Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 105(14-15): 5905-5914, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34287659

RESUMEN

In the model actinomycete strain, Streptomyces coelicolor, an orphan histidine kinase (HK) named OhkA (encoded by SCO1596), which belongs to bacterial two-component regulatory systems (TCSs), has been identified as being involved in the regulation of both antibiotic biosynthesis and morphological development. However, its cognate response regulator (RR) remains unknown due to its isolated genetic location on the genome, which impedes the elucidation of the mechanism underlying OhkA-mediated regulation. Here, we identified the orphan RR OrrA (encoded by SCO3008) as the cognate RR of OhkA according to mutant phenotypic changes, transcriptomics analysis, and bacterial two-hybrid experiment. Considering that the partner RR of the orphan HK is also orphan, a library of mutants with in-frame individual deletion of these functionally unknown orphan RR-encoding genes were generated. Through phenotypic analysis, it was found that the ∆orrA mutant exhibited similar phenotypic changes as that of the ∆ohkA mutant, showing increased production of actinorhodin (ACT) and undecylprodigiosin (RED), and pink colony surface. Further transcriptomics analysis showed these two mutants exhibited highly similar transcriptomics profiles. Finally, the direct interaction between OhkA and OrrA was revealed by bacterial two-hybrid system. The identification of the partner RR of OhkA lays a good foundation for an in-depth elucidation of the molecular mechanism underlying OhkA-mediated regulation of development and antibiotic biosynthesis in Streptomyces. KEY POINTS: • OrrA was identified as the partner RR of the orphan histidine kinase OhkA. • The ∆orrA and ∆ohkA mutants showed similar phenotype and transcriptomic profiling. • Specific interaction of OrrA and OhkA was revealed by bacterial two-hybrid system.


Asunto(s)
Streptomyces coelicolor , Streptomyces , Antibacterianos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Metabolismo Secundario/genética , Streptomyces/genética , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
2.
Microbiol Res ; 233: 126411, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31981905

RESUMEN

In Streptomyces pristinaespiralis, the orphan histidine kinase (HK) PdtaS-p (encoded by SSDG_02492), which belongs to proteins of two-component systems (TCSs), plays an important role in both morphological differentiation and antibiotic biosynthesis. Owing to the isolated genetic organization of pdtaS-p, it is a challenge to identify its cognate response regulator (RR) and hampers the efforts to elucidate the regulation mechanism of PdtaS-p. In this study, based on bioinformatics analysis, we identify the cognate RR PdtaR-p (encoded by SSDG_04087) of PdtaS-p by phenotype similarity of gene deletion mutants as well as in vitro phosphor-transfer assay. We show that the mutants (ΔpdtaR-p and ΔpdtaS-p) exhibit almost the same phenotypical changes, showing a bald phenotype on MS agar and reduced pristinamycin biosynthesis. Further phosphor-transfer assay indicates that the phosphoryl group of HK PdtaS-p can be specifically transferred to RR PdtaR-p. Compared with the majority of RRs that harbor DNA-binding domains, PdtaR-p contains a putative ANTAR RNA-binding domain involved in controlling gene expression at the post-transcription level. Finally, we demonstrate that their ortholog from the model strain Streptomyces coelicolor, PdtaS-c/PdtaR-c, also regulates both morphological differentiation and antibiotics biosynthesis, suggesting that PdtaS-p/PdtaR-p-mediated molecular regulation may be conserved in the genus Streptomyces. To our knowledge, this is the first report describing the functional identification of ANTAR RNA-binding regulators in Streptomyces.


Asunto(s)
Antibacterianos/biosíntesis , Proteínas Bacterianas/metabolismo , Histidina Quinasa/metabolismo , Streptomyces/enzimología , Proteínas Bacterianas/genética , Biología Computacional , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Histidina Quinasa/genética , Mutación , Fenotipo , Proteínas con Motivos de Reconocimiento de ARN/genética , Streptomyces/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA