Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(30): e2221958120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459546

RESUMEN

Osteoarthritis is a chronic disease that can be initiated by altered joint loading or injury of the cartilage. The mechanically sensitive PIEZO ion channels have been shown to transduce injurious levels of biomechanical strain in articular chondrocytes and mediate cell death. However, the mechanisms of channel gating in response to high cellular deformation and the strain thresholds for activating PIEZO channels remain unclear. We coupled studies of single-cell compression using atomic force microscopy (AFM) with finite element modeling (FEM) to identify the biophysical mechanisms of PIEZO-mediated calcium (Ca2+) signaling in chondrocytes. We showed that PIEZO1 and PIEZO2 are needed for initiating Ca2+ signaling at moderately high levels of cellular deformation, but at the highest strains, PIEZO1 functions independently of PIEZO2. Biophysical factors that increase apparent chondrocyte membrane tension, including hypoosmotic prestrain, high compression magnitudes, and low deformation rates, also increased PIEZO1-driven Ca2+ signaling. Combined AFM/FEM studies showed that 50% of chondrocytes exhibit Ca2+ signaling at 80 to 85% nominal cell compression, corresponding to a threshold of apparent membrane finite principal strain of E = 1.31, which represents a membrane stretch ratio (λ) of 1.9. Both intracellular and extracellular Ca2+ are necessary for the PIEZO1-mediated Ca2+ signaling response to compression. Our results suggest that PIEZO1-induced signaling drives chondrocyte mechanical injury due to high membrane tension, and this threshold can be altered by factors that influence membrane prestress, such as cartilage hypoosmolarity, secondary to proteoglycan loss. These findings suggest that modulating PIEZO1 activation or downstream signaling may offer avenues for the prevention or treatment of osteoarthritis.


Asunto(s)
Condrocitos , Osteoartritis , Humanos , Condrocitos/metabolismo , Canales Iónicos/metabolismo , Articulaciones , Osteoartritis/metabolismo , Mecanotransducción Celular , Señalización del Calcio
2.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443201

RESUMEN

Osteoarthritis (OA), the leading cause of pain and disability worldwide, disproportionally affects individuals with obesity. The mechanisms by which obesity leads to the onset and progression of OA are unclear due to the complex interactions among the metabolic, biomechanical, and inflammatory factors that accompany increased adiposity. We used a murine preclinical model of lipodystrophy (LD) to examine the direct contribution of adipose tissue to OA. Knee joints of LD mice were protected from spontaneous or posttraumatic OA, on either a chow or high-fat diet, despite similar body weight and the presence of systemic inflammation. These findings indicate that adipose tissue itself plays a critical role in the pathophysiology of OA. Susceptibility to posttraumatic OA was reintroduced into LD mice using implantation of a small adipose tissue depot derived from wild-type animals or mouse embryonic fibroblasts that undergo spontaneous adipogenesis, implicating paracrine signaling from fat, rather than body weight, as a mediator of joint degeneration.


Asunto(s)
Tejido Adiposo/metabolismo , Lipodistrofia/metabolismo , Osteoartritis de la Rodilla/metabolismo , Tejido Adiposo/fisiopatología , Tejido Adiposo/trasplante , Adiposidad , Animales , Peso Corporal , Cartílago/patología , Citocinas/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/complicaciones , Susceptibilidad a Enfermedades/metabolismo , Femenino , Fibroblastos/metabolismo , Hiperplasia/complicaciones , Inflamación/metabolismo , Lipodistrofia/diagnóstico por imagen , Lipodistrofia/genética , Lipodistrofia/fisiopatología , Locomoción , Masculino , Ratones , Fuerza Muscular , Osteoartritis de la Rodilla/complicaciones , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/prevención & control , Dolor/complicaciones , Comunicación Paracrina/fisiología
3.
FASEB J ; 35(3): e21417, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33566380

RESUMEN

Macrophages and other immune cells are important contributors to obesity-associated inflammation; however, the cellular identities of these specific populations remain unknown. In this study, we identified individual populations of myeloid cells found in mouse epididymal/visceral adipose tissue by single-cell RNA sequencing, immunofluorescence, and flow cytometry. Multiple canonical correlation analysis identified 11 unique myeloid and myeloid-associate cell populations. In obese mice, we detected an increased percentage of monocyte-derived pro-inflammatory cells expressing Cd9 and Trem2, as well as significantly decreased percentages of multiple cell populations, including tissue-resident cells expressing Lyve1, Mafb, and Mrc1. We have identified and validated a novel myeloid/macrophage population defined by Ly6a expression, exhibiting both myeloid and mesenchymal characteristics, which increased with obesity and showed high pro-fibrotic characteristics in vitro. Our mouse adipose tissue myeloid cell atlas provides an important resource to investigate obesity-associated inflammation and fibrosis.


Asunto(s)
Grasa Intraabdominal/metabolismo , Células Mieloides/metabolismo , Obesidad/metabolismo , Análisis de Secuencia de ARN , Tejido Adiposo/metabolismo , Animales , Inflamación/metabolismo , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana , Ratones Endogámicos C57BL , Monocitos/metabolismo , Receptores Inmunológicos
4.
Mol Ther ; 23(5): 866-874, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25676679

RESUMEN

Diabetes poses a substantial burden to society as it can lead to serious complications and premature death. The number of cases continues to increase worldwide. Two major causes of diabetes are insulin resistance and insulin insufficiency. Currently, there are few antidiabetic drugs available that can preserve or protect ß-cell function to overcome insulin insufficiency in diabetes. We describe a therapeutic strategy to preserve ß-cell function by overexpression of follistatin (FST) using an AAV vector (AAV8-Ins-FST) in diabetic mouse model. Overexpression of FST in the pancreas of db/db mouse increased ß-cell islet mass, decreased fasting glucose level, alleviated diabetic symptoms, and essentially doubled lifespan of the treated mice. The observed islet enlargement was attributed to ß-cell proliferation as a result of bioneutralization of myostatin and activin by FST. Overall, our study indicates overexpression of FST in the diabetic pancreas preserves ß-cell function by promoting ß-cell proliferation, opening up a new therapeutic avenue for the treatment of diabetes.


Asunto(s)
Folistatina/genética , Expresión Génica , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Biomarcadores , Proliferación Celular , Dependovirus/clasificación , Dependovirus/genética , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Modelos Animales de Enfermedad , Folistatina/metabolismo , Terapia Genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Humanos , Inmunohistoquímica , Insulina/sangre , Islotes Pancreáticos/anatomía & histología , Islotes Pancreáticos/metabolismo , Ligandos , Masculino , Ratones , Fenotipo , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serogrupo , Transducción de Señal , Proteínas Smad/metabolismo , Transducción Genética , Transgenes
5.
J Biol Chem ; 287(46): 38495-504, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23007391

RESUMEN

Myocardin belongs to the SAF-A/B, Acinus, PIAS (SAP) domain family of transcription factors and is specifically expressed in cardiac and smooth muscle. Myocardin functions as a transcriptional coactivator of SRF and is sufficient and necessary for smooth muscle gene expression. We have previously found that myocardin induces the acetylation of nucleosomal histones surrounding SRF-binding sites in the control regions of cardiac and smooth muscle genes through recruiting chromatin-modifying enzyme p300, yet no studies have determined whether myocardin itself is similarly modified. In this study, we show that myocardin is a direct target for p300-mediated acetylation. p300 acetylates lysine residues at the N terminus of the myocardin protein. Interestingly, a direct interaction between p300 and myocardin, which is mediated by the C terminus of myocardin, is required for the acetylation event. Acetylation of myocardin by p300 enhances the association of myocardin and SRF as well as the formation of the myocardin-SRF-CArG box ternary complex. Conversely, acetylation of myocardin decreases the binding of histone deacetylase 5 (HDAC5) to myocardin. Acetylation of myocardin is required for myocardin to activate smooth muscle genes. Our study demonstrates that acetylation plays a key role in modulating myocardin function in controlling cardiac and smooth muscle gene expression.


Asunto(s)
Músculo Liso/metabolismo , Miocardio/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Acetilación , Animales , Células COS , Cromatina/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Histonas/genética , Ratones , Modelos Biológicos , Factor de Respuesta Sérica/metabolismo , Transducción de Señal , Activación Transcripcional , Factores de Transcripción p300-CBP/metabolismo
6.
Am J Physiol Heart Circ Physiol ; 305(7): H1089-97, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23913709

RESUMEN

NF-κB is a well-known transcription factor that is intimately involved with inflammation and immunity. We have previously shown that NF-κB promotes inflammatory events and mediates adverse cardiac remodeling following ischemia reperfusion (I/R). Conversely, others have pointed to the beneficial influence of NF-κB in I/R injury related to its anti-apoptotic effects. Understanding the seemingly disparate influence of manipulating NF-κB is hindered, in part, by current approaches that only indirectly interfere with the function of its most transcriptionally active unit, p65 NF-κB. Mice were generated with cardiomyocyte-specific deletion of p65 NF-κB. Phenotypically, these mice and their hearts appeared normal. Basal and stimulated p65 expression were significantly reduced in whole hearts and completely ablated in isolated cardiomyocytes. When compared with wild-type mice, transgenic animals were protected from both global I/R by Langendorff as well as regional I/R by coronary ligation and release. The protected, transgenic hearts had less cytokine activity and decreased apoptosis. Furthermore, p65 ablation was associated with enhanced calcium reuptake by the sarcoplasmic reticulum. This influence on calcium handling was related to increased expression of phosphorylated phospholamban in conditional p65 null mice. In conclusion, cardiomyocyte-specific deletion of the most active, canonical NF-κB subunit affords cardioprotection to both global and regional I/R injury. The beneficial effects of NF-κB inhibition are related, in part, to modulation of intracellular calcium homeostasis.


Asunto(s)
Señalización del Calcio , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/metabolismo , Factor de Transcripción ReIA/metabolismo , Animales , Apoptosis , Proteínas de Unión al Calcio/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Genotipo , Homeostasis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/patología , Fenotipo , Fosforilación , Retículo Sarcoplasmático/metabolismo , Factor de Transcripción ReIA/deficiencia , Factor de Transcripción ReIA/genética
7.
Mol Ther ; 20(4): 727-35, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22314291

RESUMEN

Muscular dystrophies (MDs) are caused by genetic mutations in over 30 different genes, many of which encode for proteins essential for the integrity of muscle cell structure and membrane. Their deficiencies cause the muscle vulnerable to mechanical and biochemical damages, leading to membrane leakage, dystrophic pathology, and eventual loss of muscle cells. Recent studies report that MG53, a muscle-specific TRIM-family protein, plays an essential role in sarcolemmal membrane repair. Here, we show that systemic delivery and muscle-specific overexpression of human MG53 gene by recombinant adeno-associated virus (AAV) vectors enhanced membrane repair, ameliorated pathology, and improved muscle and heart functions in δ-sarcoglycan (δ-SG)-deficient TO-2 hamsters, an animal model of MD and congestive heart failure. In addition, MG53 overexpression increased dysferlin level and facilitated its trafficking to muscle membrane through participation of caveolin-3. MG53 also protected muscle cells by activating cell survival kinases, such as Akt, extracellular signal-regulated kinases (ERK1/2), and glycogen synthase kinase-3ß (GSK-3ß) and inhibiting proapoptotic protein Bax. Our results suggest that enhancing the muscle membrane repair machinery could be a novel therapeutic approach for MD and cardiomyopathy, as demonstrated here in the limb girdle MD (LGMD) 2F model.


Asunto(s)
Proteínas Portadoras/metabolismo , Terapia Genética/métodos , Insuficiencia Cardíaca/terapia , Distrofias Musculares/terapia , Sarcoglicanos/deficiencia , Animales , Proteínas Portadoras/genética , Caveolina 3/genética , Caveolina 3/metabolismo , Cricetinae , Dependovirus/genética , Insuficiencia Cardíaca/metabolismo , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Distrofias Musculares/metabolismo , Proteínas de Motivos Tripartitos
8.
Elife ; 122023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36810131

RESUMEN

Mutations in the TRPV4 ion channel can lead to a range of skeletal dysplasias. However, the mechanisms by which TRPV4 mutations lead to distinct disease severity remain unknown. Here, we use CRISPR-Cas9-edited human-induced pluripotent stem cells (hiPSCs) harboring either the mild V620I or lethal T89I mutations to elucidate the differential effects on channel function and chondrogenic differentiation. We found that hiPSC-derived chondrocytes with the V620I mutation exhibited increased basal currents through TRPV4. However, both mutations showed more rapid calcium signaling with a reduced overall magnitude in response to TRPV4 agonist GSK1016790A compared to wildtype (WT). There were no differences in overall cartilaginous matrix production, but the V620I mutation resulted in reduced mechanical properties of cartilage matrix later in chondrogenesis. mRNA sequencing revealed that both mutations up-regulated several anterior HOX genes and down-regulated antioxidant genes CAT and GSTA1 throughout chondrogenesis. BMP4 treatment up-regulated several essential hypertrophic genes in WT chondrocytes; however, this hypertrophic maturation response was inhibited in mutant chondrocytes. These results indicate that the TRPV4 mutations alter BMP signaling in chondrocytes and prevent proper chondrocyte hypertrophy, as a potential mechanism for dysfunctional skeletal development. Our findings provide potential therapeutic targets for developing treatments for TRPV4-mediated skeletal dysplasias.


Asunto(s)
Células Madre Pluripotentes Inducidas , Osteocondrodisplasias , Humanos , Condrocitos , Canales Catiónicos TRPV/genética , Osteocondrodisplasias/genética , Diferenciación Celular , Mutación , Hipertrofia , Condrogénesis/genética
9.
Am J Pathol ; 178(1): 261-72, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21224063

RESUMEN

Limb-girdle muscular dystrophy 2I (LGMD2I) is caused by mutations in the fukutin-related protein (FKRP) gene. Unlike its severe allelic forms, LGMD2I usually involves slower onset and milder course without defects in the central nervous system. The lack of viable animal models that closely recapitulate LGMD2I clinical phenotypes led us to use RNA interference technology to knock down FKRP expression via postnatal gene delivery so as to circumvent embryonic lethality. Specifically, an adeno-associated viral vector was used to deliver short hairpin (shRNA) genes to healthy ICR mice. Adeno-associated viral vectors expressing a single shRNA or two different shRNAs were injected one time into the hind limb muscles. We showed that FKRP expression at 10 months postinjection was reduced by about 50% with a single shRNA and by 75% with the dual shRNA cassette. Dual-cassette injection also reduced a-dystroglycan glycosylation and its affinity to laminin by up to 70% and induced α-dystrophic pathology, including fibrosis and central nucleation, in more than 50% of the myofibers at 10 months after injection. These results suggest that the reduction of approximately or more than 75% of the normal level of FKRP expression induces chronic dystrophic phenotypes in skeletal muscles. Furthermore, the restoration of about 25% of the normal FKRP level could be sufficient for LGMD2I therapy to correct the genetic deficiency effectively and prevent dystrophic pathology.


Asunto(s)
Técnicas de Silenciamiento del Gen/métodos , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/genética , Proteínas/genética , Interferencia de ARN , Adenoviridae , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Distroglicanos/metabolismo , Vectores Genéticos , Glicosilación , Ratones , Ratones Endogámicos ICR , Músculo Esquelético/metabolismo , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/patología , Pentosiltransferasa , ARN Interferente Pequeño/genética , Transferasas
10.
J Surg Res ; 178(1): 105-9, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22464396

RESUMEN

BACKGROUND: Most cardiovascular studies have implicated the central transcription factor nuclear factor kappa-B (NF-κB) as contributing to the detrimental effects of cardiac injury. This ostensibly negative view of NF-κB competes with its important role in the normal host inflammatory and immune response. Pressure overload, left ventricular hypertrophy (LVH), and heart failure represent a spectrum of disease that has both adaptive and maladaptive components. In contrast to its known effects related to myocardial ischemia-reperfusion, we hypothesized that NF-κB is necessary for the compensatory phase of cardiac remodeling. METHODS: C57BL6 mice underwent minimally invasive transverse aortic constriction with or without inhibition of the proximal NF-κB kinase, inhibitory kappa-B kinase-ß. Isolated cardiomyocytes were cultured. Transthoracic echocardiography was performed on all mice. RESULTS: Inhibitory kappa-B kinase-ß inhibition successfully decreased cardiomyocyte expression of phosphorylated p65 NF-κB and decreased expression of hypertrophic markers with stimulation in vitro. Three weeks after transverse aortic constriction, the mice treated with inhibitory kappa-B kinase-ß inhibition more aggressively developed LVH, as measured by heart weight/body weight ratio, left ventricular mass, and wall thickness. These mice also demonstrated a functional decline, as measured by decreased fractional shortening and ejection fraction. These findings were associated with decreased protein expression of p65 NF-κB. CONCLUSIONS: Although short-term pressure-overload results in compensatory LVH with normal cardiac function, NF-κB inhibition resulted in increased LVH that was associated with functional deterioration. These observations suggest that NF-κB is an important part of the adaptive phase of LVH, and its inhibition detrimentally affects cardiac remodeling.


Asunto(s)
Adaptación Fisiológica/fisiología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/prevención & control , Quinasa I-kappa B/metabolismo , Remodelación Ventricular/fisiología , Adaptación Fisiológica/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Ecocardiografía , Inhibidores Enzimáticos/farmacología , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Quinasa I-kappa B/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Factor de Transcripción ReIA/metabolismo , Remodelación Ventricular/efectos de los fármacos
11.
J Surg Res ; 178(1): 72-80, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22480839

RESUMEN

BACKGROUND: Clinical and experimental studies have traditionally focused on understanding the mechanisms for why a heart fails. We hypothesize that the pathways involved with myocardial recovery are not simply the reverse of those that cause heart failure. However, determining when and how a decompensated heart can recover remains unknown. METHODS: Male C57BL/6 mice underwent minimally invasive aortic banding for 3, 4, or 6 wk with or without subsequent band removal for 1 wk (debanding). Physiologic and genomic characterization was performed with intracardiac pressure-volume recordings, rt-PCR, and microarray analysis. RESULTS: Heart weight/body weight ratios and PV loops demonstrated a transition from compensated left ventricular hypertrophy to decompensated heart failure between 3 and 4 wk. Pressure-relief afforded by debanding allowed functional recovery and normalization of LVH after both 3 and 4, but not 6 wk of banding. Whole genome microarrays demonstrated 397 genes differentially expressed in recovered hearts, 250 genes differentially expressed in the nonrecoverable (6 wk) hearts, and only 10 genes shared by both processes. In particular, altered expression patterns of apoptotic and metalloproteinase genes correlated with the heart's ability to functionally recover. CONCLUSIONS: This clinically-relevant model (1) allows us to temporally and mechanistically characterize the failing heart, (2) demonstrates a unique genomic signature that may predict when a failing heart can recover following pressure relief, and (3) will prove useful as a template for testing therapeutic strategies aimed at recovery of the failing heart.


Asunto(s)
Cardiomegalia/genética , Cardiomegalia/fisiopatología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Transcriptoma/fisiología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Genómica , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Recuperación de la Función/fisiología , Presión Ventricular/fisiología
12.
Arterioscler Thromb Vasc Biol ; 30(12): 2575-86, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20884876

RESUMEN

OBJECTIVE: Congenital heart defects represent the most common human birth defects. Even though the genetic cause of these syndromes has been linked to candidate genes, the underlying molecular mechanisms are still largely unknown. Disturbance of neural crest cell (NCC) migration into the derivatives of the pharyngeal arches and pouches can account for many of the developmental defects. The goal of this study was to investigate the function of microRNA (miRNA) in NCCs and the cardiovascular system. METHODS AND RESULTS: We deleted Dicer from the NCC lineage and showed that Dicer conditional mutants exhibit severe defects in multiple craniofacial and cardiovascular structures, many of which are observed in human neuro-craniofacial-cardiac syndrome patients. We found that cranial NCCs require Dicer for their survival and that deletion of Dicer led to massive cell death and complete loss of NCC-derived craniofacial structures. In contrast, Dicer and miRNAs were not essential for the survival of cardiac NCCs. However, the migration and patterning of these cells were impaired in Dicer knockout mice, resulting in a spectrum of cardiovascular abnormalities, including type B interrupted aortic arch, double-outlet right ventricle, and ventricular septal defect. We showed that Dicer loss of function was, at least in part, mediated by miRNA-21 (miR-21) and miRNA-181a (miR-181a), which in turn repressed the protein level of Sprouty 2, an inhibitor of Erk1/2 signaling. CONCLUSIONS: Our results uncovered a central role for Dicer and miRNAs in NCC survival, migration, and patterning in craniofacial and cardiovascular development which, when mutated, lead to congenital neuro-craniofacial-cardiac defects.


Asunto(s)
Anomalías Múltiples/genética , Anomalías Craneofaciales/genética , Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas/genética , MicroARNs/metabolismo , Cresta Neural/metabolismo , Ribonucleasa III/genética , Anomalías Múltiples/embriología , Anomalías Múltiples/patología , Proteínas Adaptadoras Transductoras de Señales , Animales , Muerte Celular , Diferenciación Celular , Movimiento Celular , Supervivencia Celular , Anomalías Craneofaciales/embriología , Anomalías Craneofaciales/patología , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Genotipo , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Cresta Neural/patología , Fenotipo , Proteínas Serina-Treonina Quinasas , Ribonucleasa III/deficiencia , Índice de Severidad de la Enfermedad , Síndrome
13.
Proc Natl Acad Sci U S A ; 105(9): 3362-7, 2008 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-18296632

RESUMEN

We previously reported the importance of the serum response factor (SRF) cofactor myocardin in controlling muscle gene expression as well as the fundamental role for the inflammatory transcription factor NF-kappaB in governing cellular fate. Inactivation of myocardin has been implicated in malignant tumor growth. However, the underlying mechanism of myocardin regulation of cellular growth remains unclear. Here we show that NF-kappaB(p65) represses myocardin activation of cardiac and smooth muscle genes in a CArG-box-dependent manner. Consistent with their functional interaction, p65 directly interacts with myocardin and inhibits the formation of the myocardin/SRF/CArG ternary complex in vitro and in vivo. Conversely, myocardin decreases p65-mediated target gene activation by interfering with p65 DNA binding and abrogates LPS-induced TNF-alpha expression. Importantly, myocardin inhibits cellular proliferation by interfering with NF-kappaB-dependent cell-cycle regulation. Cumulatively, these findings identify a function for myocardin as an SRF-independent transcriptional repressor and cell-cycle regulator and provide a molecular mechanism by which interaction between NF-kappaB and myocardin plays a central role in modulating cellular proliferation and differentiation.


Asunto(s)
Proliferación Celular , Proteínas Nucleares/fisiología , Transactivadores/fisiología , Factor de Transcripción ReIA/fisiología , Animales , Aorta , Ciclo Celular , Proteínas de Ciclo Celular , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Ratones , Complejos Multiproteicos , Músculo Liso Vascular/citología , Miocitos Cardíacos , Miocitos del Músculo Liso , Proteínas Nucleares/metabolismo , Ratas , Proteínas Represoras/metabolismo , Factor de Respuesta Sérica/metabolismo , Transactivadores/metabolismo , Activación Transcripcional
14.
Proc Natl Acad Sci U S A ; 105(6): 2111-6, 2008 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-18256189

RESUMEN

Cardiovascular disease is the leading cause of human morbidity and mortality. Dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy associated with heart failure. Here, we report that cardiac-specific knockout of Dicer, a gene encoding a RNase III endonuclease essential for microRNA (miRNA) processing, leads to rapidly progressive DCM, heart failure, and postnatal lethality. Dicer mutant mice show misexpression of cardiac contractile proteins and profound sarcomere disarray. Functional analyses indicate significantly reduced heart rates and decreased fractional shortening of Dicer mutant hearts. Consistent with the role of Dicer in animal hearts, Dicer expression was decreased in end-stage human DCM and failing hearts and, most importantly, a significant increase of Dicer expression was observed in those hearts after left ventricle assist devices were inserted to improve cardiac function. Together, our studies demonstrate essential roles for Dicer in cardiac contraction and indicate that miRNAs play critical roles in normal cardiac function and under pathological conditions.


Asunto(s)
Cardiomiopatía Dilatada/enzimología , Insuficiencia Cardíaca/enzimología , Ribonucleasa III/fisiología , Animales , Northern Blotting , Western Blotting , Cardiomiopatía Dilatada/genética , Insuficiencia Cardíaca/genética , Humanos , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Ratones , Ratones Noqueados , MicroARNs/genética , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleasa III/genética
15.
Nat Commun ; 12(1): 362, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441552

RESUMEN

The therapeutic application of human induced pluripotent stem cells (hiPSCs) for cartilage regeneration is largely hindered by the low yield of chondrocytes accompanied by unpredictable and heterogeneous off-target differentiation of cells during chondrogenesis. Here, we combine bulk RNA sequencing, single cell RNA sequencing, and bioinformatic analyses, including weighted gene co-expression analysis (WGCNA), to investigate the gene regulatory networks regulating hiPSC differentiation under chondrogenic conditions. We identify specific WNTs and MITF as hub genes governing the generation of off-target differentiation into neural cells and melanocytes during hiPSC chondrogenesis. With heterocellular signaling models, we further show that WNT signaling produced by off-target cells is responsible for inducing chondrocyte hypertrophy. By targeting WNTs and MITF, we eliminate these cell lineages, significantly enhancing the yield and homogeneity of hiPSC-derived chondrocytes. Collectively, our findings identify the trajectories and molecular mechanisms governing cell fate decision in hiPSC chondrogenesis, as well as dynamic transcriptome profiles orchestrating chondrocyte proliferation and differentiation.


Asunto(s)
Condrogénesis/genética , Células Madre Pluripotentes/metabolismo , Análisis de la Célula Individual/métodos , Transcriptoma/genética , Animales , Bencenoacetamidas/farmacología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Células Cultivadas , Condrogénesis/efectos de los fármacos , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Células Madre Pluripotentes/citología , Piridinas/farmacología , Transcriptoma/efectos de los fármacos
16.
Dev Biol ; 327(2): 376-85, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19166829

RESUMEN

The pacemaker is composed of specialized cardiomyocytes located within the sinoatrial node (SAN), and is responsible for originating and regulating the heart beat. Recent advances towards understanding the SAN development have been made on the genetic control and gene interaction within this structure. Here we report that the Shox2 homeodomain transcription factor is restrictedly expressed in the sinus venosus region including the SAN and the sinus valves during embryonic heart development. Shox2 null mutation results in embryonic lethality due to cardiovascular defects, including an abnormal low heart beat rate (bradycardia) and severely hypoplastic SAN and sinus valves attributed to a significantly decreased level of cell proliferation. Genetically, the lack of Tbx3 and Hcn4 expression, along with ectopic activation of Nppa, Cx40, and Nkx2-5 in the Shox2(-/-) SAN region, indicates a failure in SAN differentiation. Furthermore, Shox2 overexpression in Xenopus embryos results in extensive repression of Nkx2-5 in the developing heart, leading to a reduced cardiac field and aberrant heart formation. Reporter gene expression assays provide additional evidence for the repression of Nkx2-5 promoter activity by Shox2. Taken together our results demonstrate that Shox2 plays an essential role in the SAN and pacemaker development by controlling a genetic cascade through the repression of Nkx2-5.


Asunto(s)
Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica , Corazón , Proteínas de Homeodominio/metabolismo , Nodo Sinoatrial , Factores de Transcripción/metabolismo , Animales , Femenino , Corazón/anatomía & histología , Corazón/embriología , Frecuencia Cardíaca , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nodo Sinoatrial/citología , Nodo Sinoatrial/embriología , Factores de Transcripción/genética , Xenopus laevis/anatomía & histología , Xenopus laevis/embriología
17.
Nature ; 425(6954): 196-200, 2003 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-12968184

RESUMEN

Extracellular Ca(2+) (Ca(2+)(o)) is required for various physiological and developmental processes in animals and plants. In response to varied Ca(2+)(o) levels, plants maintain relatively constant internal Ca(2+) content, suggesting a precise regulatory mechanism for Ca(2+) homeostasis. However, little is known about how plants monitor Ca(2+)(o) status and whether Ca(2+)(o)-sensing receptors exist. The effects of Ca(2+)(o) on guard cells in promoting stomatal closure by inducing increases in the concentration of cytosolic Ca(2+) ([Ca(2+)](i)) provide a clue to Ca(2+)(o) sensing. Here we have used a functional screening assay in mammalian cells to isolate an Arabidopsis complementary DNA clone encoding a Ca(2+)-sensing receptor, CAS. CAS is localized to the plasma membrane, exhibits low-affinity/high-capacity Ca(2+) binding, and mediates Ca(2+)(o)-induced [Ca(2+)](i) increases. CAS is expressed predominantly in the shoot, including guard cells. Repression of CAS disrupts Ca(2+)(o) signalling in guard cells, and impairs bolting (swift upward growth at the transition to seed production) in response to Ca(2+) deficiency, so we conclude that CAS may be a primary transducer of Ca(2+)(o) in plants.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Calcio/metabolismo , Receptores de Superficie Celular/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/deficiencia , Línea Celular , Membrana Celular/metabolismo , Clonación Molecular , Perfilación de la Expresión Génica , Genes de Plantas/genética , Homeostasis , Humanos , Datos de Secuencia Molecular , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Sensibles al Calcio , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética
18.
Arthritis Rheumatol ; 72(4): 632-644, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31646754

RESUMEN

OBJECTIVE: Obesity and osteoarthritis (OA) are 2 major public health issues affecting millions of people worldwide. Whereas parental obesity affects the predisposition to diseases such as cancer or diabetes in children, transgenerational influences on musculoskeletal conditions such as OA are poorly understood. This study was undertaken to assess the intergenerational effects of a parental/grandparental high-fat diet on the metabolic and skeletal phenotype, systemic inflammation, and predisposition to OA in 2 generations of offspring in mice. METHODS: Metabolic phenotype and predisposition to OA were investigated in the first and second (F1 and F2) generations of offspring (n = 10-16 mice per sex per diet) bred from mice fed a high-fat diet (HFD) or a low-fat control diet. OA was induced by destabilizing the medial meniscus. OA, synovitis, and adipose tissue inflammation were determined histologically, while bone changes were measured using micro-computed tomography. Serum and synovial cytokines were measured by multiplex assay. RESULTS: Parental high-fat feeding showed an intergenerational effect, with inheritance of increased weight gain (up to 19% in the F1 generation and 9% in F2), metabolic imbalance, and injury-induced OA in at least 2 generations of mice, despite the fact that the offspring were fed the low-fat diet. Strikingly, both F1 and F2 female mice showed an increased predisposition to injury-induced OA (48% higher predisposition in F1 and 19% in F2 female mice fed the HFD) and developed bone microarchitectural changes that were attributable to parental and grandparental high-fat feeding. CONCLUSION: The results of this study reveal a detrimental effect of parental HFD and obesity on the musculoskeletal integrity of 2 generations of offspring, indicating the importance of further investigation of these effects. An improved understanding of the mechanisms involved in the transmissibility of diet-induced changes through multiple generations may help in the development of future therapies that would target the effects of obesity on OA and related conditions.


Asunto(s)
Tejido Adiposo/metabolismo , Dieta Alta en Grasa , Obesidad/genética , Osteoartritis/genética , Aumento de Peso/genética , Animales , Femenino , Inflamación/metabolismo , Masculino , Ratones , Obesidad/metabolismo , Osteoartritis/metabolismo
19.
Sci Adv ; 6(19): eaaz7492, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32426485

RESUMEN

Obesity-associated inflammation and loss of muscle function play critical roles in the development of osteoarthritis (OA); thus, therapies that target muscle tissue may provide novel approaches to restoring metabolic and biomechanical dysfunction associated with obesity. Follistatin (FST), a protein that binds myostatin and activin, may have the potential to enhance muscle formation while inhibiting inflammation. Here, we hypothesized that adeno-associated virus 9 (AAV9) delivery of FST enhances muscle formation and mitigates metabolic inflammation and knee OA caused by a high-fat diet in mice. AAV-mediated FST delivery exhibited decreased obesity-induced inflammatory adipokines and cytokines systemically and in the joint synovial fluid. Regardless of diet, mice receiving FST gene therapy were protected from post-traumatic OA and bone remodeling induced by joint injury. Together, these findings suggest that FST gene therapy may provide a multifactorial therapeutic approach for injury-induced OA and metabolic inflammation in obesity.


Asunto(s)
Dieta Alta en Grasa , Osteoartritis , Animales , Dieta Alta en Grasa/efectos adversos , Folistatina/genética , Folistatina/metabolismo , Terapia Genética , Inflamación/metabolismo , Ratones , Obesidad/complicaciones , Obesidad/genética , Osteoartritis/metabolismo
20.
Elife ; 92020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32202492

RESUMEN

The roles of long noncoding RNAs (lncRNAs) in musculoskeletal development, disease, and regeneration remain poorly understood. Here, we identified the novel lncRNA GRASLND (originally named RNF144A-AS1) as a regulator of mesenchymal stem cell (MSC) chondrogenesis. GRASLND, a primate-specific lncRNA, is upregulated during MSC chondrogenesis and appears to act directly downstream of SOX9, but not TGF-ß3. We showed that the silencing of GRASLND resulted in lower accumulation of cartilage-like extracellular matrix in a pellet assay, while GRASLND overexpression - either via transgene ectopic expression or by endogenous activation via CRISPR-dCas9-VP64 - significantly enhanced cartilage matrix production. GRASLND acts to inhibit IFN-γ by binding to EIF2AK2, and we further demonstrated that GRASLND exhibits a protective effect in engineered cartilage against interferon type II. Our results indicate an important role of GRASLND in regulating stem cell chondrogenesis, as well as its therapeutic potential in the treatment of cartilage-related diseases, such as osteoarthritis.


Asunto(s)
Condrogénesis/genética , Regulación del Desarrollo de la Expresión Génica , Interferón gamma/metabolismo , ARN Largo no Codificante/genética , Transducción de Señal , Sitios de Unión , Diferenciación Celular/genética , Células Cultivadas , Condrocitos/citología , Matriz Extracelular/metabolismo , Edición Génica , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Inmunohistoquímica , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA