Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 32(2): 1843-1850, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38297727

RESUMEN

A distributed feedback (DFB) laser array of twenty wavelengths with highly reflective and anti-reflective (HR-AR) coated facets is both theoretically analyzed and experimentally validated. While the HR facet coating enhances high wall-plug efficiency, it inadvertently introduces a random facet grating phase, thereby compromising the lasing wavelength's predictability and the stability of the single-longitudinal-mode (SLM). In this study, two key advancements are introduced: first, the precisely spaced wavelength is achieved with an error of within ±0.2 nm using the reconstruction-equivalent-chirp (REC) technique; second, the random grating phase on the HR-coated facet is compensated by a controllable distributed phase shift through a two-section laser structure. The SLM stability can be improved while the wavelength can be continuously tuned to the standard wavelength grid. The overall chip size is compact with an area of 4000 × 500 µm2. The proposed laser array has a light power intensity above 13 dBm per wavelength, a high side mode suppression ratio above 50 dB, and low relative intensity noise under -160 dB/Hz. These attributes make it apt for deployment in DWDM-based optical communication systems and as a light source for optical I/O.

2.
Opt Lett ; 49(8): 1961-1964, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621051

RESUMEN

For optical wireless communication systems, mechanical beam steering struggles to timely switch between multiple users or search for moving users. Here we demonstrate a fast-beam-switching optical phased array (OPA) for agile wireless communication networks. For point-to-multi-point (P2MP) scenarios, a setup of OPA-based fast beam switching between two aligned receivers was developed. A loss-free image transmission experiment was used to demonstrate the stability of switching. Furthermore, we have developed an approach to using the fast-switching OPA to follow the trajectory of moving objects so as to help enable agile random-access switching between moving objects. These results could help offer fast switching and reconfiguration for indoor wireless optical communications.

3.
Opt Lett ; 49(10): 2629-2632, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748122

RESUMEN

We propose and experimentally demonstrate a compact and efficient photonic convolution accelerator based on a hybrid integrated multi-wavelength DFB laser array by photonic wire bonding. The photonic convolution accelerator operates at 60.12 GOPS for one 3 × 3 kernel with a convolution window vertical sliding stride of 1 and generates 500 images of real-time image classification. Furthermore, real-time image classification on the MNIST database of handwritten digits with a prediction accuracy of 93.86% is achieved. This work provides a novel, to the best of our knowledge, compact hybrid integration platform to realize the optical convolutional neural networks.

4.
Opt Express ; 31(23): 37348-37364, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-38017866

RESUMEN

We experimentally explore the practicality of integrated multiwavelength laser arrays (MLAs) for photonic convolutional neural network (PCNN). MLAs represent excellent performance for PCNN, except for imperfect wavelength spacings due to fabrication variation. Therefore, the performance of PCNN with non-ideal wavelength spacing is investigated experimentally and numerically for the first time. The results show that there exists a certain tolerance for wavelength deviation on the degradation of the structural information of the extracted feature map, leading to the robustness of photonic recognition accuracy under non-ideal wavelength spacing. The results suggest that scalable MLAs could serve as an alternative source for the PCNN, to support low-cost optical computing scenarios. For a benchmark classification task of MNIST handwritten digits, the photonic prediction accuracy of 91.2% for stride 1 × 1 scheme using the testing dataset are experimentally obtained at speeds on the order of tera operations per second, compared to 94.14% on computer. The robust performance, flexible spectral control, low cost, large bandwidth and parallel processing capability of the PCNN driven by scalable MLAs may broaden the application possibilities of photonic neural networks in next generation data computing applications.

5.
Opt Lett ; 47(22): 5977-5980, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37219151

RESUMEN

We propose and experimentally demonstrate a simple and energy-efficient photonic convolutional accelerator based on a monolithically integrated multi-wavelength distributed feedback semiconductor laser using the superimposed sampled Bragg grating structure. The photonic convolutional accelerator operates at 44.48 GOPS for one 2 × 2 kernel with a convolutional window vertical sliding stride of 2 and generates 100 images of real-time recognition. Furthermore, a real-time recognition task on the MNIST database of handwritten digits with a prediction accuracy of 84% is achieved. This work provides a compact and low-cost way to realize photonic convolutional neural networks.

6.
Opt Express ; 28(23): 34337-34345, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182906

RESUMEN

The behavior of directly linearly polarized emission was investigated in an isotropic Nd:YAG laser with a weakly anisotropic Fabry-Perot cavity. In order to explore the polarization mechanism, the intracavity eigenmodes were analyzed theoretically. A theoretical model was developed and shown to be suitable for describing the orientation-dependent beam profiles of the polarizer-specific features observed in experiments. This model indicates that the linear polarization emission results from the coherently combined state of intracavity eigenmodes as opposed to an intrinsic polarization state. The coherent combination is attributed to the frequency degeneracy and spontaneous phase locking of polarized eigenmodes. For the first time, the polarization coupling mechanism based on the coherent combination of eigenmodes in an isotropic solid-state laser was demonstrated. Moreover, this study also contributes an effective method to judge different types of linear polarization states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA