Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Assist Reprod Genet ; 41(1): 63-77, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37921969

RESUMEN

PURPOSE: The purpose of this study is to investigate the function of miR-150-5p in URSA. METHOD: Twenty-six chorionic villous tissues were collected to examine the expression of miR-150-5p and VEGFA by using quantitative polymerase chain reaction (qPCR) and western blot assay, respectively. Transwell assay was conducted to assess the migration and invasion ability of trophoblast cells. The dual-luciferase reporter assay was applied to determine the relationship between miR-150-5p and VEGFA in vitro. Relevant signaling pathway protein expression level was measured via western blot assay. Signaling transduction inhibitor LY294002 was used to block PI3K/AKT/mTOR signaling pathway. Finally, in vivo the effect of miR-150-5p on embryonic absorption rate was evaluated in mice. RESULTS: Clinical samples revealed that miR-150-5p expression was significantly elevated in the villous tissues and serum of URSA patients. Moreover, the overexpressing of miR-150-5p could inhibit both HTR-8/SVneo cell and JAR cell migration, invasion, and restrained PI3K/AKT/mTOR signaling pathway by targeting VEGFA in vitro. This inhibitory effect of miR-150-5p could be reversed by overexpressing the gene of vascular epithelial growth factor A (VEGFA). In contrary, inhibition of miR-150-5p significantly enhanced migration, invasion ability of both HTR-8/SVneo and JAR cells, and also could stimulate PI3K/AKT/mTOR signaling pathway. This promoting effect of miR-150-5p could be ameliorated by LY294002 (PI3K inhibitor). Finally, after miR-150-5p overexpression in vivo, the embryo resorption rate in pregnant mice was increased significantly. CONCLUSIONS: Overall, these findings imply that miR-150-5p is among the key factors that regulate the pathogenesis of URSA.


Asunto(s)
Aborto Espontáneo , MicroARNs , Animales , Femenino , Humanos , Ratones , Embarazo , Proliferación Celular , MicroARNs/genética , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética
2.
BMC Pregnancy Childbirth ; 23(1): 189, 2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36934238

RESUMEN

BACKGROUND: Acute pancreatitis in pregnancy (APIP) with a high risk of death is extremely harmful to mother and fetus. There are few models specifically designed to assess the severity of APIP. Our study aimed to establish a clinical model for early prediction of severity of APIP. METHODS: A retrospective study in a total of 188 patients with APIP was enrolled. The hematological indicators, IAP (intra-abdominal pressure) and clinical data were obtained for statistical analysis and prediction model construction. RESULTS: According to univariate and multivariate logistic regression analysis, we found that red cell distribution width (RDW), neutrophil-lymphocyte ratio (NLR) and Intra-abdominal pressure (IAP) are prediction indexes of the severity in APIP (p-value < 0.05). Our novel clinical prediction model was created by based on the above three risk factors and showed superior predictive power in primary cohort (AUC = 0.895) and validation cohort (AUC = 0.863). A nomogram for severe acute pancreatitis in pregnancy (SAPIP) was created based on the three indicators. The nomogram was well-calibrated. CONCLUSION: RDW, NLR and IAP were the independent risk factors of APIP. Our clinical prediction model of severity in APIP based on RDW, NLR and IAP with predictive evaluation is accurate and effective.


Asunto(s)
Pancreatitis , Embarazo , Femenino , Humanos , Pancreatitis/diagnóstico , Pancreatitis/etiología , Neutrófilos , Índices de Eritrocitos , Estudios Retrospectivos , Enfermedad Aguda , Modelos Estadísticos , Pronóstico , Linfocitos
3.
Heliyon ; 10(1): e24029, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38268572

RESUMEN

Mitochondria are not only the power plant for intracellular oxidative phosphorylation and ATP synthesis, but also involved in cell proliferation, differentiation, signaling and apoptosis. Recent studies have shown that mitochondria play an important role in other pathophysiological functions in addition to cellular energy metabolism. Mitochondria release mitochondrial DNA (mtDNA) as a damage-associated molecular pattern (DAMP) to activate Toll-like receptor 9 (TLR9), NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) inflammasome and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) innate immune signaling pathways against foreign pathogenic microorganisms. The innate immune response not only promotes antimicrobial immune defense and regulates antiviral signaling, but their overactivation also induces the onset and progression of inflammatory diseases. In this paper, we review the role of mtDNA in the activation of innate immune signaling pathways and the crosstalk among innate immune signaling pathways activated by mtDNA, providing clues for the study of inflammatory diseases caused by mtDNA cytoplasmic translocation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA