embryos by 3D-FISH. As a result, it was revealed that morphological changes of the pericentromeric regions and CTs, and relocation of the Zscan4 loci in CTs, occurred in the 1- to 4-cell stage embryos, which was different from those in somatic cells. This convenient and reproducible 3D-FISH technique for mammalian embryos represents a valuable tool that will provide insights into the nuclear dynamics of development.


Asunto(s)
Núcleo Celular/genética , Embrión de Mamíferos , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Hibridación Fluorescente in Situ/métodos , Animales , Femenino , Ratones , Embarazo
8.
Odontology ; 103(2): 152-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-24647621

RESUMEN

The dental pulp tissue is encased in hard tissue and surrounded by hard tissue-forming cells, but remains in a non-mineralized state itself, suggesting the presence of regulatory mechanisms precluding pulp mineralization. This study aimed to reveal the regulatory function of periostin (Postn), which is essential for osteoblast differentiation, for odontoblast differentiation/mineralization. We evaluated the effects of Postn overexpression and RNAi-mediated suppression in mouse dental papilla cells (MDPs) on the expression of odontoblastic markers and Notch signaling molecules, and on the formation of mineralized nodules. Localization of Postn in the dental pulp tissue of normal and cavity-prepared molars was observed immunohistologically. Enforced overexpression of Postn in MDPs induced down-regulation of odontoblastic markers and in vitro mineralization. Conversely, silencing of Postn mRNA in MDPs induced up-regulation of odontoblastic markers and ALP activity. Up- and down-regulation of Postn caused increased and decreased expression, respectively, of Notch signaling molecules. Postn expression was minimal in normal dental pulp, but was rapidly and globally increased in the whole pulp tissue of molar teeth at 1 day after cavity preparation, decreasing thereafter. These results indicate that Postn may be a negative regulator of odontoblast differentiation/mineralization, and that may exert its actions via Notch signals.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Pulpa Dental/citología , Calcificación de Dientes/fisiología , Fosfatasa Alcalina/metabolismo , Animales , Western Blotting , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Regulación hacia Abajo , Técnicas para Inmunoenzimas , Masculino , Ratones Endogámicos ICR , Odontoblastos/citología , Receptores Notch/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
9.
J Cell Sci ; 125(Pt 16): 3739-43, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22573822

RESUMEN

The spatial organization of chromatin in the nucleus contributes to genome function and is altered during the differentiation of normal and tumorigenic cells. Although nuclear actin-related proteins (Arps) have roles in the local alteration of chromatin structure, it is unclear whether they are involved in the spatial positioning of chromatin. In the interphase nucleus of vertebrate cells, gene-dense and gene-poor chromosome territories (CTs) are located in the center and periphery, respectively. We analyzed chicken DT40 cells in which Arp6 had been knocked out conditionally, and showed that the radial distribution of CTs was impaired in these knockout cells. Arp6 is an essential component of the SRCAP chromatin remodeling complex, which deposits the histone variant H2A.Z into chromatin. The redistribution of CTs was also observed in H2A.Z-deficient cells for gene-rich microchromosomes, but to lesser extent for gene-poor macrochromosomes. These results indicate that Arp6 and H2A.Z contribute to the radial distribution of CTs through different mechanisms. Microarray analysis suggested that the localization of chromatin to the nuclear periphery per se is insufficient for the repression of most genes.


Asunto(s)
Actinas/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Actinas/deficiencia , Actinas/genética , Animales , Sitios de Unión , Núcleo Celular/genética , Pollos , Cromatina/genética , Cromosomas/genética , Cromosomas/metabolismo , Expresión Génica , Técnicas de Inactivación de Genes , Histonas/genética , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Transfección
10.
J Immunol ; 189(9): 4426-36, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23018457

RESUMEN

After receiving a TCR-mediated differentiation signal, CD4 and CD8 double-positive thymocytes diverge into CD4 or CD8 single-positive T cells, for which Th-POK and Runx3 have been identified as pivotal transcription factors, respectively. The cross-antagonistic regulation of Th-POK and Runx3 seems to be essential for CD4/8 thymocyte lineage commitment. However, the process for determining which pivotal factor acts dominantly has not been established. To explore the determining process, we used an in vitro culture system in which CD4 or CD8 single-positive cells are selectively induced from CD4/8 double-positive cells. Surprisingly, we found that control of G(1) cell cycle phase progression is critical for the determination. In the CD4 pathway, sustained TCR signal, as well as Th-POK, induces G(1)-phase extension and represses CD8 expression in a G(1) extension-dependent manner. In the CD8 pathway, after receiving a transient TCR signal, the IL-7R signal, as well as Runx3, antagonizes TCR signal-mediated G(1) extension and CD8 repression. Importantly, forced G(1) extension cancels the functions of Runx3 to repress Th-POK and CD4 and to reactivate CD8. In contrast, it is suggested that forced G(1) progression inhibits Th-POK function to repress CD8. Collectively, Th-POK and Runx3 are reciprocally involved in the control of G(1)-phase progression, on which they exert their functions dependently. These findings may provide novel insight into how CD4/CD8 cell lineages are determined by Th-POK and Runx3.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Linaje de la Célula/inmunología , Subunidad alfa 3 del Factor de Unión al Sitio Principal/fisiología , Fase G1/inmunología , Factores de Transcripción/fisiología , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Células Tumorales Cultivadas
11.
Nat Genet ; 56(3): 473-482, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38361031

RESUMEN

Chromatin accessibility is a hallmark of active regulatory regions and is functionally linked to transcriptional networks and cell identity. However, the molecular mechanisms and networks that govern chromatin accessibility have not been thoroughly studied. Here we conducted a genome-wide CRISPR screening combined with an optimized ATAC-see protocol to identify genes that modulate global chromatin accessibility. In addition to known chromatin regulators like CREBBP and EP400, we discovered a number of previously unrecognized proteins that modulate chromatin accessibility, including TFDP1, HNRNPU, EIF3D and THAP11 belonging to diverse biological pathways. ATAC-seq analysis upon their knockouts revealed their distinct and specific effects on chromatin accessibility. Remarkably, we found that TFDP1, a transcription factor, modulates global chromatin accessibility through transcriptional regulation of canonical histones. In addition, our findings highlight the manipulation of chromatin accessibility as an approach to enhance various cell engineering applications, including genome editing and induced pluripotent stem cell reprogramming.


Asunto(s)
Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Cromatina/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Histonas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Redes Reguladoras de Genes
12.
In Vitro Cell Dev Biol Anim ; 60(5): 544-554, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38386235

RESUMEN

As humans' closest living relatives, chimpanzees offer valuable insights into human evolution. However, technical and ethical limitations hinder investigations into the molecular and cellular foundations that distinguish chimpanzee and human traits. Recently, induced pluripotent stem cells (iPSCs) have emerged as a novel model for functional comparative studies and provided a non-invasive alternative for studying embryonic phenomena. In this study, we generated five new chimpanzee iPSC lines from peripheral blood cells and skin fibroblasts with SeV vectors carrying four reprogramming factors (human OCT3/4, SOX2, KLF4, and L-MYC) and characterized their pluripotency and differentiation potential. We also examined the expression of a human-specific non-coding RNA, HSTR1, which is predicted to be involved in human brain development. Our results show that the chimpanzee iPSCs possess pluripotent characteristics and can differentiate into various cell lineages. Moreover, we found that HSTR1 is expressed in human iPSCs and their neural derivatives but not in chimpanzee counterparts, supporting its possible role in human-specific brain development. As iPSCs are inherently variable due to genetic and epigenetic differences in donor cells or reprogramming procedures, it is essential to expand the number of chimpanzee iPSC lines to comprehensively capture the molecular and cellular properties representative of chimpanzees. Hence, our cells provide a valuable resource for investigating the function and regulation of human-specific transcripts such as HSTR1 and for understanding human evolution more generally.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Factor 4 Similar a Kruppel , Pan troglodytes , Animales , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular/genética , Humanos , Línea Celular , Especificidad de la Especie , Fibroblastos/citología , Fibroblastos/metabolismo , Reprogramación Celular/genética
13.
Chromosome Res ; 20(6): 659-72, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22801776

RESUMEN

The three-dimensional (3D) structure of the genome is organized non-randomly and plays a role in genomic function via epigenetic mechanisms in the eukaryotic nucleus. Here, we analyzed the spatial positioning of three target regions; the SNRPN, UBE3A, and GABRB3 genes on human chromosome 15q11.2-q12, a representative cluster of imprinted regions, in the interphase nuclei of B lymphoblastoid cell lines, peripheral blood cells, and skin fibroblasts derived from normal individuals to look for evidence of genomic organization and function. The positions of these genes were simultaneously visualized, and all inter-gene distances were calculated for each homologous chromosome in each nucleus after three-color 3D fluorescence in situ hybridization. None of the target genes were arranged linearly in most cells analyzed, and GABRB3 was positioned closer to SNRPN than UBE3A in a high proportion of cells in all cell types. This was in contrast to the genomic map in which GABRB3 was positioned closer to UBE3A than SNRPN. We compared the distances from SNRPN to UBE3A (SU) and from UBE3A to GABRB3 (UG) between alleles in each nucleus, 50 cells per subject. The results revealed that the gene-to-gene distance of one allele was longer than that of the other and that the SU ratio (longer/shorter SU distance between alleles) was larger than the UG ratio (longer/shorter UG distance between alleles). The UG distance was relatively stable between alleles; in contrast, the SU distance of one allele was obviously longer than the distance indicated by the genome size. The results therefore indicate that SNRPN, UBE3A, and GABRB3 have non-linear and non-random curved spatial positioning in the normal nucleus, with differences in the SU distance between alleles possibly representing epigenetic evidence of nuclear organization and gene expression.


Asunto(s)
Núcleo Celular/ultraestructura , Cromosomas Humanos Par 15/ultraestructura , Imagenología Tridimensional/métodos , Hibridación Fluorescente in Situ/métodos , Receptores de GABA-A/ultraestructura , Ubiquitina-Proteína Ligasas/ultraestructura , Proteínas Nucleares snRNP/ultraestructura , Linfocitos B , Mapeo Cromosómico , Cromosomas Humanos Par 15/genética , Femenino , Fibroblastos , Humanos , Masculino , Microscopía Confocal , Receptores de GABA-A/genética , Ubiquitina-Proteína Ligasas/genética , Proteínas Nucleares snRNP/genética
14.
Nucleic Acids Res ; 39(16): e106, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21653557

RESUMEN

Gene amplification contributes to a variety of biological phenomena, including malignant progression and drug resistance. However, details of the molecular mechanisms remain to be determined. Here, we have developed a gene amplification system in yeast and mammalian cells that is based on double rolling-circle replication (DRCR). Cre-lox system is used to efficiently induce DRCR utilizing a recombinational process coupled with replication. This system shows distinctive features seen in amplification of oncogenes and drug-resistance genes: (i) intra- and extrachromosomal amplification, (ii) intensive chromosome rearrangement and (iii) scattered-type amplification resembling those seen in cancer cells. This system can serve as a model for amplification of oncogenes and drug-resistance genes, and improve amplification systems used for making pharmaceutical proteins in mammalian cells.


Asunto(s)
Replicación del ADN , Amplificación de Genes , Modelos Genéticos , Animales , Células CHO , Cricetinae , Cricetulus , Integrasas/metabolismo , Oncogenes , Recombinación Genética , Levaduras/genética
15.
Virology ; 586: 56-66, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37487326

RESUMEN

The kangaroo endogenous retrovirus (KERV) was previously reported to have undergone a rapid copy number increase in the red-necked wallaby; however, the mode of amplification was left to be clarified. The present study revealed that the long terminal repeat (LTR) (0.6 kb) and internal region (2.0 kb) of a provirus are repeated alternately, forming megasatellite DNA which we named kervRep. This repetition pattern was the same as that observed for walbRep, megasatellite DNA originating from another endogenous retrovirus. Their formation process can be explained using a simple model: pairing slippage followed by homologous recombination. This model features that the initial step is triggered by the presence of two identical sequences within a short distance; the possession of LTRs by endogenous retroviruses fulfills this condition. The discovery of two cases suggests that formation of this type of satellite DNA is one of non-negligible effects of endogenous retroviruses on their host genomes.


Asunto(s)
Retrovirus Endógenos , Animales , Retrovirus Endógenos/genética , Provirus/genética , Macropodidae/genética , ADN , Secuencias Repetidas Terminales
16.
J Hum Genet ; 57(12): 787-95, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23135232

RESUMEN

The Japanese Archipelago stretches over 4000 km from north to south, and is the homeland of the three human populations; the Ainu, the Mainland Japanese and the Ryukyuan. The archeological evidence of human residence on this Archipelago goes back to >30 000 years, and various migration routes and root populations have been proposed. Here, we determined close to one million single-nucleotide polymorphisms (SNPs) for the Ainu and the Ryukyuan, and compared these with existing data sets. This is the first report of these genome-wide SNP data. Major findings are: (1) Recent admixture with the Mainland Japanese was observed for more than one third of the Ainu individuals from principal component analysis and frappe analyses; (2) The Ainu population seems to have experienced admixture with another population, and a combination of two types of admixtures is the unique characteristics of this population; (3) The Ainu and the Ryukyuan are tightly clustered with 100% bootstrap probability followed by the Mainland Japanese in the phylogenetic trees of East Eurasian populations. These results clearly support the dual structure model on the Japanese Archipelago populations, though the origins of the Jomon and the Yayoi people still remain to be solved.


Asunto(s)
Pueblo Asiatico/genética , Genética de Población/historia , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Cromosomas Humanos/genética , ADN Mitocondrial/genética , Ecosistema , Historia Antigua , Humanos , Filogenia
17.
PLoS One ; 16(7): e0254674, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34260661

RESUMEN

Trophoblast giant cells (TGCs), a mouse trophoblast subtype, have large amounts of cytoplasm and high ploidy levels via endocycles. The diverse functions and gene expression profiles of TGCs have been studied well, but their nuclear structures remain unknown. In this study, we focus on Lamin B1, a nuclear lamina, and clarify its expression dynamics, regulation and roles in TGC functions. TGCs that differentiated from trophoblast stem cells were used. From days 0 to 9 after differentiation, the number of TGCs gradually increased, but the amount of LMNB1 peaked at day 3 and then slightly decreased. An immunostaining experiment showed that LMNB1-depleted TGCs increased after day 6 of differentiation. These LMNB1-depleted TGCs diffused peripheral localization of the heterochromatin marker H3K9me2 in the nuclei. However, LMINB1-knock down was not affected TGCs specific gene expression. We found that the death of TGCs also increased after day 6 of differentiation. Moreover, Lamin B1 loss and the cell death in TGCs were protected by 10-6 M progesterone. Our results conclude that progesterone protects against Lamin B1 loss and prolongs the life and function of TGCs.


Asunto(s)
Lamina Tipo B , Progesterona , Trofoblastos , Animales , Diferenciación Celular , Núcleo Celular , Femenino , Células Gigantes , Ratones , Placenta , Embarazo , Células Madre
18.
Genome Biol Evol ; 13(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33533923

RESUMEN

In rod cells of many nocturnal mammals, heterochromatin localizes to the central region of the nucleus and serves as a lens to send light efficiently to the photoreceptor region. The genus Aotus (owl monkeys) is commonly considered to have undergone a shift from diurnal to nocturnal lifestyle. We recently demonstrated that rod cells of the Aotus species Aotus azarae possess a heterochromatin block at the center of its nucleus. The purpose of the present study was to estimate the time span in which the formation of the heterochromatin block took place. We performed three-dimensional hybridization analysis of the rod cell of another species, Aotus lemurinus. This analysis revealed the presence of a heterochromatin block that consisted of the same DNA components as those in A. azarae. These results indicate that the formation was complete at or before the separation of the two species. Based on the commonly accepted evolutionary history of New World monkeys and specifically of owl monkeys, the time span for the entire formation process was estimated to be 15 Myr at most.


Asunto(s)
Aotidae/genética , Heterocromatina , Células Fotorreceptoras Retinianas Bastones , Animales , Aotidae/clasificación , Evolución Biológica , Cebidae/genética , Filogenia
19.
Sci Adv ; 7(34)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34407936

RESUMEN

Culture evolves in ways that are analogous to, but distinct from, genomes. Previous studies examined similarities between cultural variation and genetic variation (population history) at small scales within language families, but few studies have empirically investigated these parallels across language families using diverse cultural data. We report an analysis comparing culture and genomes from in and around northeast Asia spanning 11 language families. We extract and summarize the variation in language (grammar, phonology, lexicon), music (song structure, performance style), and genomes (genome-wide SNPs) and test for correlations. We find that grammatical structure correlates with population history (genetic history). Recent contact and shared descent fail to explain the signal, suggesting relationships that arose before the formation of current families. Our results suggest that grammar might be a cultural indicator of population history while also demonstrating differences among cultural and genetic relationships that highlight the complex nature of human history.

20.
Mol Cell Biol ; 26(16): 6299-307, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16880537

RESUMEN

Bloom's syndrome (BS) is an autosomal disorder characterized by predisposition to a wide variety of cancers. The gene product whose mutation leads to BS is the RecQ family helicase BLM, which forms a complex with DNA topoisomerase IIIalpha (Top3alpha). However, the physiological relevance of the interaction between BLM and Top3alpha within the cell remains unclear. We show here that Top3alpha depletion causes accumulation of cells in G2 phase, enlargement of nuclei, and chromosome gaps and breaks that occur at the same position in sister chromatids. The transition from metaphase to anaphase is also inhibited. All of these phenomena except cell lethality are suppressed by BLM gene disruption. Taken together with the biochemical properties of BLM and Top3alpha, these data indicate that BLM and Top3alpha execute the dissolution of sister chromatids.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromátides/enzimología , Cromátides/genética , ADN Helicasas/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , 2-Aminopurina/farmacología , Anafase/efectos de los fármacos , Animales , Apoptosis , Pollos , Cromátides/efectos de los fármacos , Aberraciones Cromosómicas , ADN-Topoisomerasas de Tipo I/deficiencia , Fase G2/efectos de los fármacos , Marcación de Gen , Humanos , Isoenzimas/metabolismo , Metafase/efectos de los fármacos , Ratones , Modelos Genéticos , Mutación/genética , Fenotipo , RecQ Helicasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA