Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther ; 23(10): 1600-10, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26122933

RESUMEN

Ligands for the NKG2D receptor are overexpressed on tumors, making them interesting immunotherapy targets. To assess the tumoricidal properties of T cells directed to attack NKG2D ligands, we engineered murine T cells with two distinct NKG2D-based chimeric antigen receptors (CARs): (i) a fusion between the NKG2D receptor and the CD3ζ chain and (ii) a conventional second-generation CAR, where the extracellular domain of NKG2D was fused to CD28 and CD3ζ. To enhance the CAR surface expression, we also engineered T cells to coexpress DAP10. In vitro functionality and surface expression levels of all three CARs was greater in BALB/c T cells than C57BL/6 T cells, indicating strain-specific differences. Upon adoptive transfer of NKG2D-CAR-T cells into syngeneic animals, we observed significant clinical toxicity resulting in morbidity and mortality. The severity of these toxicities varied between the CAR configurations and paralleled their in vitro NKG2D surface expression. BALB/c mice were more sensitive to these toxicities than C57BL/6 mice, consistent with the higher in vitro functionality of BALB/c T cells. Treatment with cyclophosphamide prior to adoptive transfer exacerbated the toxicity. We conclude that while NKG2D ligands may be useful targets for immunotherapy, the pursuit of NKG2D-based CAR-T cell therapies should be undertaken with caution.


Asunto(s)
Citotoxicidad Inmunológica , Proteínas Recombinantes de Fusión , Traslado Adoptivo , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Ciclofosfamida/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Vectores Genéticos/genética , Inmunoterapia Adoptiva , Ligandos , Ratones , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Neumonía/inmunología , Neumonía/metabolismo , Neumonía/patología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Retroviridae/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Acondicionamiento Pretrasplante
2.
Clin Cancer Res ; 27(22): 6222-6234, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34475103

RESUMEN

PURPOSE: In this article, we describe a combination chimeric antigen receptor (CAR) T-cell therapy that eradicated the majority of tumors in two immunocompetent murine pancreatic cancer models and a human pancreatic cancer xenograft model. EXPERIMENTAL DESIGN: We used a dual-specific murine CAR T cell that expresses a CAR against the Her2 tumor antigen, and a T-cell receptor (TCR) specific for gp100. As gp100 is also known as pMEL, the dual-specific CAR T cells are thus denoted as CARaMEL cells. A vaccine containing live vaccinia virus coding a gp100 minigene (VV-gp100) was administered to the recipient mice to stimulate CARaMEL cells. The treatment also included the histone deacetylase inhibitor panobinostat (Pano). RESULTS: The combination treatment enabled significant suppression of Her2+ pancreatic cancers leading to the eradication of the majority of the tumors. Besides inducing cancer cell apoptosis, Pano enhanced CAR T-cell gene accessibility and promoted CAR T-cell differentiation into central memory cells. To test the translational potential of this approach, we established a method to transduce human T cells with an anti-Her2 CAR and a gp100-TCR. The exposure of the human T cells to Pano promoted a T-cell central memory phenotype and the combination treatment of human CARaMEL cells and Pano eradicated human pancreatic cancer xenografts in mice. CONCLUSIONS: We propose that patients with pancreatic cancer could be treated using a scheme that contains dual-specific CAR T cells, a vaccine that activates the dual-specific CAR T cells through their TCR, and the administration of Pano.


Asunto(s)
Neoplasias Pancreáticas , Receptores Quiméricos de Antígenos , Animales , Línea Celular Tumoral , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Inmunoterapia Adoptiva/métodos , Ratones , Neoplasias Pancreáticas/terapia , Panobinostat , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T , Ensayos Antitumor por Modelo de Xenoinjerto
3.
J Immunother Cancer ; 3: 55, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26673402

RESUMEN

BACKGROUND: Adoptive cell transfer of tumor-specific T lymphocytes (T cells) is proving to be an effective strategy for treating established tumors in cancer patients. One method of generating these cells is accomplished through engineering bulk T cell populations to express chimeric antigen receptors (CARs), which are specific for tumor antigens. Traditionally, these CARs are targeted against tumor antigens using single-chain antibodies (scFv). Here we describe the use of a designed ankyrin repeat protein (DARPin) as the tumor-antigen targeting domain. METHODS: We prepared second generation anti-HER2 CARs that were targeted to the tumor antigen by either a DARPin or scFv. The CARs were engineered into human and murine T cells. We then compared the ability of CARs to trigger cytokine production, degranulation and cytotoxicity. RESULTS: The DARPin CARs displayed reduced surface expression relative to scFv CARs in murine cells but both CARs were expressed equally well on human T cells, suggesting that there may be a processing issue with the murine variants. In both the murine and human systems, the DARPin CARs were found to be highly functional, triggering cytokine and cytotoxic responses that were similar to those triggered by the scFv CARs. CONCLUSIONS: These findings demonstrate the utility of DARPins as CAR-targeting agents and open up an avenue for the generation of CARs with novel antigen binding attributes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA