Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Stem Cells ; 41(10): 958-970, 2023 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-37539750

RESUMEN

The reparative potential of cardiac Lin-KIT+ (KIT) cells is influenced by their population, but identifying their markers is challenging due to changes in phenotype during in vitro culture. Resolving this issue requires uncovering cell heterogeneity and discovering new subpopulations. Single-cell RNA sequencing (scRNA-seq) can identify KIT cell subpopulations, their markers, and signaling pathways. We used 10× genomic scRNA-seq to analyze cardiac-derived cells from adult mice and found 3 primary KIT cell populations: KIT1, characterized by high-KIT expression (KITHI), represents a population of cardiac endothelial cells; KIT2, which has low-KIT expression (KITLO), expresses transcription factors such as KLF4, MYC, and GATA6, as well as genes involved in the regulation of angiogenic cytokines; KIT3, with moderate KIT expression (KITMOD), expresses the cardiac transcription factor MEF2C and mesenchymal cell markers such as ENG. Cell-cell communication network analysis predicted the presence of the 3 KIT clusters as signal senders and receivers, including VEGF, CXCL, and BMP signaling. Metabolic analysis showed that KIT1 has the low activity of glycolysis and oxidative phosphorylation (OXPHOS), KIT2 has high glycolytic activity, and KIT3 has high OXPHOS and fatty acid degradation activity, indicating distinct metabolic adaptations of the 3 KIT populations. Through the systemic infusion of KIT1 cells in a mouse model of myocardial infarction, we observed their involvement in promoting the formation of new micro-vessels. In addition, in vitro spheroid culture experiments demonstrated the cardiac differentiation capacity of KIT2 cells.


Asunto(s)
Células Endoteliales , Análisis de Expresión Génica de una Sola Célula , Ratones , Animales , Células Endoteliales/metabolismo , Diferenciación Celular/genética , Regulación de la Expresión Génica , Corazón , Factores de Transcripción/metabolismo
2.
FASEB J ; 36(3): e22177, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35142393

RESUMEN

Exosomes, key mediators of cell-cell communication, derived from type 2 diabetes mellitus (T2DM) exhibit detrimental effects. Exercise improves endothelial function in part via the secretion of exosomes into circulation. Extracellular superoxide dismutase (SOD3) is a major secretory copper (Cu) antioxidant enzyme that catalyzes the dismutation of O2•- to H2 O2 whose activity requires the Cu transporter ATP7A. However, the role of SOD3 in exercise-induced angiogenic effects of circulating plasma exosomes on endothelial cells (ECs) in T2DM remains unknown. Here, we show that both SOD3 and ATP7A proteins were present in plasma exosomes in mice, which was significantly increased after two weeks of volunteer wheel exercise. A single bout of exercise in humans also showed a significant increase in SOD3 and ATP7A protein expression in plasma exosomes. Plasma exosomes from T2DM mice significantly reduced angiogenic responses in human ECs or mouse skin wound healing models, which was associated with a decrease in ATP7A, but not SOD3 expression in exosomes. Exercise training in T2DM mice restored the angiogenic effects of T2DM exosomes in ECs by increasing ATP7A in exosomes, which was not observed in exercised T2DM/SOD3-/- mice. Furthermore, exosomes overexpressing SOD3 significantly enhanced angiogenesis in ECs by increasing local H2 O2  levels in a heparin-binding domain-dependent manner as well as restored defective wound healing and angiogenesis in T2DM or SOD3-/- mice. In conclusion, exercise improves the angiogenic potential of circulating exosomes in T2DM in a SOD3-dependent manner. Exosomal SOD3 may provide an exercise mimetic therapy that supports neovascularization and wound repair in cardiometabolic disease.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Exosomas/metabolismo , Neovascularización Fisiológica , Carrera , Superóxido Dismutasa/metabolismo , Animales , Células Cultivadas , ATPasas Transportadoras de Cobre/sangre , ATPasas Transportadoras de Cobre/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiología , Ejercicio Físico , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Condicionamiento Físico Animal/métodos , Ratas , Superóxido Dismutasa/sangre
3.
Adv Exp Med Biol ; 1418: 119-126, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37603276

RESUMEN

Skeletal muscle atrophy is a progressive chronic disease associated with various conditions, such as aging, cancer, and muscular dystrophy. Interleukin-6 (IL-6) is highly correlated with or plays a crucial role in inducing skeletal muscle atrophy. Extracellular vehicles (EVs), including exosomes, mediate cell-cell communication, and alterations in the genetic material contained in EVs during muscle atrophy may impair muscle cell signaling. Transplantation of muscle progenitor cell-derived EVs (MPC-EVs) is a promising approach for treating muscle diseases such as Duchenne muscular dystrophy (DMD). Moreover, stem cell-derived EVs with modification of microRNAs (e.g., miR-26 and miR-29) have been reported to attenuate muscle atrophy. Unbiased RNA-Seq analysis suggests that MPC-EVs may exert an inhibitory effect on IL-6 pathway. Here, we review the latest advances concerning the mechanisms of stem cell/progenitor cell-derived EVs in alleviating muscle atrophy, including anti-inflammatory and anti-fibrotic effects. We also discuss the clinical application of EVs in the treatment of muscle atrophy.


Asunto(s)
Exosomas , Vesículas Extracelulares , MicroARNs , Humanos , Interleucina-6 , Atrofia Muscular/terapia
4.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37569835

RESUMEN

The gene dystrophin is responsible for Duchenne muscular dystrophy (DMD), a grave X-linked recessive ailment that results in respiratory and cardiac failure. As the expression of dystrophin in muscle stem cells (MuSCs) is a topic of debate, there exists a limited understanding of its influence on the gene network of MuSCs. This study was conducted with the objective of investigating the effects of dystrophin on the regulatory network of genes in MuSCs. To comprehend the function of dystrophin in MuSCs from DMD, this investigation employed single-nuclei RNA sequencing (snRNA-seq) to appraise the transcriptomic profile of MuSCs obtained from the skeletal muscles of dystrophin mutant mice (DMDmut) and wild-type control mice. The study revealed that the dystrophin mutation caused the disruption of several long non-coding RNAs (lncRNAs), leading to the inhibition of MEG3 and NEAT1 and the upregulation of GM48099, GM19951, and GM15564. The Gene Ontology (GO) enrichment analysis of biological processes (BP) indicated that the dystrophin mutation activated the cell adhesion pathway in MuSCs, inhibited the circulatory system process, and affected the regulation of binding. The study also revealed that the metabolic pathway activity of MuSCs was altered. The metabolic activities of oxidative phosphorylation (OXPHOS) and glycolysis were elevated in MuSCs from DMDmut. In summary, this research offers novel insights into the disrupted gene regulatory program in MuSCs due to dystrophin mutation at the single-cell level.


Asunto(s)
Distrofia Muscular de Duchenne , Células Satélite del Músculo Esquelético , Ratones , Animales , Distrofia Muscular de Duchenne/metabolismo , Distrofina/genética , Distrofina/metabolismo , Redes Reguladoras de Genes , Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Análisis de Secuencia de ARN , Modelos Animales de Enfermedad
5.
Acta Pharmacol Sin ; 42(4): 529-535, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32601364

RESUMEN

Duchenne muscular dystrophy (DMD) is a progressive disease characterized by skeletal muscle atrophy, respiratory failure, and cardiomyopathy. Our previous studies have shown that transplantation with allogeneic myogenic progenitor-derived exosomes (MPC-Exo) can improve cardiac function in X-linked muscular dystrophy (Mdx) mice. In the present study we explored the molecular mechanisms underlying this beneficial effect. We quantified gene expression in the hearts of two strains of Mdx mice (D2.B10-DmdMdx/J and Utrntm1Ked-DmdMdx/J). Two days after MPC-Exo or control treatment, we performed unbiased next-generation RNA-sequencing to identify differentially expressed genes (DEGs) in treated Mdx hearts. Venn diagrams show a set of 780 genes that were ≥2-fold upregulated, and a set of 878 genes that were ≥2-fold downregulated, in both Mdx strains following MPC-Exo treatment as compared with control. Gene ontology (GO) and protein-protein interaction (PPI) network analysis showed that these DEGs were involved in a variety of physiological processes and pathways with a complex connection. qRT-PCR was performed to verify the upregulated ATP2B4 and Bcl-2 expression, and downregulated IL-6, MAPK8 and Wnt5a expression in MPC-Exo-treated Mdx hearts. Western blot analysis verified the increased level of Bcl-2 and decreased level of IL-6 protein in MPC-Exo-treated Mdx hearts compared with control treatment, suggesting that anti-apoptotic and anti-inflammatory effects might be responsible for heart function improvement by MPC-Exo. Based on these findings, we believed that these DEGs might be therapeutic targets that can be explored to develop new strategies for treating DMD.


Asunto(s)
Cardiomiopatías/terapia , Exosomas/trasplante , Distrofia Muscular de Duchenne/terapia , Miocardio/metabolismo , Animales , Cardiomiopatías/etiología , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Regulación hacia Abajo/fisiología , Perfilación de la Expresión Génica , Ontología de Genes , Masculino , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Mapas de Interacción de Proteínas , RNA-Seq , Regulación hacia Arriba/fisiología
6.
Circ Res ; 122(10): 1395-1408, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29618597

RESUMEN

RATIONALE: Vascular calcification (VC) is a marker of the severity of atherosclerotic disease. Hormones play important roles in regulating calcification; estrogen and parathyroid hormones exert opposing effects, the former alleviating VC and the latter exacerbating it. To date no treatment strategies have been developed to regulate clinical VC. OBJECTIVE: The objective of this study was to investigate the effect of growth hormone-releasing hormone (GHRH) and its agonist (GHRH-A) on the blocking of VC in a mouse model. METHODS AND RESULTS: Young adult osteoprotegerin-deficient mice were given daily subcutaneous injections of GHRH-A (MR409) for 4 weeks. Significant reductions in calcification of the aortas of MR409-treated mice were paralleled by markedly lower alkaline phosphatase activity and a dramatic reduction in the expression of transcription factors, including the osteogenic marker gene Runx2 and its downstream factors, osteonectin and osteocalcin. The mechanism of action of GHRH-A was dissected in smooth muscle cells isolated from human and mouse aortas. Calcification of smooth muscle cells induced by osteogenic medium was inhibited in the presence of GHRH or MR409, as evidenced by reduced alkaline phosphatase activity and Runx2 expression. Inhibition of calcification by MR409 was partially reversed by MIA602, a GHRH antagonist, or a GHRH receptor-selective small interfering RNA. Treatment with MR409 induced elevated cytosolic cAMP and its target, protein kinase A which in turn blocked nicotinamide adenine dinucleotide phosphate oxidase activity and reduced production of reactive oxygen species, thus blocking the phosphorylation of nuclear factor κB (p65), a key intermediate in the ligand of receptor activator for nuclear factor-κ B-Runx2/alkaline phosphatase osteogenesis program. A protein kinase A-selective small interfering RNA or the chemical inhibitor H89 abolished these beneficial effects of MR409. CONCLUSIONS: GHRH-A controls osteogenesis in smooth muscle cells by targeting cross talk between protein kinase A and nuclear factor κB (p65) and through the suppression of reactive oxygen species production that induces the Runx2 gene and alkaline phosphatase. Inflammation-mediated osteogenesis is thereby blocked. GHRH-A may represent a new pharmacological strategy to regulate VC.


Asunto(s)
Fragmentos de Péptidos/uso terapéutico , Calcificación Vascular/prevención & control , Fosfatasa Alcalina/biosíntesis , Fosfatasa Alcalina/genética , Animales , Aorta/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/biosíntesis , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Medios de Cultivo/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Hormona Liberadora de Hormona del Crecimiento , Trasplante de Corazón , Humanos , Isoquinolinas/farmacología , Ratones , Ratones Endogámicos C57BL , Osteogénesis , Osteoprotegerina/deficiencia , Fragmentos de Péptidos/farmacología , ARN Interferente Pequeño/genética , Receptores de Neuropéptido/antagonistas & inhibidores , Receptores de Neuropéptido/genética , Receptores de Hormona Reguladora de Hormona Hipofisaria/antagonistas & inhibidores , Receptores de Hormona Reguladora de Hormona Hipofisaria/genética , Sulfonamidas/farmacología , Factor de Transcripción ReIA/metabolismo , Calcificación Vascular/fisiopatología
7.
J Mol Cell Cardiol ; 133: 67-74, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31150734

RESUMEN

Myocardial ischemia/reperfusion (MI/R) causes loss of cardiomyocytes via oxidative stress-induced cardiomyocyte apoptosis. miR322, orthologous to human miR-424, was identified as an ischemia-induced angiogenic miRNA, but its cellular source and function in the setting of acute MI/R remains largely unknown. Using LacZ-tagged miR322 cluster reporter mice, we observed that vascular endothelial cells are the major cellular source of the miR322 cluster in adult hearts. Moreover, miR322 levels were significantly reduced in the heart at 24 h after MI/R injury. Intramyocardial injection of mimic-miR322 significantly diminished cardiac apoptosis (as determined by expression levels of active caspase 3 by Western blot analysis and immunostaining for TUNEL) and reduced infarct size by about 40%, in association with reduced FBXW7 and increased active Notch 1 levels in the ischemic hearts. FBXW7, which is an ubiquitin ligase that is crucial for activated Notch1 turnover, was identified as a direct target of miR322 via FBXW7 3'UTR reporter assay. Co-injection of FBXW7 plasmid with mimic-miR322 in ischemic hearts abolished the effect of mimic-miR322 to reduce apoptosis and infarct size in MI/R hearts. These data identify FBXW7 as a direct target of miR322 and suggest that miR322 could have potential therapeutic application for cardioprotection against ischemia/reperfusion-induced injury.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Regulación de la Expresión Génica , MicroARNs/genética , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Regiones no Traducidas 3' , Animales , Línea Celular , Modelos Animales de Enfermedad , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Técnica del Anticuerpo Fluorescente , Ratones , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Interferencia de ARN
8.
Int J Mol Sci ; 20(22)2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703292

RESUMEN

Cardiac mesenchymal stem cells (C-MSC) play a key role in maintaining normal cardiac function under physiological and pathological conditions. Glycolysis and mitochondrial oxidative phosphorylation predominately account for energy production in C-MSC. Dicer, a ribonuclease III endoribonuclease, plays a critical role in the control of microRNA maturation in C-MSC, but its role in regulating C-MSC energy metabolism is largely unknown. In this study, we found that Dicer knockout led to concurrent increase in both cell proliferation and apoptosis in C-MSC compared to Dicer floxed C-MSC. We analyzed mitochondrial oxidative phosphorylation by quantifying cellular oxygen consumption rate (OCR), and glycolysis by quantifying the extracellular acidification rate (ECAR), in C-MSC with/without Dicer gene deletion. Dicer gene deletion significantly reduced mitochondrial oxidative phosphorylation while increasing glycolysis in C-MSC. Additionally, Dicer gene deletion selectively reduced the expression of ß-oxidation genes without affecting the expression of genes involved in the tricarboxylic acid (TCA) cycle or electron transport chain (ETC). Finally, Dicer gene deletion reduced the copy number of mitochondrially encoded 1,4-Dihydronicotinamide adenine dinucleotide (NADH): ubiquinone oxidoreductase core subunit 6 (MT-ND6), a mitochondrial-encoded gene, in C-MSC. In conclusion, Dicer gene deletion induced a metabolic shift from oxidative metabolism to aerobic glycolysis in C-MSC, suggesting that Dicer functions as a metabolic switch in C-MSC, which in turn may regulate proliferation and environmental adaptation.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Ácidos Grasos/metabolismo , Células Madre Mesenquimatosas/enzimología , Mitocondrias Cardíacas/metabolismo , Miocardio/enzimología , Ribonucleasa III/metabolismo , Animales , Ciclo del Ácido Cítrico , ARN Helicasas DEAD-box/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Ácidos Grasos/genética , Eliminación de Gen , Glucólisis , Humanos , Ratones , Mitocondrias Cardíacas/genética , Oxidación-Reducción , ARN de Transferencia de Treonina , Ribonucleasa III/genética
10.
J Mol Cell Cardiol ; 114: 72-82, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29122578

RESUMEN

BACKGROUND: Cardiac injury is accompanied by dynamic changes in the expression of microRNAs (miRs), small non-coding RNAs that post-transcriptionally regulate target genes. MiR-125b-5p is downregulated in patients with end-stage dilated and ischemic cardiomyopathy, and has been proposed as a biomarker of heart failure. We previously reported that the ß-blocker carvedilol promotes cardioprotection via ß-arrestin-biased agonism of ß1-adrenergic receptor while stimulating miR-125b-5p processing in the mouse heart. We hypothesize that ß1-adrenergic receptor/ß-arrestin1-responsive miR-125b-5p confers the improvement of cardiac function and structure after acute myocardial infarction. METHODS AND RESULTS: Using cultured cardiomyocyte (CM) and in vivo approaches, we show that miR-125b-5p is an ischemic stress-responsive protector against CM apoptosis. CMs lacking miR-125b-5p exhibit increased susceptibility to stress-induced apoptosis, while CMs overexpressing miR-125b-5p have increased phospho-AKT pro-survival signaling. Moreover, we demonstrate that loss-of-function of miR-125b-5p in the mouse heart causes abnormalities in cardiac structure and function after acute myocardial infarction. Mechanistically, the improvement of cardiac function and structure elicited by miR-125b-5p is in part attributed to repression of the pro-apoptotic genes Bak1 and Klf13 in CMs. CONCLUSIONS: In conclusion, these findings reveal a pivotal role for miR-125b-5p in regulating CM survival during acute myocardial infarction.


Asunto(s)
Apoptosis , Carvedilol/farmacología , Proteínas de Ciclo Celular/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , MicroARNs/metabolismo , Infarto del Miocardio/genética , Proteínas Represoras/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Animales , Apoptosis/efectos de los fármacos , Cardiotónicos/metabolismo , Línea Celular , Técnicas de Silenciamiento del Gen , Ratones Endogámicos C57BL , MicroARNs/genética , Modelos Biológicos , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas Sprague-Dawley , Disfunción Ventricular Izquierda/genética
11.
J Mol Cell Cardiol ; 118: 225-236, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29627294

RESUMEN

RATIONALE: MicroRNAs (miRs) are small, non-coding RNAs that function to post-transcriptionally regulate target genes. First transcribed as primary miR transcripts (pri-miRs), they are enzymatically processed by Drosha into premature miRs (pre-miRs) and further cleaved by Dicer into mature miRs. Initially discovered to desensitize ß-adrenergic receptor (ßAR) signaling, ß-arrestins are now well-appreciated to modulate multiple pathways independent of G protein signaling, a concept known as biased signaling. Using the ß-arrestin-biased ßAR ligand carvedilol, we previously showed that ß-arrestin1 (not ß-arrestin2)-biased ß1AR (not ß2AR) cardioprotective signaling stimulates Drosha-mediated processing of six miRs by forming a multi-protein nuclear complex, which includes ß-arrestin1, the Drosha microprocessor complex and a single-stranded RNA binding protein hnRNPA1. OBJECTIVE: Here, we investigate whether ß-arrestin-mediated ßAR signaling induced by carvedilol could regulate Dicer-mediated miR maturation in the cytoplasm and whether this novel mechanism promotes cardioprotective signaling. METHODS AND RESULTS: In mouse hearts, carvedilol indeed upregulates three mature miRs, but not their pre-miRs and pri-miRs, in a ß-arrestin 1- or 2-dependent manner. Interestingly, carvedilol-mediated activation of miR-466g or miR-532-5p, and miR-674 is dependent on ß2ARs and ß1ARs, respectively. Mechanistically, ß-arrestin 1 or 2 regulates maturation of three newly identified ßAR/ß-arrestin-responsive miRs (ß-miRs) by associating with the Dicer maturation RNase III enzyme on three pre-miRs of ß-miRs. Myocardial cell approaches uncover that despite their distinct roles in different cell types, ß-miRs act as gatekeepers of cardiac cell functions by repressing deleterious targets. CONCLUSIONS: Our findings indicate a novel role for ßAR-mediated ß-arrestin signaling activated by carvedilol in Dicer-mediated miR maturation, which may be linked to its protective mechanisms.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Cardiotónicos/metabolismo , MicroARNs/metabolismo , Receptores Adrenérgicos beta/metabolismo , Ribonucleasa III/metabolismo , Transducción de Señal , beta-Arrestinas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Carvedilol/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Ligandos , Ratones Endogámicos C57BL , MicroARNs/genética , Modelos Biológicos , Miocardio/metabolismo , Miocardio/patología , Ratas Sprague-Dawley
12.
Acta Pharmacol Sin ; 39(7): 1100-1109, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29565037

RESUMEN

Recent advancements in genome-wide analyses and RNA-sequencing technologies led to the discovery of small noncoding RNAs, such as microRNAs (miRs), as well as both linear long noncoding RNAs (lncRNAs) and circular long noncoding RNAs (circRNAs). The importance of miRs and lncRNAs in the treatment, prognosis and diagnosis of cardiovascular diseases (CVDs) has been extensively reported. We also previously reviewed their implications in therapies and as biomarkers for CVDs. More recently, circRNAs have also emerged as important regulators in CVDs. CircRNAs are circular genome products that are generated by back splicing of specific regions of pre-messenger RNAs (pre-mRNAs). Growing interest in circRNAs led to the discovery of a wide array of their pathophysiological functions. CircRNAs have been shown to be key regulators of CVDs such as myocardial infarction, atherosclerosis, cardiomyopathy and cardiac fibrosis. Accordingly, circRNAs have been recently proposed as potential therapeutic targets and biomarkers for CVDs. In this review, we summarize the current state of the literature on circRNAs, starting with their biogenesis and global mechanisms of actions. We then provide a synopsis of their involvement in various CVDs. Lastly, we emphasize the great potential of circRNAs as biomarkers for the early detection of CVDs, and discuss several patents and recent papers that highlight the utilization of circRNAs as promising biomarkers.


Asunto(s)
Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/tratamiento farmacológico , ARN Largo no Codificante/sangre , Animales , Biomarcadores/sangre , Humanos
13.
Acta Pharmacol Sin ; 39(4): 569-578, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29542682

RESUMEN

Cardiac mesenchymal stem cells (C-MSCs) are endogenous cardiac stromal cells that play a role in heart repair after injury. C-MSC-derived exosomes (Exo) have shown protective effects against apoptosis induced by acute myocardial ischemia/reperfusion. Suxiao Jiuxin pill (SJP) is a traditional Chinese medicine (TCM) formula used in China for the treatment of acute myocardial ischemia, which contains tetramethylpyrazine (TMP) and borneol (BOR) as major components. In this study, we investigated whether SJP treatment affected exosome release from C-MSCs in vitro. C-MSCs prepared from mice were treated with SJP (62.5 µg/mL), TMP (25 µg/mL) or BOR (15 µg/mL). Using an acetylcholinesterase activity assay, we found that both SJP and TMP treatment significantly increased exosome secretion compared to the control ethanol treatment. The neutral sphingomyelinase 2 (nSMase2) pathway was important in exosome formation and packaging. But neither the level of nSMase2 mRNA nor the level of protein changed following SJP, TMP or BOR treatment, suggesting that SJP stimulated exosome release via an nSMase2-independent pathway. The Rab27a and Rab27b GTPases controlled different steps of the exosome secretion pathway. We showed that SJP treatment significantly increased the protein levels of Rab27a, SYTL4 (Rab27a effector) and Rab27b compared with the control treatment. SJP treatment also significantly upregulated the mRNA level of Rab27b, rather than Rab27a. Moreover, SJP-induced increase of C-MSC-exosome release was inhibited by Rab27b knockdown, suggesting that SJP promotes exosome secretion from C-MSCs via a GTPase-dependent pathway. This study reveals a novel mechanism for SJP in modulating cardiac homeostasis.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Miocardio/metabolismo , Animales , Canfanos/farmacología , Células Cultivadas , Técnicas de Silenciamiento del Gen , Masculino , Ratones Endogámicos C57BL , Pirazinas/farmacología , ARN Mensajero/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas rab27 de Unión a GTP/metabolismo
14.
Acta Pharmacol Sin ; 39(4): 579-586, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29542684

RESUMEN

Suxiao Jiuxin pill (SJP) is a traditional Chinese medicine for the treatment of acute coronary syndrome in China, which contains two principal components, tetramethylpyrazine (TMP) and borneol (BOR). Thus far, however, the molecular mechanisms underlying the beneficial effects of SJP on the cardiac microenvironment are unknown. Cardiac mesenchymal stem cells (C-MSCs) communicate with cardiomyocytes (CMs) through the release of microvesicles (exosomes) to restore cardiac homeostasis and elicit repair, in part through epigenetic regulatory mechanisms. In this study, we examined whether SJP treatment altered C-MSC-derived exosomes (SJP-Exos) to cause epigenetic chromatic remodeling in recipient CMs. C-MSC isolated from mouse hearts were pretreated with SJP (SJP-Exos), TMP (TMP-Exos) or BOR (BOR-Exos). Then, HL-1 cells, a mouse cardiomyocyte line, were treated with exosomes from control C-MSCs (Ctrl-Exos), SJP-Exos, TMP-Exos or BOR-Exos. Treatment with SJP-Exos significantly increased the protein levels of histone 3 lysine 27 trimethylation (H3K27me3), a key epigenetic chromatin marker for cardiac transcriptional suppression, in the HL-1 cells. To further explore the mechanisms of SJP-Exo-mediated H3K27me3 upregulation, we assessed the mRNA expression levels of key histone methylases (EZH1, EZH2 and EED) and demethylases (JMJD3 and UTX) in the exosome-treated HL-1 cells. Treatment with SJP-Exo selectively suppressed UTX expression in the recipient HL-1 cells. Furthermore, PCNA, an endogenous marker of cell replication, was significantly higher in SJP-Exo-treated HL-1 cells than in Ctrl-Exo-treated HL-1 cells. These results show that SJP-Exos increase cardiomyocyte proliferation and demonstrate that SJP can modulate C-MSC-derived exosomes to cause epigenetic chromatin remodeling in recipient cardiomyocytes; consequently, SJP-Exos might be used to promote cardiomyocyte proliferation.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Exosomas/metabolismo , Histona Demetilasas/genética , Células Madre Mesenquimatosas/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Canfanos/farmacología , Células Cultivadas , Regulación hacia Abajo , Histonas/metabolismo , Masculino , Metilación/efectos de los fármacos , Ratones Endogámicos C57BL , Pirazinas/farmacología
15.
J Mol Cell Cardiol ; 102: 53-60, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27913284

RESUMEN

BACKGROUND: Diabetic cardiomyopathy is a major risk factor in diabetic patients but its pathogenesis remains poorly understood. The ubiquitin-proteasome system (UPS) facilitates protein quality control by degrading unnecessary and damaged proteins in eukaryotic cells, and dysfunction of UPS is implicated in various cardiac diseases. However, the overall functional status of the UPS and its pathophysiological role in diabetic cardiomyopathy have not been determined. METHODS AND RESULTS: Type I diabetes was induced in wild-type and transgenic mice expressing a UPS functional reporter (GFPdgn) by injections of streptozotocin (STZ). STZ-induced diabetes progressively impaired cardiac UPS function as evidenced by the accumulation of GFPdgn proteins beginning two weeks after diabetes induction, and by a buildup of total and lysine (K) 48-linked polyubiquitinated proteins in the heart. To examine the functional role of the UPS in diabetic cardiomyopathy, cardiac overexpression of PA28α (PA28αOE) was used to enhance proteasome function in diabetic mouse hearts. PA28αOE diabetic mice displayed exhibited restoration of cardiac UPS function, as demonstrated by the diminished accumulation of GFPdgn and polyubiquitinated proteins. Moreover, PA28αOE diabetic mice exhibited reduced myocardial collagen deposition, decreased cardiomyocyte apoptosis, and improved cardiac systolic and diastolic function. CONCLUSION: Impairment of cardiac UPS function is an early event in STZ-induced diabetes. Overexpression of PA28α attenuates diabetes-induced proteotoxic stress and cardiomyopathy, suggesting a potential therapeutic role for enhancement of cardiac proteasome function in this disorder.


Asunto(s)
Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/metabolismo , Miocardio/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/fisiopatología , Expresión Génica , Genes Reporteros , Masculino , Ratones , Ratones Transgénicos , Miocardio/patología , Complejo de la Endopetidasa Proteasomal/genética , Ubiquitina/metabolismo , Remodelación Ventricular/genética
16.
Arterioscler Thromb Vasc Biol ; 36(4): 663-672, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26868211

RESUMEN

OBJECTIVE: The efficiency of cell therapy is limited by poor cell survival and engraftment. Here, we studied the effect of the growth hormone-releasing hormone agonist, JI-34, on mesenchymal stem cell (MSC) survival and angiogenic therapy in a mouse model of critical limb ischemia. APPROACH AND RESULTS: Mouse bone marrow-derived MSCs were incubated with or without 10(-8) mol/L JI-34 for 24 hours. MSCs were then exposed to hypoxia and serum deprivation to detect the effect of preconditioning on cell apoptosis, migration, and tube formation. For in vivo tests, critical limb ischemia was induced by femoral artery ligation. After surgery, mice received 50 µL phosphate-buffered saline or with 1×10(6) MSCs or with 1×10(6) JI-34-reconditioned MSCs. Treatment of MSCs with JI-34 improved MSC viability and mobility and markedly enhanced their capability to promote endothelial tube formation in vitro. These effects were paralleled by an increased phosphorylation and nuclear translocation of signal transducer and activator of transcription 3. In vivo, JI-34 pretreatment enhanced the engraftment of MSCs into ischemic hindlimb muscles and augmented reperfusion and limb salvage compared with untreated MSCs. Significantly more vasculature and proliferating CD31(+) and CD34(+) cells were detected in ischemic muscles that received MSCs treated with JI-34. CONCLUSIONS: Our studies demonstrate a novel role for JI-34 to markedly improve therapeutic angiogenesis in hindlimb ischemia by increasing the viability and mobility of MSCs. These findings support additional studies to explore the full potential of growth hormone-releasing hormone agonists to augment cell therapy in the management of ischemia.


Asunto(s)
Hormona Liberadora de Hormona del Crecimiento/análogos & derivados , Hormona Liberadora de Hormona del Crecimiento/agonistas , Isquemia/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/efectos de los fármacos , Músculo Esquelético/irrigación sanguínea , Fragmentos de Péptidos/farmacología , Transporte Activo de Núcleo Celular , Animales , Antígenos CD34/metabolismo , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Hormona Liberadora de Hormona del Crecimiento/farmacología , Miembro Posterior , Isquemia/metabolismo , Isquemia/fisiopatología , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Neovascularización Fisiológica , Fosforilación , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Receptores de Neuropéptido/agonistas , Receptores de Neuropéptido/metabolismo , Receptores de Hormona Reguladora de Hormona Hipofisaria/agonistas , Receptores de Hormona Reguladora de Hormona Hipofisaria/metabolismo , Factor de Transcripción STAT3/metabolismo , Factores de Tiempo
17.
Am J Physiol Heart Circ Physiol ; 311(2): H371-83, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27288437

RESUMEN

The nonselective ß-adrenergic receptor antagonist (ß-blocker) carvedilol has been shown to protect against myocardial injury, but the detailed underlying mechanisms are unclear. We recently reported that carvedilol stimulates the processing of microRNA (miR)-199a-3p and miR-214 in the heart via ß-arrestin1-biased ß1-adrenergic receptor (ß1AR) cardioprotective signaling. Here, we investigate whether these ß-arrestin1/ß1AR-responsive miRs mediate the beneficial effects of carvedilol against simulated ischemia/reperfusion (sI/R). Using cultured cardiomyocyte cell lines and primary cardiomyocytes, we demonstrate that carvedilol upregulates miR-199a-3p and miR-214 in both ventricular and atrial cardiomyocytes subjected to sI/R. Overexpression of the two miRs in cardiomyocytes mimics the effects of carvedilol to activate p-AKT survival signaling and the expression of a downstream pluripotency marker Sox2 in response to sI/R. Moreover, carvedilol-mediated p-AKT activation is abolished by knockdown of either miR-199a-3p or miR-214. Along with previous studies to directly link the cardioprotective actions of carvedilol to upregulation of p-AKT/stem cell markers, our findings suggest that the protective roles of carvedilol during ischemic injury are in part attributed to activation of these two protective miRs. Loss of function of miR-199a-3p and miR-214 also increases cardiomyocyte apoptosis after sI/R. Mechanistically, we demonstrate that miR-199a-3p and miR-214 repress the predictive or known apoptotic target genes ddit4 and ing4, respectively, in cardiomyocytes. These findings suggest pivotal roles for miR-199a-3p and miR-214 as regulators of cardiomyocyte survival and contributors to the functional benefits of carvedilol therapy.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Carbazoles/farmacología , MicroARNs/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Propanolaminas/farmacología , Daño por Reperfusión/genética , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carvedilol , Línea Celular , Células Cultivadas , Simulación por Computador , Immunoblotting , Etiquetado Corte-Fin in Situ , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Daño por Reperfusión/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba/efectos de los fármacos
18.
Int J Mol Sci ; 17(3): 356, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26978351

RESUMEN

Protein-coding genes account for only a small part of the human genome; in fact, the vast majority of transcripts are comprised of non-coding RNAs (ncRNAs) including long ncRNAs (lncRNAs) and small ncRNAs, microRNAs (miRs). Accumulating evidence indicates that ncRNAs could play critical roles in regulating many cellular processes which are often implicated in health and disease. For example, ncRNAs are aberrantly expressed in cancers, heart diseases, and many other diseases. LncRNAs and miRs are therefore novel and promising targets to be developed into biomarkers for diagnosis and prognosis as well as treatment options. The interaction between lncRNAs and miRs as well as its pathophysiological significance have recently been reported. Mechanistically, it is believed that lncRNAs exert "sponge-like" effects on various miRs, which subsequently inhibits miR-mediated functions. This crosstalk between two types of ncRNAs frequently contributes to the pathogenesis of the disease. In this review, we provide a summary of the recent studies highlighting the interaction between these ncRNAs and the effects of this interaction on disease pathogenesis and regulation.


Asunto(s)
Enfermedad/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Progresión de la Enfermedad , Regulación de la Expresión Génica , Humanos
19.
J Mol Cell Cardiol ; 81: 49-53, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25655934

RESUMEN

The G protein-coupled receptor CXCR4 and its ligand stromal-cell derived factor 1 (SDF-1) play a crucial role in directing progenitor cell (PC) homing to ischemic tissue. The Src family protein kinases (SFK) can be activated by, and serve as effectors of, G proteins. In this study we sought to determine whether SFK play a role in SDF-1/CXCR4-mediated PC homing. First, we investigated whether SDF-1/CXCR4 signaling activates SFK. Bone-marrow mononuclear cells (BM MNCs) were isolated from WT and BM-specific CXCR4-KO mice and treated with SDF-1 and/or CXCR4 antagonist AMD3100. SDF-1 treatment rapidly induced phosphorylation (activation) of hematopoietic Src (i.e., Lyn, Fgr, and Hck) in WT cells but not in AMD3100-treated cells or CXCR4-KO cells. Then, we investigated whether SFK are involved in SDF-1/CXCR4-mediated PC chemotaxis. In a combined chemotaxis and endothelial-progenitor-cell (EPC) colony assay, Src inhibitor SU6656 dose-dependently inhibited the SDF-1-induced migration of colony-forming EPCs. Next, we investigated whether SFK play a role in SDF-1/CXCR4-mediated BM PC homing to the ischemic heart. BM MNCs from CXCR4BAC:eGFP reporter mice were i.v. injected into WT and SDF-1BAC:SDF1-RFP transgenic mice following surgically-induced myocardial infarction (MI). eGFP(+) MNCs and eGFP(+)c-kit(+) PCs that were recruited in the infarct border zone in SDF-1BAC:SDF1-RFP recipients were significantly more than that in WT recipients. Treatments of mice with SU6656 significantly reduced eGFP(+) and eGFP(+)c-kit(+) cell recruitment in both WT and SDF-1BAC:RFP recipients and abrogated the difference between the two groups. Remarkably, PCs isolated from BM-specific C-terminal Src kinase (CSK)-KO (Src activated) mice were recruited more efficiently than PCs from WT PCs in the WT recipients. In conclusion, SFK are activated by SDF-1/CXCR4 signaling and play an essential role in SDF-1/CXCR4-mediated BM PC chemotactic response and ischemic cardiac recruitment.


Asunto(s)
Células de la Médula Ósea/metabolismo , Quimiocina CXCL12/genética , Células Madre Mesenquimatosas/metabolismo , Isquemia Miocárdica/genética , Receptores CXCR4/genética , Familia-src Quinasas/genética , Animales , Bencilaminas , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/patología , Quimiocina CXCL12/antagonistas & inhibidores , Quimiocina CXCL12/metabolismo , Quimiotaxis/genética , Ciclamas , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Compuestos Heterocíclicos/farmacología , Indoles/farmacología , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/patología , Ratones , Ratones Noqueados , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Receptores CXCR4/deficiencia , Transducción de Señal , Sulfonamidas/farmacología , Familia-src Quinasas/metabolismo
20.
Physiol Genomics ; 47(9): 376-85, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26152686

RESUMEN

Chronic treatment with the ß-blocker carvedilol has been shown to reduce established maladaptive left ventricle (LV) hypertrophy and to improve LV function in experimental heart failure. However, the detailed mechanisms by which carvedilol improves LV failure are incompletely understood. We previously showed that carvedilol is a ß-arrestin-biased ß1-adrenergic receptor ligand, which activates cellular pathways in the heart independent of G protein-mediated second messenger signaling. More recently, we have demonstrated by microRNA (miR) microarray analysis that carvedilol upregulates a subset of mature and pre-mature miRs, but not their primary miR transcripts in mouse hearts. Here, we next sought to identify the effects of carvedilol on LV gene expression on a genome-wide basis. Adult mice were treated with carvedilol or vehicle for 1 wk. RNA was isolated from LV tissue and hybridized for microarray analysis. Gene expression profiling analysis revealed a small group of genes differentially expressed after carvedilol treatment. Further analysis categorized these genes into pathways involved in tight junction, malaria, viral myocarditis, glycosaminoglycan biosynthesis, and arrhythmogenic right ventricular cardiomyopathy. Genes encoding proteins in the tight junction, malaria, and viral myocarditis pathways were upregulated in the LV by carvedilol, while genes encoding proteins in the glycosaminoglycan biosynthesis and arrhythmogenic right ventricular cardiomyopathy pathways were downregulated by carvedilol. These gene expression changes may reflect the molecular mechanisms that underlie the functional benefits of carvedilol therapy.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Carbazoles/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Ventrículos Cardíacos/efectos de los fármacos , Propanolaminas/farmacología , Animales , Cardiomiopatías/genética , Carvedilol , Glicosaminoglicanos/biosíntesis , Glicosaminoglicanos/genética , Malaria/genética , Ratones Endogámicos C57BL , Miocarditis/genética , Proteínas/genética , Proteínas/metabolismo , Función Ventricular Izquierda/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA