RESUMEN
Allogeneic hematopoietic cell transplantation is an effective treatment for hematologic malignancies, but the complications such as graft-versus-host disease (GVHD) can limit its benefit. The conditioning regimens before transplant, including chemotherapy or irradiation, can trigger endoplasmic reticulum stress. IRE-1α is a major endoplasmic reticulum stress mediator that can further activate both spliced XBP-1 (XBP-1s) and regulated IRE-1-dependent decay (RIDD). IRE-1α-XBP-1s signaling controls dendritic cell (DC) differentiation and Ag presentation, crucial in GVHD progression. In this study, we used DC-specific XBP-1-deficient mice as donors or recipients and observed that XBP-1s was crucial for host DCs in the induction of GVHD but dispensable for the graft-versus-leukemia response. To specifically target IRE-1α in the host, we treated recipient mice with the IRE-1α inhibitor B-I09 for 3 d prior to bone marrow transplantation, which significantly suppressed GVHD development while maintaining the graft-versus-leukemia effect. XBP-1-deficient or BI09-treated recipients showed reduced DC survival after irradiation and bone marrow transplantation. Inhibition of IRE-1α also led to a reduction in DC alloreactivity, subsequently decreasing the proliferation and activation of allogeneic T cells. With further study using RIDD-deficient DCs, we observed that RIDD was also required for optimal DC activation. Taken together, XBP-1s and RIDD both promote host DC survival and alloreactivity that contribute to GVHD development.
Asunto(s)
Células Dendríticas , Estrés del Retículo Endoplásmico , Endorribonucleasas , Enfermedad Injerto contra Huésped , Proteínas Serina-Treonina Quinasas , Proteína 1 de Unión a la X-Box , Animales , Células Dendríticas/inmunología , Enfermedad Injerto contra Huésped/inmunología , Ratones , Estrés del Retículo Endoplásmico/inmunología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Endorribonucleasas/genética , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Trasplante de Células Madre Hematopoyéticas , Trasplante de Médula Ósea , Transducción de Señal , Diferenciación Celular/inmunología , Efecto Injerto vs Leucemia/inmunologíaRESUMEN
Burkitt lymphoma (BL) is an extremely aggressive but curable subtype of non-Hodgkin lymphoma. While younger patients have excellent outcomes in response to aggressive chemoimmunotherapy, the rarity of this disease in older patients and limitations caused by age, comorbidities, and performance status may negate survival advantages. This analysis assessed outcomes of older adults with BL through data provided by the Texas Cancer Registry (TCR). Patients ≥65 years with BL were assessed. Patients were dichotomized into 1997-2007 and 2008-2018. Median overall survival (OS) and disease-specific survival (DSS) were assessed using Kaplan-Meier methodology, and covariates including age, race, sex, stage, primary site, and poverty index were analyzed using Pearson Chi-squared analysis. Odds ratio (OR) with 95% confidence intervals (CI) was used to assess factors contributing to patients not offered systemic therapy. P value <0.05 was considered statistically significant. Non-BL mortality events were also categorized. There were 325 adults, 167 in 1997-2007 and 158 in 2008-2018; 106 (63.5%) and 121 (76.6%) received systemic therapy, a trend that increased with time (p = 0.010). Median OS for 1997-2007 and 2008-2018 was 5 months (95% CI 2.469, 7.531) and 9 months (95% CI 0.000, 19.154) (p = 0.013), and DSS was 72 months (95% CI 56.397, 87.603) (p = 0.604) and not reached, respectively. For patients that received systemic therapy, median OS was 8 months (95% CI 1.278, 14.722) and 26 months (95% CI 5.824, 46.176) (p = 0.072), respectively, and DSS was 79 months (95% CI: 56.416, 101.584) and not reached, respectively (p = 0.607). Age ≥75 years (HR 1.39 [95% CI 1.078, 1.791], p = 0.011) and non-Hispanic whites (HR 1.407 [95% CI 1.024, 1.935], p = 0.035) had poorer outcomes, and patients at the 20-100% poverty index (OR 0.387 [95% CI 0.163, 0.921], p = 0.032) and increasing age at diagnosis (OR 0.947 [95% CI 0.913, 0.983], p = 0.004) were less likely to receive systemic therapy. Of 259 (79.7%) deaths, 62 (23.9%) were non-BL deaths, and 6 (9.6%) of these were from a second cancer. This two-decade analysis of older Texas patients with BL indicates a significant improvement in OS over time. Although patients were more likely to receive systemic therapy over time, treatment disparities existed in patients residing in poverty-stricken regions of Texas and in advancing age. These statewide findings reflect an unmet national need to find a systemic therapeutic strategy that can be tolerated by and augment outcomes in the growing elderly population.
Asunto(s)
Linfoma de Burkitt , Humanos , Anciano , Linfoma de Burkitt/tratamiento farmacológico , Linfoma de Burkitt/epidemiología , Texas/epidemiología , Sistema de RegistrosRESUMEN
Primary central nervous system lymphoma (PCNSL) is an aggressive subtype of non-Hodgkin lymphoma that carries a poor prognosis in the elderly. The aim of this study is to investigate treatment patterns and survival trends in patients ≥ 65 years with PCNSL through data provided by the Texas Cancer Registry. Adults ≥ 65 years diagnosed with PCNSL and followed between 1995-2017 were identified and separated into three eras: 1995-2003, 2004-2012, and 2013-2017. Baseline covariates compared included patient demographics and treatments administered. Pearson's chi-squared test and Cox proportional hazard models compared covariates; overall survival (OS) and disease-specific survival (DSS) were assessed via Kaplan-Meier methodology. There were 375 patients; 104 (27.7%) in 1995-2003, 146 (38.9%) in 2004-2012, and 125 (33.3%) in 2013-2017. There were 50 (48.1%), 55 (37.7%), and 31 (24.8%) in 1995-2003, 2004-2012, and 2013-2017, respectively, that did not receive treatment. At last follow up, 101 (97.1%), 130 (89.0%), and 94 (75.2%) in each era died, of which 89 (85.6%), 112 (76.7%), and 70 (56.0%) were attributed to PCNSL. Median OS per era was eight (95% confidence interval [CI] 5.06-10.93), six (95% CI, 2.30-9.69), and five months (95% CI, 2.26-7.73) (p = 0.638). DSS per era was nine (95% CI: 0.00, 26.53), 10 (95% CI: 5.14, 14.86), and 19 (95% CI, 0.00-45.49) (p = 0.931) months. Spinal cord as primary disease site (HR: 0.668 [95% CI, 0.45-0.99], p = 0.049), and chemotherapy (HR 0.532 [95% CI, 0.42-0.673], p = < 0.001) or chemotherapy + radiation (HR, 0.233 [95% CI, 0.11-0.48] p < 0.001) had better outcomes compared to no therapy or radiation therapy alone. Survival in older patients ≥ 65 with PCNSL has not improved per our analysis of the TCR from 1995-2017 despite increasing trends of treatment utilization. Strategies to augment recruitment of older individuals in trials are needed in order to determine who would derive treatment benefit and minimize treatment toxicities.
Asunto(s)
Neoplasias del Sistema Nervioso Central , Linfoma no Hodgkin , Adulto , Humanos , Anciano , Texas/epidemiología , Neoplasias del Sistema Nervioso Central/terapia , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Linfoma no Hodgkin/epidemiología , Linfoma no Hodgkin/terapia , Sistema de Registros , Sistema Nervioso CentralRESUMEN
Fic domain-containing AMP transferases (fic AMPylases) are conserved enzymes that catalyze the covalent transfer of AMP to proteins. This posttranslational modification regulates the function of several proteins, including the ER-resident chaperone Grp78/BiP. Here we introduce a mouse FICD (mFICD) AMPylase knockout mouse model to study fic AMPylase function in vertebrates. We find that mFICD deficiency is well tolerated in unstressed mice. We also show that mFICD-deficient mouse embryonic fibroblasts are depleted of AMPylated proteins. mFICD deletion alters protein synthesis and secretion in splenocytes, including that of IgM, an antibody secreted early during infections, and the proinflammatory cytokine IL-1ß, without affecting the unfolded protein response. Finally, we demonstrate that visual nonspatial short-term learning is stronger in old mFICD-/- mice than in wild-type controls while other measures of cognition, memory, and learning are unaffected. Together, our results suggest a role for mFICD in adaptive immunity and neuronal plasticity in vivo.
Asunto(s)
Citocinas/metabolismo , Aprendizaje , Transferasas/metabolismo , Percepción Visual , Animales , Células Cultivadas , Chaperón BiP del Retículo Endoplásmico , Ratones , Ratones NoqueadosRESUMEN
The unfolded protein response plays an evolutionarily conserved role in homeostasis, and its dysregulation often leads to human disease, including diabetes and cancer. IRE1α is a major transducer that conveys endoplasmic reticulum stress via biochemical signals, yet major gaps persist in our understanding of how the detection of stress is converted to one of several molecular outcomes. It is known that, upon sensing unfolded proteins via its endoplasmic reticulum luminal domain, IRE1α dimerizes and then oligomerizes (often visualized as clustering). Once assembled, the kinase domain trans-autophosphorylates a neighboring IRE1α, inducing a conformational change that activates the RNase effector domain. However, the full details of how the signal is transmitted are not known. Here, we describe a previously unrecognized role for helix αK, located between the kinase and RNase domains of IRE1α, in conveying this critical conformational change. Using constructs containing mutations within this interdomain helix, we show that distinct substitutions affect oligomerization, kinase activity, and the RNase activity of IRE1α differentially. Furthermore, using both biochemical and computational methods, we found that different residues at position 827 specify distinct conformations at distal sites of the protein, such as in the RNase domain. Of importance, an RNase-inactive mutant, L827P, can still dimerize with wildtype monomers, but this mutation inactivates the wildtype molecule and renders leukemic cells more susceptible to stress. We surmise that helix αK is a conduit for the activation of IRE1α in response to stress.
Asunto(s)
Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Línea Celular , Endorribonucleasas/química , Humanos , Modelos Moleculares , Conformación Proteica en Hélice alfa , Dominios Proteicos , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/química , Ribonucleasas/metabolismoRESUMEN
Activation of the IRE-1/XBP-1s pathway supports tumor progression. Here, we report a novel prodrug, TC-D-F07, in which a thiol-reactive dinitrobenzenesulfonyl (Dns) cage was installed onto the C8 hydroxyl of the covalent IRE-1 inhibitor D-F07. The electron-withdrawing Dns group in TC-D-F07 stabilizes the neighboring 1,3-dioxane acetal, allowing for stimulus-mediated control of its inhibitory activity. TC-D-F07 exhibits high sensitivity to intracellular thiols. Because tumor cells exhibit higher concentrations of glutathione and cysteine, treatment with TC-D-F07 results in more sustained levels of D-F07 in transformed versus normal cells. In addition, we show that a dinitrophenyl cysteine adduct resulting from cleavage of the Dns group induces endoplasmic reticulum (ER) stress, causing tumor cells to increase the expression of XBP-1s. The accumulated levels of D-F07 and its gradual decomposition into the active IRE-1 inhibitor eventually deprive tumor cells of XBP-1s, leading to more severe apoptosis than those treated with its uncaged analogue.
Asunto(s)
Neoplasias , Profármacos , Apoptosis , Estrés del Retículo Endoplásmico , Humanos , Neoplasias/tratamiento farmacológico , Profármacos/farmacologíaRESUMEN
A conserved transcriptional feedback loop underlies animal circadian rhythms. In Drosophila, the transcription factors CLOCK (CLK) and CYCLE (CYC) activate the transcription of direct target genes like period (per) and timeless (tim). They encode the proteins PER and TIM, respectively, which repress CLK/CYC activity. Previous work indicates that repression is due to a direct PER-CLK/CYC interaction as well as CLK/CYC phosphorylation. We describe here the role of ubiquitin-specific protease 8 (USP8) in circadian transcriptional repression as well as the importance of CLK ubiquitylation in CLK/CYC transcription activity. usp8 loss of function (RNAi) or expression of a dominant-negative form of the protein (USP8-DN) enhances CLK/CYC transcriptional activity and alters fly locomotor activity rhythms. Clock protein and mRNA molecular oscillations are virtually absent within circadian neurons of USP8-DN flies. Furthermore, CLK ubiquitylation cycles robustly in wild-type flies and peaks coincident with maximal CLK/CYC transcription. As USP8 interacts with CLK and expression of USP8-DN increases CLK ubiquitylation, the data indicate that USP8 deubiquitylates CLK, which down-regulates CLK/CYC transcriptional activity. Taken together with the facts that usp8 mRNA cycles and that its transcription is activated directly by CLK/CYC, USP8, like PER and TIM, contributes to the transcriptional feedback loop cycle that underlies circadian rhythms.
Asunto(s)
Factores de Transcripción ARNTL/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Ubiquitina Tiolesterasa/metabolismo , Factores de Transcripción ARNTL/metabolismo , Animales , Ritmo Circadiano/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , Actividad Motora/genética , Proteínas Circadianas Period/metabolismo , Isoformas de Proteínas , Interferencia de ARN , UbiquitinaciónRESUMEN
To determine the prevalence of cotranscriptional splicing in Drosophila, we sequenced nascent RNA transcripts from Drosophila S2 cells as well as from Drosophila heads. Eighty-seven percent of the introns assayed manifest >50% cotranscriptional splicing. The remaining 13% are cotranscriptionally spliced poorly or slowly, with â¼3% being almost completely retained in nascent pre-mRNA. Although individual introns showed slight but statistically significant differences in splicing efficiency, similar global levels of splicing were seen from both sources. Importantly, introns with low cotranscriptional splicing efficiencies are present in the same primary transcript with efficiently spliced introns, indicating that splicing is intron-specific. The analysis also indicates that cotranscriptional splicing is less efficient for first introns, longer introns, and introns annotated as alternative. Finally, S2 cells expressing the slow RpII215(C4) mutant show substantially less intron retention than wild-type S2 cells.
Asunto(s)
Drosophila/genética , Precursores del ARN/genética , Empalme del ARN , Transcripción Genética , Animales , Drosophila/metabolismo , Intrones , Mutación , Precursores del ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
Torsin ATPases are the only representatives of the AAA+ ATPase family that reside in the lumen of the endoplasmic reticulum (ER) and nuclear envelope. Two of these, TorsinA and TorsinB, are anchored to the ER membrane by virtue of an N-terminal hydrophobic domain. Here we demonstrate that the imposition of ER stress leads to a proteolytic cleavage event that selectively removes the hydrophobic domain from the AAA+ domain of TorsinA, which retains catalytic activity. Both the pharmacological inhibition profile and the identified cleavage site between two juxtaposed cysteine residues are distinct from those of presently known proteases, suggesting that a hitherto uncharacterized, membrane-associated protease accounts for TorsinA processing. This processing occurs not only in stress-exposed cell lines but also in primary cells from distinct organisms including stimulated B cells, indicating that Torsin conversion in response to physiologically relevant stimuli is an evolutionarily conserved process. By establishing 5-nitroisatin as a cell-permeable inhibitor for Torsin processing, we provide the methodological framework for interfering with Torsin processing in a wide range of primary cells without the need for genetic manipulation.
Asunto(s)
Linfocitos B/metabolismo , Membrana Celular/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Activación de Linfocitos/fisiología , Chaperonas Moleculares/metabolismo , Proteolisis , Linfocitos B/citología , Membrana Celular/genética , Retículo Endoplásmico/genética , Células HEK293 , Células HeLa , Humanos , Chaperonas Moleculares/genética , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiologíaRESUMEN
Rhythmic mRNA expression is a hallmark of circadian biology and has been described in numerous experimental systems including mammals. A small number of core clock gene mRNAs and a much larger number of output mRNAs are under circadian control. The rhythmic expression of core clock genes is regulated at the transcriptional level, and this regulation is important for the timekeeping mechanism. However, the relative contribution of transcriptional and post transcriptional regulation to global circadian mRNA oscillations is unknown. To address this issue in Drosophila, we isolated nascent RNA from adult fly heads collected at different time points and subjected it to high-throughput sequencing. mRNA was isolated and sequence din parallel. Some genes had cycling nascent RNAs with no cycling mRNA, caused,most likely, by light-mediated read-through transcription. Most genes with cycling mRNAs had significant nascent RNA cycling amplitudes, indicating a prominent role for circadian transcriptional regulation. However, a considerable fraction had higher mRNA amplitudes than nascent RNA amplitudes. The same comparison for core clock gene mRNAs gives rise to a qualitatively similar conclusion. The data therefore indicate a significant quantitative contribution of post transcriptional regulation to mRNA cycling.
Asunto(s)
Ritmo Circadiano/genética , Drosophila melanogaster/genética , Genes de Insecto , Animales , Ritmo Circadiano/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
Chronic lymphocytic leukemia (CLL) represents 30% of adult leukemia. TCL1 is expressed in ~ 90% of human CLL. Transgenic expression of TCL1 in murine B cells (Eµ-TCL1) results in mouse CLL. Here we show for the first time that the previously unexplored endoplasmic reticulum (ER) stress response is aberrantly activated in Eµ-TCL1 mouse and human CLL. This includes activation of the IRE-1/XBP-1 pathway and the transcriptionally up-regulated expression of Derlin-1, Derlin-2, BiP, GRP94, and PDI. TCL1 associates with the XBP-1 transcription factor, and causes the dysregulated expression of the transcription factors, Pax5, IRF4, and Blimp-1, and of the activation-induced cytidine deaminase. In addition, TCL1-overexpressing CLL cells manufacture a distinctly different BCR, as we detected increased expression of membrane-bound IgM and altered N-linked glycosylation of Igα and Igß, which account for the hyperactive BCR in malignant CLL. To demonstrate that the ER stress-response pathway is a novel molecular target for the treatment of CLL, we blocked the IRE-1/XBP-1 pathway using a novel inhibitor, and observed apoptosis and significantly stalled growth of CLL cells in vitro and in mice. These studies reveal an important role of TCL1 in activating the ER stress response in support for malignant progression of CLL.
Asunto(s)
Estrés del Retículo Endoplásmico/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Proteínas Proto-Oncogénicas/fisiología , Animales , Linfocitos B/metabolismo , Linfocitos B/patología , Células Cultivadas , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación Leucémica de la Expresión Génica , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-bcr/genética , Proteínas Proto-Oncogénicas c-bcr/metabolismo , Proteínas Proto-Oncogénicas c-bcr/fisiología , Factores de Tiempo , Regulación hacia Arriba/genética , Regulación hacia Arriba/fisiologíaRESUMEN
Lucentamycin A is a marine-derived peptide natural product harboring a unique 4-ethylidene-3-methylproline (Emp) subunit. The proposed structure of lucentamycin A and the core Emp residue have recently been called into question through synthesis. Here, we report the first total synthesis of lucentamycin A, which confirms that the ethylidene substituent in Emp bears an E geometry, in contrast to the originally assigned Z configuration. Synthesis of the desired (E)-Emp subunit required the implementation of a novel strategy starting from Garner's aldehyde.
Asunto(s)
Oligopéptidos/química , Oligopéptidos/síntesis química , Prolina/análogos & derivados , Prolina/química , Aldehídos/química , Estructura Molecular , EstereoisomerismoRESUMEN
Activation-induced cytidine deaminase (AID) has been implicated as both a positive and a negative factor in the progression of B cell chronic lymphocytic leukemia (CLL), but the role that it plays in the development and progression of this disease is still unclear. We generated an AID knockout CLL mouse model, AID-/-/Eµ-TCL1, and found that these mice die significantly earlier than their AID-proficient counterparts. AID-deficient CLL cells exhibit a higher ER stress response compared to Eµ-TCL1 controls, particularly through activation of the IRE1/XBP1s pathway. The increased production of secretory IgM in AID-deficient CLL cells contributes to their elevated expression levels of XBP1s, while secretory IgM-deficient CLL cells express less XBP1s. This increase in XBP1s in turn leads AID-deficient CLL cells to exhibit higher levels of B cell receptor signaling, supporting leukemic growth and survival. Further, AID-/-/Eµ-TCL1 CLL cells downregulate the tumor suppressive SMAD1/S1PR2 pathway and have altered homing to non-lymphoid organs. Notably, CLL cells from patients with IgHV-unmutated disease express higher levels of XBP1s mRNA compared to those from patients with IgHV-mutated CLL. Our studies thus reveal novel mechanisms by which the loss of AID leads to worsened CLL and may explain why unmutated CLL is more aggressive than mutated CLL.
Asunto(s)
Leucemia Linfocítica Crónica de Células B , Animales , Citidina Desaminasa/genética , Leucemia Linfocítica Crónica de Células B/patología , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas , ARN Mensajero/genética , Receptores de Antígenos de Linfocitos B/genéticaRESUMEN
Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective therapeutic procedure to treat hematological malignancies. However, the benefit of allo-HCT is limited by a major complication, chronic graft-versus-host disease (cGVHD). Since transmembrane and secretory proteins are generated and modified in the endoplasmic reticulum (ER), the ER stress response is of great importance to secretory cells including B cells. By using conditional knock-out (KO) of XBP-1, IRE-1α or both specifically on B cells, we demonstrated that the IRE-1α/XBP-1 pathway, one of the major ER stress response mediators, plays a critical role in B cell pathogenicity on the induction of cGVHD in murine models of allo-HCT. Endoribonuclease activity of IRE-1α activates XBP-1 signaling by converting unspliced XBP-1 (XBP-1u) mRNA into spliced XBP-1 (XBP-1s) mRNA but also cleaves other ER-associated mRNAs through regulated IRE-1α-dependent decay (RIDD). Further, ablation of XBP-1s production leads to unleashed activation of RIDD. Therefore, we hypothesized that RIDD plays an important role in B cells during cGVHD development. In this study, we found that the reduced pathogenicity of XBP-1 deficient B cells in cGVHD was reversed by RIDD restriction in IRE-1α kinase domain KO mice. Restraining RIDD activity per se in B cells resulted in an increased severity of cGVHD. Besides, inhibition of RIDD activity compromised B cell differentiation and led to dysregulated expression of MHC II and costimulatory molecules such as CD86, CD40, and ICOSL in B cells. Furthermore, restraining the RIDD activity without affecting XBP-1 splicing increased B cell ability to induce cGVHD after allo-HCT. These results suggest that RIDD is an important mediator for reducing cGVHD pathogenesis through targeting XBP-1s.
Asunto(s)
Linfocitos B/inmunología , Endorribonucleasas/inmunología , Enfermedad Injerto contra Huésped/inmunología , Trasplante de Células Madre Hematopoyéticas , Proteínas Serina-Treonina Quinasas/inmunología , Proteolisis , Proteína 1 de Unión a la X-Box/inmunología , Aloinjertos , Animales , Enfermedad Crónica , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/inmunología , Endorribonucleasas/genética , Enfermedad Injerto contra Huésped/genética , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Proteína 1 de Unión a la X-Box/genéticaRESUMEN
CARM1 is often overexpressed in human cancers including in ovarian cancer. However, therapeutic approaches based on CARM1 expression remain to be an unmet need. Cancer cells exploit adaptive responses such as the endoplasmic reticulum (ER) stress response for their survival through activating pathways such as the IRE1α/XBP1s pathway. Here, we report that CARM1-expressing ovarian cancer cells are selectively sensitive to inhibition of the IRE1α/XBP1s pathway. CARM1 regulates XBP1s target gene expression and directly interacts with XBP1s during ER stress response. Inhibition of the IRE1α/XBP1s pathway was effective against ovarian cancer in a CARM1-dependent manner both in vitro and in vivo in orthotopic and patient-derived xenograft models. In addition, IRE1α inhibitor B-I09 synergizes with immune checkpoint blockade anti-PD1 antibody in an immunocompetent CARM1-expressing ovarian cancer model. Our data show that pharmacological inhibition of the IRE1α/XBP1s pathway alone or in combination with immune checkpoint blockade represents a therapeutic strategy for CARM1-expressing cancers.
Asunto(s)
Carcinoma Epitelial de Ovario/terapia , Endorribonucleasas/genética , Neoplasias Ováricas/terapia , Receptor de Muerte Celular Programada 1/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína 1 de Unión a la X-Box/genética , Animales , Anticuerpos Monoclonales/farmacología , Secuencia de Bases , Benzopiranos/farmacología , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/inmunología , Carcinoma Epitelial de Ovario/patología , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endorribonucleasas/antagonistas & inhibidores , Endorribonucleasas/inmunología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Himecromona/análogos & derivados , Himecromona/farmacología , Inhibidores de Puntos de Control Inmunológico , Ratones , Terapia Molecular Dirigida , Neoplasias Ováricas/genética , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Unión Proteica , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/inmunología , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/inmunología , Transducción de Señal , Proteína 1 de Unión a la X-Box/antagonistas & inhibidores , Proteína 1 de Unión a la X-Box/inmunología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
STING is an endoplasmic reticulum (ER)-resident protein critical for sensing cytoplasmic DNA and promoting the production of type I interferons; however, the role of STING in B cell receptor (BCR) signaling remains unclear. We generated STING V154M knock-in mice and showed that B cells carrying constitutively activated STING specifically degraded membrane-bound IgM, Igα, and Igß via SEL1L/HRD1-mediated ER-associated degradation (ERAD). B cells with activated STING were thus less capable of responding to BCR activation by phosphorylating Igα and Syk than those without activated STING. When immunized with T-independent antigens, STING V154M mice produced significantly fewer antigen-specific plasma cells and antibodies than immunized wild-type (WT) mice. We further generated B cell-specific STINGKO mice and showed that STINGKO B cells indeed responded to activation by transducing stronger BCR signals than their STING-proficient counterparts. When B cell-specific STINGKO mice were T-independently immunized, they produced significantly more antigen-specific plasma cells and antibodies than immunized STINGWT mice. Since both human and mouse IGHV-unmutated malignant chronic lymphocytic leukemia (CLL) cells downregulated the expression of STING, we explored whether STING downregulation could contribute to the well-established robust BCR signaling phenotype in malignant CLL cells. We generated a STING-deficient CLL mouse model and showed that STING-deficient CLL cells were indeed more responsive to BCR activation than their STING-proficient counterparts. These results revealed a novel B cell-intrinsic role of STING in negatively regulating BCR signaling in both normal and malignant B cells.
Asunto(s)
Apoptosis , Linfocitos B/inmunología , Leucemia Linfocítica Crónica de Células B/inmunología , Leucemia Linfocítica Crónica de Células B/patología , Proteínas de la Membrana/fisiología , Receptores de Antígenos de Linfocitos B/inmunología , Animales , Linfocitos B/metabolismo , Linfocitos B/patología , Femenino , Humanos , Leucemia Linfocítica Crónica de Células B/metabolismo , Masculino , Ratones , Ratones NoqueadosRESUMEN
Stimulator of interferon genes (STING)-mediated innate immune activation plays a key role in tumor- and self-DNA-elicited antitumor immunity and autoimmunity. However, STING can also suppress tumor immunity and autoimmunity. STING signaling in host nonhematopoietic cells was reported to either protect against or promote graft-versus-host disease (GVHD), a major complication of allogeneic hematopoietic cell transplantation (allo-HCT). Host hematopoietic antigen-presenting cells (APCs) play key roles in donor T-cell priming during GVHD initiation. However, how STING regulates host hematopoietic APCs after allo-HCT remains unknown. We utilized murine models of allo-HCT to assess the role of STING in hematopoietic APCs. STING-deficient recipients developed more severe GVHD after major histocompatibility complex-mismatched allo-HCT. Using bone marrow chimeras, we found that STING deficiency in host hematopoietic cells was primarily responsible for exacerbating the disease. Furthermore, STING on host CD11c+ cells played a dominant role in suppressing allogeneic T-cell responses. Mechanistically, STING deficiency resulted in increased survival, activation, and function of APCs, including macrophages and dendritic cells. Consistently, constitutive activation of STING attenuated the survival, activation, and function of APCs isolated from STING V154M knock-in mice. STING-deficient APCs augmented donor T-cell expansion, chemokine receptor expression, and migration into intestinal tissues, resulting in accelerated/exacerbated GVHD. Using pharmacologic approaches, we demonstrated that systemic administration of a STING agonist (bis-(3'-5')-cyclic dimeric guanosine monophosphate) to recipient mice before transplantation significantly reduced GVHD mortality. In conclusion, we revealed a novel role of STING in APC activity that dictates T-cell allogeneic responses and validated STING as a potential therapeutic target for controlling GVHD after allo-HCT.
Asunto(s)
Células Presentadoras de Antígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Enfermedad Injerto contra Huésped/patología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Intestinos/patología , Proteínas de la Membrana/fisiología , Animales , Femenino , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/metabolismo , Intestinos/inmunología , Intestinos/metabolismo , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Trasplante HomólogoRESUMEN
Myeloid-derived suppressor cells (MDSCs) are major negative regulators of immune responses in cancer and chronic infections. It remains unclear if regulation of MDSC activity in different conditions is controlled by similar mechanisms. We compared MDSCs in mice with cancer and lymphocytic choriomeningitis virus (LCMV) infection. Chronic LCMV infection caused the development of monocytic MDSCs (M-MDSCs) but did not induce polymorphonuclear MDSCs (PMN-MDSCs). In contrast, both MDSC populations were present in cancer models. An acquisition of immune-suppressive activity by PMN-MDSCs in cancer was controlled by IRE1α and ATF6 pathways of the endoplasmic reticulum (ER) stress response. Abrogation of PMN-MDSC activity by blockade of the ER stress response resulted in an increase in tumor-specific immune response and reduced tumor progression. In contrast, the ER stress response was dispensable for suppressive activity of M-MDSCs in cancer and LCMV infection. Acquisition of immune-suppressive activity by M-MDSCs in spleens was mediated by IFN-γ signaling. However, it was dispensable for suppressive activity of M-MDSCs in tumor tissues. Suppressive activity of M-MDSCs in tumors was retained due to the effect of IL-6 present at high concentrations in the tumor site. These results demonstrate disease- and population-specific mechanisms of MDSC accumulation and the need for targeting different pathways to achieve inactivation of these cells.
Asunto(s)
Células Supresoras de Origen Mieloide/inmunología , Neoplasias/inmunología , Virosis/inmunología , Animales , Línea Celular Tumoral , Enfermedad Crónica , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/inmunología , Femenino , Humanos , Tolerancia Inmunológica/genética , Interferón gamma/inmunología , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/clasificación , Virus de la Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/patogenicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Supresoras de Origen Mieloide/clasificación , Células Supresoras de Origen Mieloide/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias Experimentales/genética , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/metabolismo , Transcriptoma , Virosis/genética , Virosis/metabolismoRESUMEN
Podocytes are key to the glomerular filtration barrier by forming a slit diaphragm between interdigitating foot processes; however, the molecular details and functional importance of protein folding and degradation in the ER remain unknown. Here, we show that the SEL1L-HRD1 protein complex of ER-associated degradation (ERAD) is required for slit diaphragm formation and glomerular filtration function. SEL1L-HRD1 ERAD is highly expressed in podocytes of both mouse and human kidneys. Mice with podocyte-specific Sel1L deficiency develop podocytopathy and severe congenital nephrotic syndrome with an impaired slit diaphragm shortly after weaning and die prematurely, with a median lifespan of approximately 3 months. We show mechanistically that nephrin, a type 1 membrane protein causally linked to congenital nephrotic syndrome, is an endogenous ERAD substrate. ERAD deficiency attenuated the maturation of nascent nephrin, leading to its retention in the ER. We also show that various autosomal-recessive nephrin disease mutants were highly unstable and broken down by SEL1L-HRD1 ERAD, which attenuated the pathogenicity of the mutants toward the WT allele. This study uncovers a critical role of SEL1L-HRD1 ERAD in glomerular filtration barrier function and provides insights into the pathogenesis associated with autosomal-recessive disease mutants.
Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Tasa de Filtración Glomerular , Proteínas de la Membrana/metabolismo , Podocitos/metabolismo , Animales , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Síndrome Nefrótico/genética , Síndrome Nefrótico/metabolismo , Proteínas/genética , Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
The IRE-1 kinase/RNase splices the mRNA of the XBP-1 gene, resulting in the spliced XBP-1 (XBP-1s) mRNA that encodes the functional XBP-1s transcription factor that is critically important for the growth and survival of B-cell leukemia, lymphoma, and multiple myeloma (MM). Several inhibitors targeting the expression of XBP-1s have been reported; however, the cytotoxicity exerted by each inhibitor against cancer cells is highly variable. To design better therapeutic strategies for B-cell cancer, we systematically compared the ability of these compounds to inhibit the RNase activity of IRE-1 in vitro and to suppress the expression of XBP-1s in mouse and human MM cell lines. Tricyclic chromenone-based inhibitors B-I09 and D-F07, prodrugs harboring an aldehyde-masking group, emerged as the most reliable inhibitors for potent suppression of XBP-1s expression in MM cells. The cytotoxicity of B-I09 and D-F07 against MM as well as chronic lymphocytic leukemia and mantle cell lymphoma could be further enhanced by combination with inhibitors of the PI3K/AKT pathway. Because chemical modifications of the salicylaldehyde hydroxy group could be used to tune 1,3-dioxane prodrug stability, we installed reactive oxygen species-sensitive structural cage groups onto these inhibitors to achieve stimuli-responsive activities and improve tumor-targeting efficiency.