Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 165(6): 1454-1466, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27212239

RESUMEN

Maintaining homeostasis of Ca(2+) stores in the endoplasmic reticulum (ER) is crucial for proper Ca(2+) signaling and key cellular functions. The Ca(2+)-release-activated Ca(2+) (CRAC) channel is responsible for Ca(2+) influx and refilling after store depletion, but how cells cope with excess Ca(2+) when ER stores are overloaded is unclear. We show that TMCO1 is an ER transmembrane protein that actively prevents Ca(2+) stores from overfilling, acting as what we term a "Ca(2+) load-activated Ca(2+) channel" or "CLAC" channel. TMCO1 undergoes reversible homotetramerization in response to ER Ca(2+) overloading and disassembly upon Ca(2+) depletion and forms a Ca(2+)-selective ion channel on giant liposomes. TMCO1 knockout mice reproduce the main clinical features of human cerebrofaciothoracic (CFT) dysplasia spectrum, a developmental disorder linked to TMCO1 dysfunction, and exhibit severe mishandling of ER Ca(2+) in cells. Our findings indicate that TMCO1 provides a protective mechanism to prevent overfilling of ER stores with Ca(2+) ions.


Asunto(s)
Canales de Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Secuencia de Aminoácidos , Animales , Ataxia/genética , Células COS , Calcio/metabolismo , Canales de Calcio/genética , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Discapacidad Intelectual/genética , Membranas Intracelulares/metabolismo , Ratones , Ratones Noqueados , Osteogénesis/genética , Alineación de Secuencia
2.
Mol Cell ; 82(7): 1297-1312.e8, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35219381

RESUMEN

Synthetic lethality through combinatorial targeting DNA damage response (DDR) pathways provides exciting anticancer therapeutic benefit. Currently, the long noncoding RNAs (lncRNAs) have been implicated in tumor drug resistance; however, their potential significance in DDR is still largely unknown. Here, we report that a human lncRNA, CTD-2256P15.2, encodes a micropeptide, named PAR-amplifying and CtIP-maintaining micropeptide (PACMP), with a dual function to maintain CtIP abundance and promote poly(ADP-ribosyl)ation. PACMP not only prevents CtIP from ubiquitination through inhibiting the CtIP-KLHL15 association but also directly binds DNA damage-induced poly(ADP-ribose) chains to enhance PARP1-dependent poly(ADP-ribosyl)ation. Targeting PACMP alone inhibits tumor growth by causing a synthetic lethal interaction between CtIP and PARP inhibitions and confers sensitivity to PARP/ATR/CDK4/6 inhibitors, ionizing radiation, epirubicin, and camptothecin. Our findings reveal that a lncRNA-derived micropeptide regulates cancer progression and drug resistance by modulating DDR, whose inhibition could be employed to augment the existing anticancer therapeutic strategies.


Asunto(s)
Endodesoxirribonucleasas , Neoplasias , Péptidos , Poli ADP Ribosilación , ARN Largo no Codificante , Reparación del ADN , Endodesoxirribonucleasas/metabolismo , Humanos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Péptidos/farmacología , Poli Adenosina Difosfato Ribosa/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35121659

RESUMEN

Ca2+ release from the endoplasmic reticulum (ER) is an essential event in the modulation of Ca2+ homeostasis, which is coordinated by multiple biological processes, ranging from cell proliferation to apoptosis. Deregulated Ca2+ homeostasis is linked with various cancer hallmarks; thus, uncovering the mechanisms underlying Ca2+ homeostasis dynamics may lead to new anticancer treatment strategies. Here, we demonstrate that a reported Ca2+-channel protein TMCO1 (transmembrane and coiled-coil domains 1) is overexpressed in colon cancer tissues at protein levels but not at messenger RNA levels in colon cancer. Further study revealed that TMCO1 is a substrate of ER-associated degradation E3 ligase Gp78. Intriguingly, Gp78-mediated TMCO1 degradation at K186 is under the control of the iASPP (inhibitor of apoptosis-stimulating protein of p53) oncogene. Mechanistically, iASPP robustly reduces ER Ca2+ stores, mainly by competitively binding with Gp78 and interfering with Gp78-mediated TMCO1 degradation. A positive correlation between iASPP and TMCO1 proteins is further validated in human colon tissues. Inhibition of iASPP-TMCO1 axis promotes cytosolic Ca2+ overload-induced apoptotic cell death, reducing tumor growth both in vitro and in vivo. Thus, iASPP-TMCO1 represents a promising anticancer treatment target by modulating Ca2+ homeostasis.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Proliferación Celular/fisiología , Resistencia a Medicamentos/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo , Proteínas Represoras/metabolismo , Animales , Apoptosis/fisiología , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico/fisiología , Células HCT116 , Células HT29 , Homeostasis , Humanos , Ratones , Ratones Desnudos
4.
J Biol Chem ; 298(5): 101861, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35339488

RESUMEN

DNA polymerase eta (Pol η) is a eukaryotic member of the Y-family of DNA polymerase involved in translesion DNA synthesis and genome mutagenesis. Recently, several translesion DNA synthesis polymerases have been found to function in repair of DNA double-strand breaks (DSBs). However, the role of Pol η in promoting DSB repair remains to be well defined. Here, we demonstrated that Pol η could be targeted to etoposide (ETO)-induced DSBs and that depletion of Pol η in cells causes increased sensitivity to ETO. Intriguingly, depletion of Pol η also led to a nonhomologous end joining repair defect in a catalytic activity-independent manner. We further identified the scaffold protein Kap1 as a novel interacting partner of Pol η, the depletion of which resulted in impaired formation of Pol η and Rad18 foci after ETO treatment. Additionally, overexpression of Kap1 failed to restore Pol η focus formation in Rad18-deficient cells after ETO treatment. Interestingly, we also found that Kap1 bound to Rad18 in a Pol η-dependent manner, and moreover, depletion of Kap1 led to a significant reduction in Rad18-Pol η association, indicating that Kap1 forms a ternary complex with Rad18 and Pol η to stabilize Rad18-Pol η association. Our findings demonstrate that Kap1 could regulate the role of Pol η in ETO-induced DSB repair via facilitating Rad18 recruitment and stabilizing Rad18-Pol η association.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN , ADN Polimerasa Dirigida por ADN , Ubiquitina-Proteína Ligasas , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Etopósido/farmacología , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/metabolismo
6.
Nucleic Acids Res ; 46(9): 4560-4574, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29590477

RESUMEN

Translesion DNA synthesis (TLS) is one mode of DNA damage tolerance that uses specialized DNA polymerases to replicate damaged DNA. DNA polymerase η (Polη) is well known to facilitate TLS across ultraviolet (UV) irradiation and mutations in POLH are implicated in skin carcinogenesis. However, the basis for recruitment of Polη to stalled replication forks is not completely understood. In this study, we used an affinity purification approach to isolate a Polη-containing complex and have identified SART3, a pre-mRNA splicing factor, as a critical regulator to modulate the recruitment of Polη and its partner RAD18 after UV exposure. We show that SART3 interacts with Polη and RAD18 via its C-terminus. Moreover, SART3 can form homodimers to promote the Polη/RAD18 interaction and PCNA monoubiquitination, a key event in TLS. Depletion of SART3 also impairs UV-induced single-stranded DNA (ssDNA) generation and RPA focus formation, resulting in an impaired Polη recruitment and a higher mutation frequency and hypersensitivity after UV treatment. Notably, we found that several SART3 missense mutations in cancer samples lessen its stimulatory effect on PCNA monoubiquitination. Collectively, our findings establish SART3 as a novel Polη/RAD18 association regulator that protects cells from UV-induced DNA damage, which functions in a RNA binding-independent fashion.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Daño del ADN , ADN/biosíntesis , Proteínas de Unión al ARN/metabolismo , Secuencias de Aminoácidos , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Línea Celular , ADN de Cadena Simple/biosíntesis , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Mutación Missense , Neoplasias/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Multimerización de Proteína , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteína de Replicación A/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Rayos Ultravioleta
7.
Biochem Biophys Res Commun ; 512(4): 914-920, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-30929916

RESUMEN

In eukaryotic cells, Endoplasmic Reticulum (ER) is an interconnected membranous organelle and plays important roles in protein synthesis and lipid metabolism. We have previously demonstrated that TMCO1 is an ER Ca2+ channel actively preventing ER Ca2+ overloading. Recently, we also found that TMCO1 deficiency in mouse granulosa cells (GCs) caused abnormal Ca2+ signaling, ER stress and enhanced reactive oxygen species (ROS). In this study, we further examined the roles of TMCO1 in lipid metabolism and mitochondrial functions. Intriguingly, we found that TMCO1 deletion reduced the number of lipid droplets (LDs) and the content of triglyceride (TG), which was due to ER stress associated degradation (ERAD) of the important enzyme in catalyzing TG synthesis, diacylglycerol acyltransferase 2 (DGAT2). Hypofunction in transforming non-esterification fatty acid (NEFA) to TG caused NEFA deposit, a potential risk of mitochondrial dysfunction. Furthermore, in TMCO1 deficient cells, mitochondria volume decreased and inefficient oxidative phosphorylation was detected, which underlined enhanced mitophagy and impaired mitochondrial functions. Taken these data together, we for the first time revealed the role of TMCO1 in regulating lipid-metabolism and mitochondrial function. This study may provide new insights into understanding TMCO1 defect syndrome.


Asunto(s)
Canales de Calcio/metabolismo , Diacilglicerol O-Acetiltransferasa/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Mitocondrias/metabolismo , Animales , Canales de Calcio/genética , Ácidos Grasos/metabolismo , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Gotas Lipídicas/metabolismo , Ratones Noqueados , Mitocondrias/patología , Mitofagia/genética , Consumo de Oxígeno , Triglicéridos/metabolismo
8.
PLoS Biol ; 14(11): e2000733, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27851749

RESUMEN

As a deubiquitinating enzyme (DUB), the physiological substrates of ataxin-3 (ATX-3) remain elusive, which limits our understanding of its normal cellular function and that of pathogenic mechanism of spinocerebellar ataxia type 3 (SCA3). Here, we identify p53 to be a novel substrate of ATX-3. ATX-3 binds to native and polyubiquitinated p53 and deubiquitinates and stabilizes p53 by repressing its degradation through the ubiquitin (Ub)-proteasome pathway. ATX-3 deletion destabilizes p53, resulting in deficiency of p53 activity and functions, whereas ectopic expression of ATX-3 induces selective transcription/expression of p53 target genes and promotes p53-dependent apoptosis in both mammalian cells and the central nervous system of zebrafish. Furthermore, the polyglutamine (polyQ)-expanded ATX-3 retains enhanced interaction and deubiquitination catalytic activity to p53 and causes more severe p53-dependent neurodegeneration in zebrafish brains and in the substantia nigra pars compacta (SNpc) or striatum of a transgenic SCA3 mouse model. Our findings identify a novel molecular link between ATX-3 and p53-mediated cell death and provide an explanation for the direct involvement of p53 in SCA3 disease pathogenesis.


Asunto(s)
Apoptosis , Ataxina-3/metabolismo , Enfermedad de Machado-Joseph/enzimología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Ratones , Estabilidad Proteica
9.
Nucleic Acids Res ; 45(8): 4532-4549, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28180282

RESUMEN

The Chk1 protein is essential for genome integrity maintenance and cell survival in eukaryotic cells. After prolonged replication stress, Chk1 can be targeted for proteasomal degradation to terminate checkpoint signaling after DNA repair finishes. To ensure proper activation of DNA damage checkpoint and DNA repair signaling, a steady-state level of Chk1 needs to be retained under physiological conditions. Here, we report a dynamic signaling pathway that tightly regulates Chk1 stability. Under unperturbed conditions and upon DNA damage, ataxin-3 (ATX3) interacts with Chk1 and protects it from DDB1/CUL4A- and FBXO6/CUL1-mediated polyubiquitination and subsequent degradation, thereby promoting DNA repair and checkpoint signaling. Under prolonged replication stress, ATX3 dissociates from Chk1, concomitant with a stronger binding between Chk1 and its E3 ligase, which causes Chk1 proteasomal degradation. ATX3 deficiency results in pronounced reduction of Chk1 abundance, compromised DNA damage response, G2/M checkpoint defect and decreased cell survival after replication stress, which can all be rescued by ectopic expression of ATX3. Taken together, these findings reveal ATX3 to be a novel deubiquitinase of Chk1, providing a new mechanism of Chk1 stabilization in genome integrity maintenance.


Asunto(s)
Ataxina-3/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Reparación del ADN , Replicación del ADN , ADN/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Proteínas Represoras/genética , Ataxina-3/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , ADN/metabolismo , Daño del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genoma Humano , Inestabilidad Genómica , Células HEK293 , Humanos , Estabilidad Proteica , Proteolisis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal , Ubiquitinación
10.
Nucleic Acids Res ; 45(22): 12862-12876, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29140459

RESUMEN

DNA damage response (DDR) is essential for genome stability and human health. Recently, several RNA binding proteins (RBPs), including fused-in-sarcoma (FUS), have been found unexpectedly to modulate this process. The role of FUS in DDR is closely linked to the pathogenesis of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. Given that RBM45 is also an ALS-associated RBP, we wondered whether RBM45 plays any function during this process. Here, we report that RBM45 can be recruited to laser microirradiation-induced DNA damage sites in a PAR- and FUS-dependent manner, but in a RNA-independent fashion. Depletion of RBM45 leads to abnormal DDR signaling and decreased efficiency in DNA double-stranded break repair. Interestingly, RBM45 is found to compete with histone deacetylase 1 (HDAC1) for binding to FUS, thereby regulating the recruitment of HDAC1 to DNA damage sites. A common familial ALS-associated FUS mutation (FUS-R521C) is revealed to prefer to cooperate with RBM45 than HDAC1. Our findings suggest that RBM45 is a key regulator in FUS-related DDR signaling whose dysfunction may contribute to the pathogenesis of ALS.


Asunto(s)
Daño del ADN , Histona Desacetilasa 1/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Unión Competitiva , Línea Celular Tumoral , Reparación del ADN , Células HEK293 , Células HeLa , Histona Desacetilasa 1/genética , Humanos , Mutación , Proteínas del Tejido Nervioso/genética , Unión Proteica , Interferencia de ARN , Proteína FUS de Unión a ARN/genética , Proteínas de Unión al ARN/genética , Transducción de Señal/genética
11.
J Cell Sci ; 129(3): 492-501, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26659666

RESUMEN

Human Huntingtin (HTT), a Huntington's disease gene, is highly expressed in the mammalian brain and testis. Simultaneous knockout of mouse Huntingtin (Htt) in brain and testis impairs male fertility, providing evidence for a link between Htt and spermatogenesis; however, the underlying mechanism remains unclear. To understand better the function of Htt in spermatogenesis, we restricted the genetic deletion specifically to the germ cells using the Cre/loxP site-specific recombination strategy and found that the resulting mice manifested smaller testes, azoospermia and complete male infertility. Meiotic chromosome spread experiments showed that the process of meiosis was normal in the absence of Htt. Notably, we found that Htt-deficient round spermatids did not progress beyond step 3 during the post-meiotic phase, when round spermatids differentiate into mature spermatozoa. Using an iTRAQ-based quantitative proteomic assay, we found that knockout of Htt significantly altered the testis protein profile. The differentially expressed proteins exhibited a remarkable enrichment for proteins involved in translation regulation and DNA packaging, suggesting that Htt might play a role in spermatogenesis by regulating translation and DNA packaging in the testis.


Asunto(s)
Mutación de Línea Germinal/genética , Infertilidad Masculina/genética , Eliminación de Secuencia/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Espermatogénesis/genética , Animales , ADN/genética , Infertilidad Masculina/metabolismo , Masculino , Meiosis/genética , Ratones , Proteómica/métodos , Espermátides/metabolismo , Testículo/metabolismo
12.
Biochim Biophys Acta Proteins Proteom ; 1866(3): 464-472, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29196234

RESUMEN

Environmental stresses are important factors causing male infertility which attracts broad attention. Protein acetylation is a pivotal post-translational modification and modulates diverse physiological processes including spermatogenesis. In this study, we employed quantitative proteomic techniques and bioinformatics tools to analyze the alterations of acetylome profile of mouse testis after heat shock and X-irradiation. Overall, we identified 1139 lysine acetylation sites in 587 proteins in which 1020 lysine acetylation sites were quantified. The Gene Ontology analysis showed that the major acetylated protein groups were involved in generation of precursor metabolites and metabolic processes, and were localized predominantly in cytosolic and mitochondrial. Compared to the control group, 36 sites of 28 acetylated proteins have changed after heat shock, and 49 sites of 43 acetylated proteins for X-ray exposure. Some of the differentially acetylated proteins have been reported to be associated with the progression of spermatogenesis and male fertility. We observed the up-regulated acetylation level change on testis specific histone 2B and heat shock protein upon heat treatment and a sharp decline of acetylation level on histone H2AX under X-ray treatment, suggesting their roles in male germ cells. Notably, the acetylation level on K279 of histone acetyltransferase (Kat7) was down-regulated in both heat and X-ray treatments, indicating that K279 may be a key acetylated site and affect its functions in spermatogenesis. Our results reveal that protein acetylation might add another layer of complexity to the regulation for spermatogenesis, and further functional studies of these proteins will help us elucidate the mechanisms of abnormal spermatogenesis.


Asunto(s)
Calor , Lisina/metabolismo , Proteómica/métodos , Testículo/metabolismo , Testículo/efectos de la radiación , Acetilación/efectos de la radiación , Secuencia de Aminoácidos , Animales , Sitios de Unión , Biología Computacional , Respuesta al Choque Térmico/efectos de la radiación , Lisina/química , Masculino , Ratones Endogámicos C57BL , Modelos Moleculares , Dominios Proteicos , Proteoma/química , Proteoma/metabolismo , Espectrometría de Masas en Tándem
13.
PLoS Genet ; 11(7): e1005419, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26218421

RESUMEN

Premature ovarian failure (POF) is a rare, heterogeneous disorder characterized by cessation of menstruation occurring before the age of 40 years. Genetic etiology is responsible for perhaps 25% of cases, but most cases are sporadic and unexplained. In this study, through whole exome sequencing in a non-consanguineous family having four affected members with POF and Sanger sequencing in 432 sporadic cases, we identified three novel mutations in the fusion gene CSB-PGBD3. Subsequently functional studies suggest that mutated CSB-PGBD3 fusion protein was impaired in response to DNA damage, as indicated by delayed or absent recruitment to damaged sites. Our data provide the first evidence that mutations in the CSB-PGBD3 fusion protein can cause human disease, even in the presence of functional CSB, thus potentially explaining conservation of the fusion protein for 43 My since marmoset. The localization of the CSB-PGBD3 fusion protein to UVA-induced nuclear DNA repair foci further suggests that the CSB-PGBD3 fusion protein, like many other proteins that can cause POF, modulates or participates in DNA repair.


Asunto(s)
ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Reparación del ADN/genética , Menopausia Prematura/genética , Proteínas Mutantes Quiméricas/genética , Insuficiencia Ovárica Primaria/genética , Adulto , Anciano , Secuencia de Bases , Línea Celular Tumoral , Síndrome de Cockayne/genética , Daño del ADN/genética , Femenino , Células HEK293 , Células HeLa , Humanos , Persona de Mediana Edad , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas Recombinantes de Fusión/genética , Análisis de Secuencia de ADN
14.
Nucleic Acids Res ; 43(17): 8325-39, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26187992

RESUMEN

REV1 is a eukaryotic member of the Y-family of DNA polymerases involved in translesion DNA synthesis and genome mutagenesis. Recently, REV1 is also found to function in homologous recombination. However, it remains unclear how REV1 is recruited to the sites where homologous recombination is processed. Here, we report that loss of mammalian REV1 results in a specific defect in replication-associated gene conversion. We found that REV1 is targeted to laser-induced DNA damage stripes in a manner dependent on its ubiquitin-binding motifs, on RAD18, and on monoubiquitinated FANCD2 (FANCD2-mUb) that associates with REV1. Expression of a FANCD2-Ub chimeric protein in RAD18-depleted cells enhances REV1 assembly at laser-damaged sites, suggesting that FANCD2-mUb functions downstream of RAD18 to recruit REV1 to DNA breaks. Consistent with this suggestion we found that REV1 and FANCD2 are epistatic with respect to sensitivity to the double-strand break-inducer camptothecin. REV1 enrichment at DNA damage stripes also partially depends on BRCA1 and BRCA2, components of the FANCD2/BRCA supercomplex. Intriguingly, analogous to FANCD2-mUb and BRCA1/BRCA2, REV1 plays an unexpected role in protecting nascent replication tracts from degradation by stabilizing RAD51 filaments. Collectively these data suggest that REV1 plays multiple roles at stalled replication forks in response to replication stress.


Asunto(s)
Daño del ADN , Replicación del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/fisiología , Proteínas Nucleares/fisiología , Nucleotidiltransferasas/fisiología , Camptotecina/toxicidad , Línea Celular , ADN/metabolismo , Proteínas de Unión al ADN/fisiología , ADN Polimerasa Dirigida por ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Conversión Génica , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleotidiltransferasas/química , Nucleotidiltransferasas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estrés Fisiológico/genética , Inhibidores de Topoisomerasa I/toxicidad , Ubiquitina-Proteína Ligasas
15.
Proc Natl Acad Sci U S A ; 111(5): 1789-94, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24449898

RESUMEN

DNA polymerase κ (Polκ) is the only known Y-family DNA polymerase that bypasses the 10S (+)-trans-anti-benzo[a]pyrene diol epoxide (BPDE)-N(2)-deoxyguanine adducts efficiently and accurately. The unique features of Polκ, a large structure gap between the catalytic core and little finger domain and a 90-residue addition at the N terminus known as the N-clasp, may give rise to its special translesion capability. We designed and constructed two mouse Polκ variants, which have reduced gap size on both sides [Polκ Gap Mutant (PGM) 1] or one side flanking the template base (PGM2). These Polκ variants are nearly as efficient as WT in normal DNA synthesis, albeit with reduced accuracy. However, PGM1 is strongly blocked by the 10S (+)-trans-anti-BPDE-N(2)-dG lesion. Steady-state kinetic measurements reveal a significant reduction in efficiency of dCTP incorporation opposite the lesion by PGM1 and a moderate reduction by PGM2. Consistently, Polκ-deficient cells stably complemented with PGM1 GFP-Polκ remained hypersensitive to BPDE treatment, and complementation with WT or PGM2 GFP-Polκ restored BPDE resistance. Furthermore, deletion of the first 51 residues of the N-clasp in mouse Polκ (mPolκ(52-516)) leads to reduced polymerization activity, and the mutant PGM2(52-516) but not PGM1(52-516) can partially compensate the N-terminal deletion and restore the catalytic activity on normal DNA. However, neither WT nor PGM2 mPolκ(52-516) retains BPDE bypass activity. We conclude that the structural gap physically accommodates the bulky aromatic adduct and the N-clasp is essential for the structural integrity and flexibility of Polκ during translesion synthesis.


Asunto(s)
Benzopirenos/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxiguanosina/análogos & derivados , Proteínas Mutantes/metabolismo , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/farmacología , Animales , Benzo(a)pireno/química , Benzo(a)pireno/metabolismo , Benzopirenos/química , Biocatálisis/efectos de los fármacos , Cartilla de ADN/metabolismo , Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Embrión de Mamíferos/patología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Cinética , Ratones , Modelos Moleculares
16.
Biochem Biophys Res Commun ; 471(1): 142-8, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26827827

RESUMEN

Many DNA repair proteins can be recruited to DNA damage sites upon genotoxic stress. In order to search potential DNA repair proteins involved in cellular response to mitomycin C treatment, we utilized a quantitative proteome to uncover proteins that manifest differentially enrichment in the chromatin fraction after DNA damage. 397 proteins were identified, among which many factors were shown to be involved in chromatin modification and DNA repair by GO analysis. Specifically, methyl-CpG-binding domain protein 2 (MBD2) is revealed to be recruited to DNA damage sites after laser microirradiation, which was mediated through MBD domain and MBD2 C-terminus. Additionally, the recruitment of MBD2 is dependent on poly (ADP-ribose) and chromodomain helicase DNA-binding protein 4 (CHD4). Moreover, knockdown of MBD2 by CRISPR-Cas9 technique results in MMC sensitivity in mammalian cells.


Asunto(s)
Autoantígenos/metabolismo , Daño del ADN/fisiología , Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Mapeo Peptídico/métodos , Proteoma/metabolismo , Sitios de Unión , Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN/efectos de la radiación , Células HeLa , Humanos , Unión Proteica , Dosis de Radiación , Espectrometría de Masas en Tándem/métodos
17.
Hum Mol Genet ; 22(18): 3641-53, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23669348

RESUMEN

5-Hydroxymethylcytosine (5-hmC) may represent a new epigenetic modification of cytosine. While the dynamics of 5-hmC during neurodevelopment have recently been reported, little is known about its genomic distribution and function(s) in neurodegenerative diseases such as Huntington's disease (HD). We here observed a marked reduction of the 5-hmC signal in YAC128 (yeast artificial chromosome transgene with 128 CAG repeats) HD mouse brain tissues when compared with age-matched wild-type (WT) mice, suggesting a deficiency of 5-hmC reconstruction in HD brains during postnatal development. Genome-wide distribution analysis of 5-hmC further confirmed the diminishment of the 5-hmC signal in striatum and cortex in YAC128 HD mice. General genomic features of 5-hmC are highly conserved, not being affected by either disease or brain regions. Intriguingly, we have identified disease-specific (YAC128 versus WT) differentially hydroxymethylated regions (DhMRs), and found that acquisition of DhmRs in gene body is a positive epigenetic regulator for gene expression. Ingenuity pathway analysis (IPA) of genotype-specific DhMR-annotated genes revealed that alternation of a number of canonical pathways involving neuronal development/differentiation (Wnt/ß-catenin/Sox pathway, axonal guidance signaling pathway) and neuronal function/survival (glutamate receptor/calcium/CREB, GABA receptor signaling, dopamine-DARPP32 feedback pathway, etc.) could be important for the onset of HD. Our results indicate that loss of the 5-hmC marker is a novel epigenetic feature in HD, and that this aberrant epigenetic regulation may impair the neurogenesis, neuronal function and survival in HD brain. Our study also opens a new avenue for HD treatment; re-establishing the native 5-hmC landscape may have the potential to slow/halt the progression of HD.


Asunto(s)
Encéfalo/metabolismo , Cuerpo Estriado/metabolismo , Citosina/análogos & derivados , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , 5-Metilcitosina/análogos & derivados , Animales , Encéfalo/fisiopatología , Cuerpo Estriado/fisiopatología , Citosina/metabolismo , Metilación de ADN , Modelos Animales de Enfermedad , Epigenómica , Humanos , Enfermedad de Huntington/fisiopatología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN
18.
Nucleic Acids Res ; 41(22): 10312-22, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24038355

RESUMEN

Translesion DNA synthesis (TLS) can use specialized DNA polymerases to insert and/or extend nucleotides across lesions, thereby limiting stalled replication fork collapse and the potential for cell death. Recent studies have shown that monoubiquitinated proliferating cell nuclear antigen (PCNA) plays an important role in recruitment of Y-family TLS polymerases to stalled replication forks after DNA damage treatment. To explore the possible roles of other factors that regulate the ultraviolet (UV)-induced assembly of specialized DNA polymerases at arrested replication forks, we performed immunoprecipitation experiments combined with mass spectrometry and established that DNA polymerase kappa (Polκ) can partner with MSH2, an important mismatch repair protein associated with hereditary non-polyposis colorectal cancer. We found that depletion of MSH2 impairs PCNA monoubiquitination and the formation of foci containing Polκ and other TLS polymerases after UV irradiation of cells. Interestingly, expression of MSH2 in Rad18-deficient cells increased UV-induced Polκ and REV1 focus formation without detectable changes in PCNA monoubiquitination, indicating that MSH2 can regulate post-UV focus formation by specialized DNA polymerases in both PCNA monoubiquitination-dependent and -independent fashions. Moreover, we observed that MSH2 can facilitate TLS across cyclobutane pyrimidine dimers photoproducts in living cells, presenting a novel role of MSH2 in post-UV cellular responses.


Asunto(s)
Daño del ADN , ADN/biosíntesis , Proteína 2 Homóloga a MutS/fisiología , Rayos Ultravioleta , Animales , Línea Celular , Replicación del ADN , Proteínas de Unión al ADN/análisis , ADN Polimerasa Dirigida por ADN/análisis , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Ratones , Proteína 2 Homóloga a MutS/metabolismo , Nucleotidiltransferasas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Dímeros de Pirimidina/metabolismo , Proteína de Replicación A/análisis , Ubiquitina-Proteína Ligasas , Ubiquitinación
19.
J Biol Chem ; 288(5): 3070-84, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23250749

RESUMEN

Huntington disease (HD) is an inherited, fatal neurodegenerative disorder characterized by the progressive loss of striatal medium spiny neurons. Indications of oxidative stress are apparent in brain tissues from both HD patients and HD mouse models; however, the origin of this oxidant stress remains a mystery. Here, we used a yeast artificial chromosome transgenic mouse model of HD (YAC128) to investigate the potential connections between dysregulation of cytosolic Ca(2+) signaling and mitochondrial oxidative damage in HD cells. We found that YAC128 mouse embryonic fibroblasts exhibit a strikingly higher level of mitochondrial matrix Ca(2+) loading and elevated superoxide generation compared with WT cells, indicating that both mitochondrial Ca(2+) signaling and superoxide generation are dysregulated in HD cells. The excessive mitochondrial oxidant stress is critically dependent on mitochondrial Ca(2+) loading in HD cells, because blocking mitochondrial Ca(2+) uptake abolished elevated superoxide generation. Similar results were obtained using neurons from HD model mice and fibroblast cells from HD patients. More importantly, mitochondrial Ca(2+) loading in HD cells caused a 2-fold higher level of mitochondrial genomic DNA (mtDNA) damage due to the excessive oxidant generation. This study provides strong evidence to support a new causal link between dysregulated mitochondrial Ca(2+) signaling, elevated mitochondrial oxidant stress, and mtDNA damage in HD. Our results also indicate that reducing mitochondrial Ca(2+) uptake could be a therapeutic strategy for HD.


Asunto(s)
Señalización del Calcio , Daño del ADN/genética , ADN Mitocondrial/metabolismo , Genoma Mitocondrial/genética , Enfermedad de Huntington/patología , Mitocondrias/metabolismo , Superóxidos/metabolismo , Animales , Bradiquinina/farmacología , Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Embrión de Mamíferos/patología , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Glicina/análogos & derivados , Glicina/farmacología , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/patología , Neostriado/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Resorcinoles/farmacología
20.
PLoS Pathog ; 8(12): e1003086, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23308066

RESUMEN

Innate antiviral immunity is the first line of the host defense system that rapidly detects invading viruses. Mitochondria function as platforms for innate antiviral signal transduction in mammals through the adaptor protein, MAVS. Excessive activation of MAVS-mediated antiviral signaling leads to dysfunction of mitochondria and cell apoptosis that likely causes the pathogenesis of autoimmunity. However, the mechanism of how MAVS is regulated at mitochondria remains unknown. Here we show that the Cytochrome c Oxidase (CcO) complex subunit COX5B physically interacts with MAVS and negatively regulates the MAVS-mediated antiviral pathway. Mechanistically, we find that while activation of MAVS leads to increased ROS production and COX5B expression, COX5B down-regulated MAVS signaling by repressing ROS production. Importantly, our study reveals that COX5B coordinates with the autophagy pathway to control MAVS aggregation, thereby balancing the antiviral signaling activity. Thus, our study provides novel insights into the link between mitochondrial electron transport system and the autophagy pathway in regulating innate antiviral immunity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Complejo IV de Transporte de Electrones/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apoptosis , Proteína 5 Relacionada con la Autofagia , Western Blotting , Proliferación Celular , Células Cultivadas , Complejo IV de Transporte de Electrones/genética , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Inmunidad Innata , Inmunoprecipitación , Proteínas Asociadas a Microtúbulos/genética , Mitocondrias/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Unión Proteica , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Estomatitis Vesicular/genética , Estomatitis Vesicular/inmunología , Estomatitis Vesicular/virología , Virus de la Estomatitis Vesicular Indiana/genética , Virión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA