Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(3): 516-530, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36796361

RESUMEN

Primate-specific genes (PSGs) tend to be expressed in the brain and testis. This phenomenon is consistent with brain evolution in primates but is seemingly contradictory to the similarity of spermatogenesis among mammals. Here, using whole-exome sequencing, we identified deleterious variants of X-linked SSX1 in six unrelated men with asthenoteratozoospermia. SSX1 is a PSG expressed predominantly in the testis, and the SSX family evolutionarily expanded independently in rodents and primates. As the mouse model could not be used for studying SSX1, we used a non-human primate model and tree shrews, which are phylogenetically similar to primates, to knock down (KD) Ssx1 expression in the testes. Consistent with the phenotype observed in humans, both Ssx1-KD models exhibited a reduced sperm motility and abnormal sperm morphology. Further, RNA sequencing indicated that Ssx1 deficiency influenced multiple biological processes during spermatogenesis. Collectively, our experimental observations in humans and cynomolgus monkey and tree shrew models highlight the crucial role of SSX1 in spermatogenesis. Notably, three of the five couples who underwent intra-cytoplasmic sperm injection treatment achieved a successful pregnancy. This study provides important guidance for genetic counseling and clinical diagnosis and, significantly, describes the approaches for elucidating the functions of testis-enriched PSGs in spermatogenesis.


Asunto(s)
Astenozoospermia , Tupaia , Animales , Masculino , Macaca fascicularis , Primates , Semen , Motilidad Espermática , Tupaiidae
2.
Am J Hum Genet ; 108(2): 309-323, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33472045

RESUMEN

Asthenoteratozoospermia characterized by multiple morphological abnormalities of the flagella (MMAF) has been identified as a sub-type of male infertility. Recent progress has identified several MMAF-associated genes with an autosomal recessive inheritance in human affected individuals, but the etiology in approximately 40% of affected individuals remains unknown. Here, we conducted whole-exome sequencing (WES) and identified hemizygous missense variants in the X-linked CFAP47 in three unrelated Chinese individuals with MMAF. These three CFAP47 variants were absent in human control population genome databases and were predicted to be deleterious by multiple bioinformatic tools. CFAP47 encodes a cilia- and flagella-associated protein that is highly expressed in testis. Immunoblotting and immunofluorescence assays revealed obviously reduced levels of CFAP47 in spermatozoa from all three men harboring deleterious missense variants of CFAP47. Furthermore, WES data from an additional cohort of severe asthenoteratozoospermic men originating from Australia permitted the identification of a hemizygous Xp21.1 deletion removing the entire CFAP47 gene. All men harboring hemizygous CFAP47 variants displayed typical MMAF phenotypes. We also generated a Cfap47-mutated mouse model, the adult males of which were sterile and presented with reduced sperm motility and abnormal flagellar morphology and movement. However, fertility could be rescued by the use of intra-cytoplasmic sperm injections (ICSIs). Altogether, our experimental observations in humans and mice demonstrate that hemizygous mutations in CFAP47 can induce X-linked MMAF and asthenoteratozoospermia, for which good ICSI prognosis is suggested. These findings will provide important guidance for genetic counseling and assisted reproduction treatments.


Asunto(s)
Astenozoospermia/genética , Infertilidad Masculina/genética , Animales , Astenozoospermia/patología , Astenozoospermia/fisiopatología , Estudios de Cohortes , Femenino , Eliminación de Gen , Genes Ligados a X , Hemicigoto , Humanos , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Infertilidad Masculina/fisiopatología , Masculino , Ratones Endogámicos C57BL , Mutación , Mutación Missense , Linaje , Fenotipo , Inyecciones de Esperma Intracitoplasmáticas , Motilidad Espermática , Cola del Espermatozoide/ultraestructura , Espermatozoides/patología , Espermatozoides/fisiología , Espermatozoides/ultraestructura , Secuenciación del Exoma
3.
Mol Genet Genomics ; 299(1): 35, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489045

RESUMEN

Asthenoteratospermia is a significant cause of male infertility. FAM71D (Family with sequence similarity 71, member D), as a novel protein exclusively expressed in the testis, has been found to be associated with sperm motility. However, the association of FAM71D mutation with male infertility has yet to be examined. Here, we conducted whole-exome sequencing and identified a homozygous missense mutation c.440G > A (p. Arg147Gln) of FAM71D in an asthenoteratospermia-affected man from a consanguineous family. The FAM71D variant is extremely rare in human population genome databases and predicted to be deleterious by multiple bioinformatics tools. Semen analysis indicated decreased sperm motility and obvious morphological abnormalities in sperm cells from the FAM71D-deficient man. Immunofluorescence assays revealed that the identified FAM71D mutation had an important influence on the assembly of sperm structure-related proteins. Furthermore, intra-cytoplasmic sperm injection (ICSI) treatment performed on the infertile man with FAM71D variant achieved a satisfactory outcome. Overall, our study identified FAM71D as a novel causative gene for male infertility with asthenoteratospermia, for which ICSI treatment may be suggested to acquire good prognosis. All these findings will provide effective guidance for genetic counselling and assisted reproduction treatments of asthenoteratospermia-affected subjects.


Asunto(s)
Infertilidad Masculina , Semen , Masculino , Humanos , Motilidad Espermática , Espermatozoides , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Testículo/metabolismo , Mutación
4.
Metab Eng ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019249

RESUMEN

Heme has attracted considerable attention due to its indispensable biological roles and applications in healthcare and artificial foods. The development and utilization of edible microorganisms instead of animals to produce heme is the most promising method to promote the large-scale industrial production and safe application of heme. However, the cytotoxicity of heme severely restricts its efficient synthesis by microorganisms, and the cytotoxic mechanism is not fully understood. In this study, the effect of heme toxicity on Saccharomyces cerevisiae was evaluated by enhancing its synthesis using metabolic engineering. The results showed that the accumulation of heme after the disruption of heme homeostasis caused serious impairments in cell growth and metabolism, as demonstrated by significantly poor growth, mitochondrial damage, cell deformations, and chapped cell surfaces, and these features which were further associated with substantially elevated reactive oxygen species (ROS) levels within the cell (mainly H2O2 and superoxide anion radicals). To improve cellular tolerance to heme, 5 rounds of laboratory evolution were performed, increasing heme production by 7.3-fold and 4.2-fold in terms of the titer (38.9 mg/L) and specific production capacity (1.4 mg/L/OD600), respectively. Based on comparative transcriptomic analyses, 32 genes were identified as candidates that can be modified to enhance heme production by more than 20% in S. cerevisiae. The combined overexpression of 5 genes (SPS22, REE1, PHO84, HEM4 and CLB2) was shown to be an optimal method to enhance heme production. Therefore, a strain with enhanced heme tolerance and ROS quenching ability (R5-M) was developed that could generate 380.5 mg/L heme with a productivity of 4.2 mg/L/h in fed-batch fermentation, with S. cerevisiae strains being the highest producers reported to date. These findings highlight the importance of improving heme tolerance for the microbial production of heme and provide a solution for efficient heme production by engineered yeasts.

5.
J Med Genet ; 60(2): 137-143, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35228300

RESUMEN

BACKGROUND: As a common type of asthenoteratozoospermia, multiple morphological abnormalities of the sperm flagella (MMAF) can cause male infertility. Previous studies have revealed genetic factors as a major cause of MMAF. The known MMAF-associated genes are involved in the mitochondrial sheath, outer dense fibre or axoneme of the sperm flagella. These findings indicate the genetic heterogeneity of MMAF. METHODS AND RESULTS: Here, we conducted genetic analyses using whole-exome sequencing in a cohort of 150 Han Chinese men with asthenoteratozoospermia. Homozygous deleterious variants of AKAP3 (A-kinase anchoring protein 3) were identified in two MMAF-affected men from unrelated families. One AKAP3 variant was a frameshift (c.2286_2287del, p.His762Glnfs*22) and the other variant was a missense mutation (c.44G>A, p.Cys15Tyr), which was predicted to be damaging by multiple bioinformatics tools. Further western blotting and immunofluorescence assays revealed the absence of AKAP3 in the spermatozoa from the man harbouring the homozygous frameshift variant, whereas the expression of AKAP3 was markedly reduced in the spermatozoa of the man with the AKAP3 missense variant p.Cys15Tyr. Notably, the clinical outcomes after intracytoplasmic sperm injection (ICSI) were divergent between these two cases, suggesting a possibility of AKAP3 dosage-dependent prognosis of ICSI treatment. CONCLUSIONS: Our study revealed AKAP3 as a novel gene involved in human asthenoteratozoospermia.


Asunto(s)
Anomalías Múltiples , Astenozoospermia , Infertilidad Masculina , Masculino , Humanos , Astenozoospermia/genética , Mutación , Semen/metabolismo , Cola del Espermatozoide/metabolismo , Espermatozoides/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Anomalías Múltiples/genética , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo
6.
J Med Genet ; 60(8): 827-834, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36593121

RESUMEN

BACKGROUND: Spermatogenic impairments can lead to male infertility by different pathological conditions, such as multiple morphological abnormalities of the sperm flagella (MMAF) and non-obstructive azoospermia (NOA). Genetic factors are involved in impaired spermatogenesis. METHODS AND RESULTS: Here, we performed genetic analyses through whole-exome sequencing in a cohort of 334 Han Chinese probands with severe MMAF or NOA. Biallelic variants of CFAP54 were identified in three unrelated men, including one homozygous frameshift variant (c.3317del, p.Phe1106Serfs*19) and two compound heterozygous variants (c.878G>A, p.Arg293His; c.955C>T, p.Arg319Cys and c.4885C>T, p.Arg1629Cys; c.937G>A, p.Gly313Arg). All of the identified variants were absent or extremely rare in the public human genome databases and predicted to be damaging by bioinformatic tools. The men harbouring CFAP54 mutations exhibited abnormal sperm morphology, reduced sperm concentration and motility in ejaculated semen. Significant axoneme disorganisation and other ultrastructure abnormities were also detected inside the sperm cells from men harbouring CFAP54 mutations. Furthermore, immunofluorescence assays showed remarkably reduced staining of four flagellar assembly-associated proteins (IFT20, IFT52, IFT122 and SPEF2) in the spermatozoa of CFAP54-deficient men. Notably, favourable clinical pregnancy outcomes were achieved with sperm from men carrying CFAP54 mutations after intracytoplasmic sperm injection treatment. CONCLUSION: Our genetic analyses and experimental observations revealed that biallelic deleterious mutations of CFAP54 can induce severe MMAF and NOA in humans.


Asunto(s)
Azoospermia , Proteínas del Citoesqueleto , Infertilidad Masculina , Femenino , Humanos , Masculino , Embarazo , Azoospermia/patología , Infertilidad Masculina/patología , Mutación , Cola del Espermatozoide/patología , Espermatozoides/patología , Proteínas del Citoesqueleto/genética
7.
Reprod Domest Anim ; 59(7): e14661, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38979950

RESUMEN

Spermatogonial stem cells (SSCs) comprise the foundation of spermatogenesis and hence have great potential for fertility preservation of rare or endangered species and the development of transgenic animals and birds. Yet, developing optimal conditions for the isolation, culture, and maintenance of SSCs in vitro remains challenging, especially for chicken. The objectives of this study were to (1) find the optimal age for SSC isolation in Huaixiang chicken, (2) develop efficient protocols for the isolation, (3) enrichment, and (4) culture of isolated SSCs. In the present study, we first compared the efficiency of SSC isolation using 11 different age groups (8-79 days of age) of Huaixiang chicken. We found that the testes of 21-day-old chicken yielded the highest cell viability. Next, we compared two different enzymatic combinations for isolating SSCs and found that 0.125% trypsin and 0.02 g/L EDTA supported the highest number and viability of SSCs. This was followed by investigating optimal conditions for the enrichment of SSCs, where we observed that differential plating had the highest enrichment efficiency compared to the Percoll gradient and magnetic-activated cell sorting methods. Lastly, to find the optimal culture conditions of SSCs, we compared adding different concentrations of foetal bovine serum (FBS; 2%, 5%, 7%, and 10%) and different concentrations of GDNF, bFGF, or LIF (5, 10, 20, or 30 ng/mL). We found that a combination of 2% FBS and individual growth factors, including GDNF (20 ng/mL), bFGF (30 ng/mL), or LIF (5 ng/mL), best supported the proliferation and colony formation of SSCs. In conclusion, SSCs can be optimally isolated through enzymatic digestion from testes of 21-day-old chicken, followed by enrichment using differential plating. Furthermore, adding 2% FBS and optimized concentrations of GFNF, bFGF, or LIF in the culture promotes the proliferation of chicken SSCs.


Asunto(s)
Células Madre Germinales Adultas , Técnicas de Cultivo de Célula , Separación Celular , Pollos , Animales , Masculino , Técnicas de Cultivo de Célula/veterinaria , Separación Celular/métodos , Separación Celular/veterinaria , Testículo/citología , Espermatogonias/citología , Supervivencia Celular , Células Cultivadas
8.
Am J Hum Genet ; 107(2): 330-341, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32619401

RESUMEN

Sperm malformation is a direct factor for male infertility. Multiple morphological abnormalities of the flagella (MMAF), a severe form of asthenoteratozoospermia, are characterized by immotile spermatozoa with malformed and/or absent flagella in the ejaculate. Previous studies indicated genetic heterogeneity in MMAF. To further define genetic factors underlying MMAF, we performed whole-exome sequencing in a cohort of 90 Chinese MMAF-affected men. Two cases (2.2%) were identified as carrying bi-allelic missense DNAH8 variants, variants which were either absent or rare in the control human population and were predicted to be deleterious by multiple bioinformatic tools. Re-analysis of exome data from a second cohort of 167 MMAF-affected men from France, Iran, and North Africa permitted the identification of an additional male carrying a DNAH8 homozygous frameshift variant. DNAH8 encodes a dynein axonemal heavy-chain component that is expressed preferentially in the testis. Hematoxylin-eosin staining and electron microscopy analyses of the spermatozoa from men harboring bi-allelic DNAH8 variants showed a highly aberrant morphology and ultrastructure of the sperm flagella. Immunofluorescence assays performed on the spermatozoa from men harboring bi-allelic DNAH8 variants revealed the absent or markedly reduced staining of DNAH8 and its associated protein DNAH17. Dnah8-knockout male mice also presented typical MMAF phenotypes and sterility. Interestingly, intracytoplasmic sperm injections using the spermatozoa from Dnah8-knockout male mice resulted in good pregnancy outcomes. Collectively, our experimental observations from humans and mice demonstrate that DNAH8 is essential for sperm flagellar formation and that bi-allelic deleterious DNAH8 variants lead to male infertility with MMAF.


Asunto(s)
Anomalías Múltiples/genética , Dineínas Axonemales/genética , Flagelos/genética , Variación Genética/genética , Infertilidad Masculina/genética , Cola del Espermatozoide/patología , Alelos , Animales , Estudios de Cohortes , Exoma/genética , Femenino , Homocigoto , Humanos , Masculino , Ratones , Ratones Noqueados , Espermatozoides/anomalías , Testículo/anomalías , Secuenciación del Exoma/métodos
9.
Clin Genet ; 104(5): 516-527, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37461298

RESUMEN

Premature ovarian insufficiency (POI) is a clinical syndrome of ovarian dysfunction characterized by cessation of menstruation occurring before the age of 40 years. The genetic causes of idiopathic POI remain unclear. Here we recruited a POI patient from a consanguineous family to screen for potential pathogenic variants associated with POI. Genetic variants of the pedigree were screened using whole-exome sequencing analysis and validated through direct Sanger sequencing. A homozygous variant in TUFM (c.524G>C: p.Gly175Ala) was identified in this family. TUFM (Tu translation elongation factor, mitochondrial) is a nuclear-encoded mitochondrial protein translation elongation factor that plays a critical role in maintaining normal mitochondrial function. The variant position was highly conserved among species and predicted to be disease causing. Our in vitro functional studies demonstrated that this variant causes decreased TUFM protein expression, leading to mitochondrial dysfunction and impaired autophagy activation. Moreover, we found that mice with targeted Tufm variant recapitulated the phenotypes of human POI. Thus, this is the first report of a homozygous pathogenic TUFM variant in POI. Our findings highlighted the essential role of mitochondrial genes in folliculogenesis and ovarian function maintenance.


Asunto(s)
Insuficiencia Ovárica Primaria , Adulto , Animales , Femenino , Humanos , Ratones , Consanguinidad , Homocigoto , Mitocondrias/genética , Mitocondrias/patología , Mutación , Insuficiencia Ovárica Primaria/patología
11.
J Med Genet ; 59(7): 710-718, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34348960

RESUMEN

BACKGROUND: Oligoasthenoteratozoospermia is a typical feature of sperm malformations leading to male infertility. Only a few genes have been clearly identified as pathogenic genes of oligoasthenoteratozoospermia. METHODS AND RESULTS: Here, we identified a homozygous frameshift variant (c.731dup, p.Asn244Lysfs*3) in CCDC34, which is preferentially expressed in the human testis, using whole-exome sequencing in a cohort of 100 Chinese men with multiple morphological abnormalities of the sperm flagella (MMAF). In an additional cohort of 167 MMAF-affected men from North Africa, Iran and France, we identified a second subject harbouring a homozygous CCDC34 frameshift variant (c.799_817del, p.Glu267Lysfs*72). Both affected men presented a typical MMAF phenotype with an abnormally low sperm concentration (ie, oligoasthenoteratozoospermia). Transmission electron microscopy analysis of the sperm flagella affected by CCDC34 deficiency further revealed dramatic disorganisation of the axoneme. Immunofluorescence assays of the spermatozoa showed that CCDC34 deficiency resulted in almost absent staining of CCDC34 and intraflagellar transport-B complex-associated proteins (such as IFT20 and IFT52). Furthermore, we generated a mouse Ccdc34 frameshift mutant using CRISPR-Cas9 technology. Ccdc34-mutated (Ccdc34mut/mut ) male mice were sterile and presented oligoasthenoteratozoospermia with typical MMAF anomalies. Intracytoplasmic sperm injection has good pregnancy outcomes in both humans and mice. CONCLUSIONS: Our findings support that CCDC34 is crucial to the formation of sperm flagella and that biallelic deleterious mutations in CCDC34/Ccdc34 cause male infertility with oligoasthenoteratozoospermia in humans and mice.


Asunto(s)
Astenozoospermia , Infertilidad Masculina , Proteínas de Neoplasias , Oligospermia , Animales , Antígenos de Neoplasias , Astenozoospermia/genética , Astenozoospermia/patología , Femenino , Humanos , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Masculino , Ratones , Mutación/genética , Proteínas de Neoplasias/genética , Oligospermia/genética , Oligospermia/patología , Embarazo , Semen , Espermatozoides/patología , Testículo/patología
12.
Hum Mol Genet ; 29(16): 2698-2707, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32716490

RESUMEN

Losing of ovarian functions prior to natural menopause age causes female infertility and early menopause. Premature ovarian insufficiency (POI) is defined as the loss of ovarian activity before 40 years of age. Known genetic causes account for 25-30% of POI cases, demonstrating the high genetic heterogeneity of POI and the necessity for further genetic explorations. Here we conducted genetic analyses using whole-exome sequencing in a Chinese non-syndromic POI family with the affected mother and at least four affected daughters. Intriguingly, a rare missense variant of BUB1B c.273A>T (p.Gln91His) was shared by all the cases in this family. Furthermore, our replication study using targeted sequencing revealed a novel stop-gain variant of BUB1B c.1509T>A (p.Cys503*) in one of 200 sporadic POI cases. Both heterozygous BUB1B variants were evaluated to be deleterious by multiple in silico tools. BUB1B encodes BUBR1, a crucial spindle assembly checkpoint component involved in cell division. BUBR1 insufficiency may induce vulnerability to oxidative stress. Therefore, we generated a mouse model with a loss-of-function mutant of Bub1b, and also employed D-galactose-induced aging assays for functional investigations. Notably, Bub1b+/- female mice presented late-onset subfertility, and they were more sensitive to oxidative stress than wild-type female controls, mimicking the clinical phenotypes of POI cases affected by deleterious BUB1B variants. Our findings in human cases and mouse models consistently suggest, for the first time, that heterozygous deleterious variants of BUB1B are involved in late-onset POI and related disorders.


Asunto(s)
Proteínas de Ciclo Celular/genética , Infertilidad Femenina/genética , Insuficiencia Ovárica Primaria/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , ADN Mitocondrial/genética , Femenino , Hormona Folículo Estimulante/genética , Humanos , Infertilidad Femenina/fisiopatología , Menopausia/genética , Menopausia/fisiología , Ratones , Ratones Noqueados , Mutación Missense/genética , Linaje , Fenotipo , Embarazo , Insuficiencia Ovárica Primaria/fisiopatología , Síndrome de Turner/genética , Síndrome de Turner/fisiopatología , Secuenciación del Exoma
13.
Am J Hum Genet ; 105(6): 1168-1181, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31735294

RESUMEN

As a type of severe asthenoteratospermia, multiple morphological abnormalities of the flagella (MMAF) are characterized by the presence of immotile spermatozoa with severe flagellar malformations. MMAF is a genetically heterogeneous disorder, and the known MMAF-associated genes can only account for approximately 60% of human MMAF cases. Here we conducted whole-exome sequencing and identified bi-allelic truncating mutations of the TTC29 (tetratricopeptide repeat domain 29) gene in three (3.8%) unrelated cases from a cohort of 80 MMAF-affected Han Chinese men. TTC29 is preferentially expressed in the testis, and TTC29 protein contains the tetratricopeptide repeat domains that play an important role in cilia- and flagella-associated functions. All of the men harboring TTC29 mutations presented a typical MMAF phenotype and dramatic disorganization in axonemal and/or other peri-axonemal structures. Immunofluorescence assays of spermatozoa from men harboring TTC29 mutations showed deficiency of TTC29 and remarkably reduced staining of intraflagellar-transport-complex-B-associated proteins (TTC30A and IFT52). We also generated a Ttc29-mutated mouse model through the use of CRISPR-Cas9 technology. Remarkably, Ttc29-mutated male mice also presented reduced sperm motility, abnormal flagellar ultrastructure, and male subfertility. Furthermore, intracytoplasmic sperm injections performed for Ttc29-mutated mice and men harboring TTC29 mutations consistently acquired satisfactory outcomes. Collectively, our experimental observations in humans and mice suggest that bi-allelic mutations in TTC29, as an important genetic pathogeny, can induce MMAF-related asthenoteratospermia. Our study also provided effective guidance for clinical diagnosis and assisted reproduction treatments.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores de Tumor , Estudios de Casos y Controles , Terapia Combinada , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis Linfática , Masculino , Ratones , Persona de Mediana Edad , Invasividad Neoplásica , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Neoplasias/patología , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia
14.
Am J Hum Genet ; 104(4): 738-748, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30929735

RESUMEN

Male infertility is a major concern affecting human reproductive health. Asthenoteratospermia can cause male infertility through reduced motility and abnormal morphology of spermatozoa. Several genes, including DNAH1 and some CFAP family members, are involved in multiple morphological abnormalities of the sperm flagella (MMAF). However, these known genes only account for approximately 60% of human MMAF cases. Here, we conducted further genetic analyses by using whole-exome sequencing in a cohort of 65 Han Chinese men with MMAF. Intriguingly, bi-allelic mutations of TTC21A (tetratricopeptide repeat domain 21A) were identified in three (5%) unrelated, MMAF-affected men, including two with homozygous stop-gain mutations and one with compound heterozygous mutations of TTC21A. Notably, these men consistently presented with MMAF and additional abnormalities of sperm head-tail conjunction. Furthermore, a homozygous TTC21A splicing mutation was identified in two Tunisian cases from an independent MMAF cohort. TTC21A is preferentially expressed in the testis and encodes an intraflagellar transport (IFT)-associated protein that possesses several tetratricopeptide repeat domains that perform functions crucial for ciliary function. To further investigate the potential roles of TTC21A in spermatogenesis, we generated Ttc21a mutant mice by using CRISPR-Cas9 technology and revealed sperm structural defects of the flagella and the connecting piece. Our consistent observations across human populations and in the mouse model strongly support the notion that bi-allelic mutations in TTC21A can induce asthenoteratospermia with defects of the sperm flagella and head-tail conjunction.


Asunto(s)
Infertilidad Masculina/genética , Proteínas Asociadas a Microtúbulos/genética , Mutación , Espermatozoides/anomalías , Alelos , Empalme Alternativo , Animales , Sistemas CRISPR-Cas , China , Exoma , Flagelos/patología , Homocigoto , Humanos , Masculino , Ratones , Fenotipo , Motilidad Espermática , Secuenciación del Exoma
15.
Plant J ; 103(6): 2151-2167, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32573846

RESUMEN

For decades, genetic engineering approaches to produce unusual fatty acids (UFAs) in crops has reached a bottleneck, including reduced seed oil production and seed vigor. Currently, plant models in the field of research are primarily used to investigate defects in oil production and seedling development, while the role of UFAs in embryonic developmental defects remains unknown. In this study, we developed a transgenic Arabidopsis plant model, in which the embryo exhibits severely wrinkled appearance owing to α-linolenic acid (ALA) accumulation. RNA-sequencing analysis in the defective embryo suggested that brassinosteroid synthesis, FA synthesis and photosynthesis were inhibited, while FA degradation, endoplasmic reticulum stress and oxidative stress were activated. Lipidomics analysis showed that ultra-accumulated ALA is released from phosphatidylcholine as a free FA in cells, inducing severe endoplasmic reticulum and oxidative stress. Furthermore, we identified that overexpression of lysophosphatidic acid acyltransferase 2 rescued the defective phenotype. In the rescue line, the pool capacity of the Kennedy pathway was increased, and the esterification of ALA indirectly to triacylglycerol was enhanced to avoid stress. This study provides a plant model that aids in understanding the molecular mechanism of embryonic developmental defects and generates strategies to produce higher levels of UFAs.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Semillas/metabolismo , Ácido alfa-Linolénico/metabolismo , Arabidopsis/crecimiento & desarrollo , Brassicaceae/enzimología , Brassicaceae/genética , Brassicaceae/metabolismo , Brasinoesteroides/metabolismo , Estrés del Retículo Endoplásmico , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/metabolismo , Estrés Oxidativo , Fotosíntesis , Plantas Modificadas Genéticamente , Semillas/crecimiento & desarrollo
16.
J Med Genet ; 57(1): 31-37, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31048344

RESUMEN

BACKGROUND: Male infertility due to multiple morphological abnormalities of the sperm flagella (MMAF) is a genetically heterogeneous disorder. Previous studies revealed several MMAF-associated genes, which account for approximately 60% of human MMAF cases. The pathogenic mechanisms of MMAF remain to be illuminated. METHODS AND RESULTS: We conducted genetic analyses using whole-exome sequencing in 50 Han Chinese probands with MMAF. Two homozygous stop-gain variants (c.910C>T (p.Arg304*) and c.3400delA (p.Ile1134Serfs*13)) of the SPEF2 (sperm flagellar 2) gene were identified in two unrelated consanguineous families. Consistently, an Iranian subject from another cohort also carried a homozygous SPEF2 stop-gain variant (c.3240delT (p.Phe1080Leufs*2)). All these variants affected the long SPEF2 transcripts that are expressed in the testis and encode the IFT20 (intraflagellar transport 20) binding domain, important for sperm tail development. Notably, previous animal studies reported spontaneous mutations of SPEF2 causing sperm tail defects in bulls and pigs. Our further functional studies using immunofluorescence assays showed the absence or a remarkably reduced staining of SPEF2 and of the MMAF-associated CFAP69 protein in the spermatozoa from SPEF2-affected subjects. CONCLUSIONS: We identified SPEF2 as a novel gene for human MMAF across the populations. Functional analyses suggested that the deficiency of SPEF2 in the mutated subjects could alter the localisation of other axonemal proteins.


Asunto(s)
Proteínas de Ciclo Celular/genética , Homocigoto , Infertilidad Masculina/genética , Mutación , Cola del Espermatozoide/metabolismo , China , Análisis Mutacional de ADN , Humanos , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Irán , Masculino , Linaje , Cola del Espermatozoide/patología , Cola del Espermatozoide/ultraestructura , Secuenciación del Exoma
17.
Am J Hum Genet ; 100(6): 854-864, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28552195

RESUMEN

Sperm motility is vital to human reproduction. Malformations of sperm flagella can cause male infertility. Men with multiple morphological abnormalities of the flagella (MMAF) have abnormal spermatozoa with absent, short, coiled, bent, and/or irregular-caliber flagella, which impair sperm motility. The known human MMAF-associated genes, such as DNAH1, only account for fewer than 45% of affected individuals. Pathogenic mechanisms in the genetically unexplained MMAF remain to be elucidated. Here, we conducted genetic analyses by using whole-exome sequencing and genome-wide comparative genomic hybridization microarrays in a multi-center cohort of 30 Han Chinese men affected by MMAF. Among them, 12 subjects could not be genetically explained by any known MMAF-associated genes. Intriguingly, we identified compound-heterozygous mutations in CFAP43 in three subjects and a homozygous frameshift mutation in CFAP44 in one subject. All of these recessive mutations were parentally inherited from heterozygous carriers but were absent in 984 individuals from three Han Chinese control populations. CFAP43 and CFAP44, encoding two cilia- and flagella-associated proteins (CFAPs), are specifically or preferentially expressed in the testis. Using CRISPR/Cas9 technology, we generated two knockout models each deficient in mouse ortholog Cfap43 or Cfap44. Notably, both Cfap43- and Cfap44-deficient male mice presented with MMAF phenotypes, whereas the corresponding female mice were fertile. Our experimental observations on human subjects and animal models strongly suggest that biallelic mutations in either CFAP43 or CFAP44 can cause sperm flagellar abnormalities and impair sperm motility. Further investigations on other CFAP-encoding genes in more genetically unexplained MMAF-affected individuals could uncover novel mechanisms underlying sperm flagellar formation.


Asunto(s)
Alelos , Proteínas del Citoesqueleto/genética , Infertilidad Masculina/genética , Mutación/genética , Cola del Espermatozoide/patología , Animales , Secuencia de Bases , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones Endogámicos C57BL , Fenotipo , Semen/metabolismo , Cola del Espermatozoide/ultraestructura
18.
J Therm Biol ; 90: 102573, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32479380

RESUMEN

Various environmental factors affect livestock production but heat stress is a major challenge in the poultry farming. Poultry exposes to high temperature alters blood immunological parameters and liver enzymatic function which in turn, suppress the immunity and disease resistance of chickens. Thus, the purpose of present study was to explore the effect of dietary curcumin supplementation on blood immunological biomarker and liver enzymatic activity of laying hens under heat stress conditions. Experimental groups contained two control groups (normal temperature control (NC) and heat stress control (HC) and 3 heat stress curcumin treatment groups (HT100, HT200 and HT300). Hens in HC group with basal diet and heat stress curcumin treatment groups were exposed 6 h/day heat stress (32 ± 1 °C) from 10:00 a.m. to 16:00 p.m. for 9 week. The results of present study showed that heat stressed curcumin treatment group had improved liver weight, WBC values and immunoglobulin level as compared to untreated HC and NC groups. The available results also indicated that laying hens supplemented with curcumin under high temperature conditions had reduced H/L ratio, serum corticosterone levels, inflammatory cytokines response and liver enzymatic activity (ALT) which enhanced the immunity of laying hens under hot climatic conditions. Therefore, it is concluded that curcumin has ability to combat harsh environmental conditions which can be used as anti-inflammatory and immune booster feed additive in the poultry nutrition.


Asunto(s)
Antiinflamatorios/uso terapéutico , Pollos , Curcumina/uso terapéutico , Suplementos Dietéticos , Trastornos de Estrés por Calor/dietoterapia , Factores Inmunológicos/uso terapéutico , Enfermedades de las Aves de Corral/dietoterapia , Alanina Transaminasa/sangre , Animales , Pollos/sangre , Pollos/inmunología , Pollos/metabolismo , Corticosterona/sangre , Citocinas/sangre , Femenino , Trastornos de Estrés por Calor/inmunología , Trastornos de Estrés por Calor/metabolismo , Trastornos de Estrés por Calor/veterinaria , Respuesta al Choque Térmico/efectos de los fármacos , Respuesta al Choque Térmico/inmunología , Calor/efectos adversos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Recuento de Leucocitos , Hígado/efectos de los fármacos , Hígado/enzimología , Enfermedades de las Aves de Corral/sangre , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/metabolismo
19.
Hum Genet ; 138(11-12): 1227-1236, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31535215

RESUMEN

Premature ovarian insufficiency (POI) is a major cause of reduced female fertility and affects approximately 1% women under 40 years of age. Recent advances emphasize the genetic heterogeneity of POI. Fanconi anemia (FA) genes, traditionally known for their essential roles in DNA repair and cytogenetic instability, have been demonstrated to be involved in meiosis and germ cell development. Here, we conducted whole-exome sequencing (WES) in 50 Han Chinese female patients with POI. Rare missense variants were identified in FANCA (Fanconi anemia complementation group A): c.1772G > A (p.R591Q) and c.3887A > G (p.E1296G). Both variants are heterozygous in the patients and very rare in the human population. In vitro functional studies further demonstrated that these two missense variants of FANCA exhibited reduced protein expression levels compared with the wild type, suggesting the partial loss of function. Moreover, mono-ubiquitination levels of FANCD2 upon mitomycin C stimulation were significantly reduced in cells overexpressing FANCA variants. Furthermore, a loss-of-function mutation of Fanca was generated in C57BL/6 mice for in vivo functional assay. Consistently, heterozygous mutated female mice (Fanca+/-) showed reduced fertility and declined numbers of follicles with aging when compared with the wild-type female mice. Collectively, our results suggest that heterozygous pathogenic variants in FANCA are implicated in non-syndromic POI in Han Chinese women, provide new insights into the molecular mechanisms of POI and highlight the contribution of FANCA variants in female subfertility.


Asunto(s)
Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Infertilidad Femenina/etiología , Mutación , Folículo Ovárico/patología , Insuficiencia Ovárica Primaria/genética , Insuficiencia Ovárica Primaria/patología , Adulto , Animales , Femenino , Heterocigoto , Humanos , Infertilidad Femenina/patología , Ratones , Ratones Endogámicos C57BL , Folículo Ovárico/metabolismo , Ubiquitinación
20.
J Hum Genet ; 64(1): 49-54, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30310178

RESUMEN

Multiple morphological abnormalities of flagella (MMAF) are human reproduction disorders due to the dysplastic development of sperm flagella. The spermatozoa of men with MMAF manifest absent, short, coiled, bent, and/or irregular-caliber flagella. Previous studies revealed genetic contributions to human MMAF, but known MMAF-associated genes only explained approximately 50% MMAF cases. In this study, we employed human whole-exome sequencing for genetic analysis and identified biallelic mutations of CFAP251 (cilia- and flagella-associated protein 251, also known as WDR66) in three (5%) of 65 Han Chinese men with MMAF. All these CFAP251 mutations are loss-of-function. The population genome data suggested that these CFAP251 mutations are extremely rare (only heterozygous) or absent from human populations. Our functional assays of gene expression and immunofluorescence staining in a CFAP251-deficient man, together with previous experimental evidence from model organisms, suggested that CFAP251 is involved in flagellar functions. Our observations suggested that CFAP251 is associated with sperm flagellar development and human male infertility.


Asunto(s)
Proteínas de Unión al Calcio/genética , Homocigoto , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Mutación , Cola del Espermatozoide/patología , Femenino , Humanos , Masculino , Linaje , Pronóstico , Cola del Espermatozoide/metabolismo , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA