Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 35(8): e21756, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34270805

RESUMEN

Protein tyrosine phosphatase non-receptor type 5 (PTPN5), also called striatal-enriched protein tyrosine phosphatase (STEP), is highly expressed in neurons of the basal ganglia, hippocampus, cortex, and related structures, also in the pituitary. Gonadotropins are the key regulator of the reproduction in mammals. In this study, PTPN5 is detected to express in murine pituitary in a developmental manner. Moreover, the expression of PTPN5 in the pituitary is heavily reduced after ovary removal. Follicle-stimulating hormone (FSH) secretion in gonadotropes is regulated by PTPN5 via binding GnRH to GnRH-R. Two parallel signaling pathways, Gs-protein kinase A (PKA)-PTPN5 and Gq-phospholipases C (PLC)-p38 MAPK-PTPN5, cooperatively regulate GnRH-induced FSH secretion. We also show that influx of Ca2+ activates the Ca2+ -dependent phosphatase calcineurin, leading to the phosphorylation and activation of PTPN5. The intracellular release of Ca2+ is reduced via TC2153. In conclusion, blocking or knocking out of PTPN5 reduces the release of FSH in whole pituitary. Mechanically, PTPN5 regulates gonadotropes' function through regulating intracellular calcium homeostasis.


Asunto(s)
Calcio/metabolismo , Hormona Folículo Estimulante/metabolismo , Homeostasis , Sistema de Señalización de MAP Quinasas , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Femenino , Hormona Folículo Estimulante/genética , Masculino , Ratones , Ratones Noqueados , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
2.
J Extracell Vesicles ; 13(3): e12423, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38491216

RESUMEN

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common life-threatening syndrome with no effective pharmacotherapy. Sepsis-related ARDS is the main type of ARDS and is more fatal than other types. Extracellular vesicles (EVs) are considered novel mediators in the development of inflammatory diseases. Our previous research suggested that endothelial cell-derived EVs (EC-EVs) play a crucial role in ALI/ARDS development, but the mechanism remains largely unknown. Here, we demonstrated that the number of circulating EC-EVs was increased in sepsis, exacerbating lung injury by targeting monocytes and reprogramming them towards proinflammatory macrophages. Bioinformatics analysis and further mechanistic studies revealed that vascular cell adhesion molecule 1 (VCAM1), overexpressed on EC-EVs during sepsis, activated the NF-κB pathway by interacting with integrin subunit alpha 4 (ITGA4) on the monocyte surface, rather than the tissue resident macrophage surface, thereby regulating monocyte differentiation. This effect could be attenuated by decreasing VCAM1 levels in EC-EVs or blocking ITGA4 on monocytes. Furthermore, the number of VCAM1+ EC-EVs was significantly increased in patients with sepsis-related ARDS. These findings not only shed light on a previously unidentified mechanism underling sepsis-related ALI/ARDS, but also provide potential novel targets and strategies for its precise treatment.


Asunto(s)
Lesión Pulmonar Aguda , Vesículas Extracelulares , Monocitos , Sepsis , Molécula 1 de Adhesión Celular Vascular , Humanos , Lesión Pulmonar Aguda/metabolismo , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Monocitos/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
3.
Front Oncol ; 12: 945025, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172139

RESUMEN

The ADAM (a disintegrin and metalloprotease) gene-related family including ADAM, ADAMTS, and ADAM-like decysin-1 has been reported to play an important role in the pathogenesis of multiple diseases, including cancers (lung cancer, gliomas, colorectal cancer, and gastrointestinal cancer). However, its biological role in gliomas remains largely unknown. Here, we aimed to investigate the biological functions and potential mechanism of ADAMDEC1 in gliomas. The mRNA and protein expression levels of ADAMDEC1 were upregulated in glioma tissues and cell lines. ADAMDEC1 showed a phenomenon of "abundance and disappear" expression in gliomas and normal tissues in that the higher the expression of ADAMDEC1 presented, the higher the malignancy of gliomas and the worse the prognosis. High expression of ADAMDEC1 was associated with immune response. Knockdown of ADAMDEC1 could decrease the proliferation and colony-forming ability of LN229 cells, whereas ADAMDEC1 overexpression has opposite effects in LN229 cells in vitro. Furthermore, we identified that ADAMDEC1 accelerates GBM progression via the activation of the MMP2 pathway. In the present study, we found that the expression levels of ADAMDEC1 were significantly elevated compared with other ADAMs by analyzing the expression levels of ADAM family proteins in gliomas. This suggests that ADAMDEC1 has potential as a glioma clinical marker and immunotherapy target.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA