Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 171(4): 904-917.e19, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29033133

RESUMEN

Nuclear pore complexes (NPCs) are ∼100 MDa transport channels assembled from multiple copies of ∼30 nucleoporins (Nups). One-third of these Nups contain phenylalanine-glycine (FG)-rich repeats, forming a diffusion barrier, which is selectively permeable for nuclear transport receptors that interact with these repeats. Here, we identify an additional function of FG repeats in the structure and biogenesis of the yeast NPC. We demonstrate that GLFG-containing FG repeats directly bind to multiple scaffold Nups in vitro and act as NPC-targeting determinants in vivo. Furthermore, we show that the GLFG repeats of Nup116 function in a redundant manner with Nup188, a nonessential scaffold Nup, to stabilize critical interactions within the NPC scaffold needed for late steps of NPC assembly. Our results reveal a previously unanticipated structural role for natively unfolded GLFG repeats as Velcro to link NPC subcomplexes and thus add a new layer of connections to current models of the NPC architecture.


Asunto(s)
Poro Nuclear/química , Saccharomyces cerevisiae/citología , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Biogénesis de Organelos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(22): 12239-12248, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32430326

RESUMEN

The ability to tolerate and thrive in diverse environments is paramount to all living organisms, and many organisms spend a large part of their lifetime in starvation. Upon acute glucose starvation, yeast cells undergo drastic physiological and metabolic changes and reestablish a constant-although lower-level of energy production within minutes. The molecules that are rapidly metabolized to fuel energy production under these conditions are unknown. Here, we combine metabolomics and genetics to characterize the cells' response to acute glucose depletion and identify pathways that ensure survival during starvation. We show that the ability to respire is essential for maintaining the energy status and to ensure viability during starvation. Measuring the cells' immediate metabolic response, we find that central metabolites drastically deplete and that the intracellular AMP-to-ATP ratio strongly increases within 20 to 30 s. Furthermore, we detect changes in both amino acid and lipid metabolite levels. Consistent with this, both bulk autophagy, a process that frees amino acids, and lipid degradation via ß-oxidation contribute in parallel to energy maintenance upon acute starvation. In addition, both these pathways ensure long-term survival during starvation. Thus, our results identify bulk autophagy and ß-oxidation as important energy providers during acute glucose starvation.


Asunto(s)
Aminoácidos/metabolismo , Autofagia , Metabolismo Energético , Glucosa/deficiencia , Metabolismo de los Lípidos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Adenosina Trifosfato/metabolismo , Regulación Fúngica de la Expresión Génica , Metabolómica , Oxidación-Reducción , Saccharomyces cerevisiae/metabolismo , Inanición
3.
Elife ; 52016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-27003290

RESUMEN

The organization and biophysical properties of the cytosol implicitly govern molecular interactions within cells. However, little is known about mechanisms by which cells regulate cytosolic properties and intracellular diffusion rates. Here, we demonstrate that the intracellular environment of budding yeast undertakes a startling transition upon glucose starvation in which macromolecular mobility is dramatically restricted, reducing the movement of both chromatin in the nucleus and mRNPs in the cytoplasm. This confinement cannot be explained by an ATP decrease or the physiological drop in intracellular pH. Rather, our results suggest that the regulation of diffusional mobility is induced by a reduction in cell volume and subsequent increase in molecular crowding which severely alters the biophysical properties of the intracellular environment. A similar response can be observed in fission yeast and bacteria. This reveals a novel mechanism by which cells globally alter their properties to establish a unique homeostasis during starvation.


Asunto(s)
Núcleo Celular/química , Citoplasma/química , Glucosa/metabolismo , Sustancias Macromoleculares/química , Saccharomycetales/fisiología , Bacterias/metabolismo , Fenómenos Fisiológicos Bacterianos , Difusión , Saccharomycetales/metabolismo , Schizosaccharomyces/metabolismo , Schizosaccharomyces/fisiología
4.
Elife ; 42015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25748139

RESUMEN

Soluble karyopherins of the importin-ß (impß) family use RanGTP to transport cargos directionally through the nuclear pore complex (NPC). Whether impß or RanGTP regulate the permeability of the NPC itself has been unknown. In this study, we identify a stable pool of impß at the NPC. A subpopulation of this pool is rapidly turned-over by RanGTP, likely at Nup153. Impß, but not transportin-1 (TRN1), alters the pore's permeability in a Ran-dependent manner, suggesting that impß is a functional component of the NPC. Upon reduction of Nup153 levels, inert cargos more readily equilibrate across the NPC yet active transport is impaired. When purified impß or TRN1 are mixed with Nup153 in vitro, higher-order, multivalent complexes form. RanGTP dissolves the impß•Nup153 complexes but not those of TRN1•Nup153. We propose that impß and Nup153 interact at the NPC's nuclear face to form a Ran-regulated mesh that modulates NPC permeability.


Asunto(s)
Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , beta Carioferinas/metabolismo , Proteína de Unión al GTP ran/metabolismo , Transporte Activo de Núcleo Celular , Recuperación de Fluorescencia tras Fotoblanqueo , Células HeLa , Humanos , Microscopía Confocal , Modelos Biológicos , Proteínas de Complejo Poro Nuclear/genética , Permeabilidad , Interferencia de ARN , beta Carioferinas/genética , Proteína de Unión al GTP ran/genética
5.
Elife ; 2: e00745, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23795296

RESUMEN

Nucleocytoplasmic transport is mediated by nuclear pore complexes (NPCs) embedded in the nuclear envelope. About 30 different proteins (nucleoporins, nups) arrange around a central eightfold rotational axis to build the modular NPC. Nup188 and Nup192 are related and evolutionary conserved, large nucleoporins that are part of the NPC scaffold. Here we determine the structure of Nup188. The protein folds into an extended stack of helices where an N-terminal 130 kDa segment forms an intricate closed ring, while the C-terminal region is a more regular, superhelical structure. Overall, the structure has distant similarity with flexible S-shaped nuclear transport receptors (NTRs). Intriguingly, like NTRs, both Nup188 and Nup192 specifically bind FG-repeats and are able to translocate through NPCs by facilitated diffusion. This blurs the existing dogma of a clear distinction between stationary nups and soluble NTRs and suggests an evolutionary relationship between the NPC and the soluble nuclear transport machinery. DOI:http://dx.doi.org/10.7554/eLife.00745.001.


Asunto(s)
Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Modelos Moleculares , Proteínas de Complejo Poro Nuclear/química , Proteínas de Saccharomyces cerevisiae/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA