Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 111(4): 1580-5, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24434552

RESUMEN

The M2-1 protein of the important pathogen human respiratory syncytial virus is a zinc-binding transcription antiterminator that is essential for viral gene expression. We present the crystal structure of full-length M2-1 protein in its native tetrameric form at a resolution of 2.5 Å. The structure reveals that M2-1 forms a disk-like assembly with tetramerization driven by a long helix forming a four-helix bundle at its center, further stabilized by contact between the zinc-binding domain and adjacent protomers. The tetramerization helix is linked to a core domain responsible for RNA binding activity by a flexible region on which lie two functionally critical serine residues that are phosphorylated during infection. The crystal structure of a phosphomimetic M2-1 variant revealed altered charge density surrounding this flexible region although its position was unaffected. Structure-guided mutagenesis identified residues that contributed to RNA binding and antitermination activity, revealing a strong correlation between these two activities, and further defining the role of phosphorylation in M2-1 antitermination activity. The data we present here identify surfaces critical for M2-1 function that may be targeted by antiviral compounds.


Asunto(s)
Virus Sincitiales Respiratorios/metabolismo , Proteínas Virales/química , Biopolímeros/metabolismo , Cristalografía por Rayos X , Humanos , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Conformación Proteica , ARN/metabolismo , Proteínas Virales/metabolismo
2.
Nucleic Acids Res ; 41(11): 5912-26, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23595147

RESUMEN

All orthobunyaviruses possess three genome segments of single-stranded negative sense RNA that are encapsidated with the virus-encoded nucleocapsid (N) protein to form a ribonucleoprotein (RNP) complex, which is uncharacterized at high resolution. We report the crystal structure of both the Bunyamwera virus (BUNV) N-RNA complex and the unbound Schmallenberg virus (SBV) N protein, at resolutions of 3.20 and 2.75 Å, respectively. Both N proteins crystallized as ring-like tetramers and exhibit a high degree of structural similarity despite classification into different orthobunyavirus serogroups. The structures represent a new RNA-binding protein fold. BUNV N possesses a positively charged groove into which RNA is deeply sequestered, with the bases facing away from the solvent. This location is highly inaccessible, implying that RNA polymerization and other critical base pairing events in the virus life cycle require RNP disassembly. Mutational analysis of N protein supports a correlation between structure and function. Comparison between these crystal structures and electron microscopy images of both soluble tetramers and authentic RNPs suggests the N protein does not bind RNA as a repeating monomer; thus, it represents a newly described architecture for bunyavirus RNP assembly, with implications for many other segmented negative-strand RNA viruses.


Asunto(s)
Proteínas de la Nucleocápside/química , Orthobunyavirus , ARN/química , Ribonucleoproteínas/química , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de la Nucleocápside/metabolismo , Orthobunyavirus/fisiología , Unión Proteica , Multimerización de Proteína , ARN/metabolismo , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestructura , Transcripción Genética , Replicación Viral
3.
Nucleic Acids Res ; 39(15): 6692-704, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21546549

RESUMEN

Feline immunodeficiency virus (FIV) infects many species of cat, and is related to HIV, causing a similar pathology. High-throughput selective 2' hydroxyl acylation analysed by primer extension (SHAPE), a technique that allows structural interrogation at each nucleotide, was used to map the secondary structure of the FIV packaging signal RNA. Previous studies of this RNA showed four conserved stem-loops, extensive long-range interactions (LRIs) and a small, palindromic stem-loop (SL5) within the gag open reading frame (ORF) that may act as a dimerization initiation site (DIS), enabling the virus to package two copies of its genome. Our analyses of wild-type (wt) and mutant RNAs suggest that although the four conserved stem-loops are static structures, the 5' and 3' regions previously shown to form LRI also adopt an alternative, yet similarly conserved conformation, in which the putative DIS is occluded, and which may thus favour translational and splicing functions over encapsidation. SHAPE and in vitro dimerization assays were used to examine SL5 mutants. Dimerization contacts appear to be made between palindromic loop sequences in SL5. As this stem-loop is located within the gag ORF, recognition of a dimeric RNA provides a possible mechanism for the specific packaging of genomic over spliced viral RNAs.


Asunto(s)
Regiones no Traducidas 5' , Virus de la Inmunodeficiencia Felina/genética , ARN Viral/química , Secuencias Reguladoras de Ácido Ribonucleico , Ensamble de Virus , Secuencia de Bases , Dimerización , Electroforesis en Gel de Poliacrilamida , Genoma Viral , Técnicas de Sonda Molecular , Datos de Secuencia Molecular , Conformación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA