Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(19): 8641-8648, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35507510

RESUMEN

Prior in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) studies of electrochemical CO2 reduction catalyzed by Au, one of the most selective and active electrocatalysts to produce CO from CO2, suggest that the reaction proceeds solely on the top sites of the Au surface. This finding is worth updating with an improved spectroelectrochemical system where in situ IR measurements can be performed under real reaction conditions that yield high CO selectivity. Herein, we report the preparation of an Au-coated Si ATR crystal electrode with both high catalytic activity for CO2 reduction and strong surface enhancement of IR signals validated in the same spectroelectrochemical cell, which allows us to probe the adsorption and desorption behavior of bridge-bonded *CO species (*COB). We find that the Au surface restructures irreversibly to give an increased number of bridge sites for CO adsorption within the initial tens of seconds of CO2 reduction. By studying the potential-dependent desorption kinetics of *COB and quantifying the steady-state surface concentration of *COB under reaction conditions, we further show that *COB are active reaction intermediates for CO2 reduction to CO on this Au electrode. At medium overpotential, as high as 38% of the reaction occurs on the bridge sites.


Asunto(s)
Dióxido de Carbono , Adsorción , Dióxido de Carbono/química , Catálisis , Electrodos , Oxidación-Reducción
2.
J Am Chem Soc ; 143(47): 19983-19991, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34784216

RESUMEN

The development of benign methylation reactions utilizing CO2 as a one-carbon building block would enable a more sustainable chemical industry. Electrochemical CO2 reduction has been extensively studied, but its application for reductive methylation reactions remains out of the scope of current electrocatalysis. Here, we report the first electrochemical reductive N-methylation reaction with CO2 and demonstrate its compatibility with amines, hydroxylamines, and hydrazine. Catalyzed by cobalt phthalocyanine molecules supported on carbon nanotubes, the N-methylation reaction proceeds in aqueous media via the chemical condensation of an electrophilic carbon intermediate, proposed to be adsorbed or near-electrode formaldehyde formed from the four-electron reduction of CO2, with nucleophilic nitrogenous reactants and subsequent reduction. By comparing various amines, we discover that the nucleophilicity of the amine reactant is a descriptor for the C-N coupling efficacy. We extend the scope of the reaction to be compatible with cheap and abundant nitro-compounds by developing a cascade reduction process in which CO2 and nitro-compounds are reduced concurrently to yield N-methylamines with high monomethylation selectivity via the overall transfer of 12 electrons and 12 protons.

3.
J Am Chem Soc ; 143(47): 19630-19642, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34787404

RESUMEN

Given the limited product variety of electrocatalytic CO2 reduction reactions solely from CO2 and H2O as the reactants, it is desirable to expand the product scope by introducing additional reactants that provide elemental diversity. The integration of inorganic heteroatom-containing reactants into electrocatalytic CO2 reduction could, in principle, enable the sustainable synthesis of valuable products, such as organonitrogen compounds, which have widespread applications but typically rely on NH3 derived from the energy-intensive and fossil-fuel-dependent Haber-Bosch process for their industrial-scale production. In this Perspective, research progress toward building C-N bonds in N-integrated electrocatalytic CO2 reduction is highlighted, and the electrosyntheses of urea, acetamides, and amines are examined from the standpoints of reactivity, catalyst structure, and, most fundamentally, mechanism. Mechanistic discussions of C-N coupling in these advances are emphasized and critically evaluated, with the aim of directing future investigations on improving the product yield and broadening the product scope of N-integrated electrocatalytic CO2 reduction.

4.
ACS Appl Mater Interfaces ; 12(50): 56642-56649, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33284596

RESUMEN

The production of CO from the CO2 reduction reaction (CO2RR) is of great interest in the renewable energy storage and conversion, the neutral carbon emission, and carbon recycle utilization. Silver (Ag) is one of the catalytic metals that are active for electrochemical CO2 reduction into CO, but the catalysis requires a large overpotential to achieve higher selectivity. Constructing a metal-oxide interface could be an effective strategy to boost both activity and selectivity of the catalysis. Herein, density functional theory (DFT) calculations were first conducted to reveal the chemical insights of the catalytic performance on the interface between metal oxide and Ag(111) (MOx/Ag(111)). The results show that the *COOH intermediates can be more stabilized on the surfaces of MOx/Ag(111) than pure Ag(111). The hydrogen evolution reaction on MOx/Ag(111) can be suppressed due to the significantly higher Gibbs free energy for hydrogen adsorption (ΔGH*), thereby enhancing the selectivity toward CO2RR. A series of MOx/Ag composites with the unique interface based on the DFT results were then introduced though a two-step approach. The as-obtained MOx/Ag catalysts boosted both the CO activity and selectivity at a relatively positive potential range, especially in the case of MnO2/Ag. The reduction current density on the MnO2/Ag catalyst can reach 4.3 mA cm-2 at -0.7 V (vs RHE), which is 21.5 times higher than that on pure Ag, and the overpotential of CO2 to CO (390 mV) possesses is much lower than that on pure Ag NPs (690 mV). This study proposes an effective design strategy to construct a metal-oxide interface for CO2RR based on the synergistic effect between metals and MOx.

5.
Chem Commun (Camb) ; 55(60): 8864-8867, 2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31231725

RESUMEN

Multi-component materials are a new trend in catalyst development for electrochemical CO2 reduction. Understanding and managing the chemical interactions within a complex catalyst structure may unlock new or improved reactivity, but is scientifically challenging. We report the first example of capping ligand-dependent metal-oxide interactions in Au/SnO2 structures for electrocatalytic CO2 reduction. Cetyltrimethylammonium bromide capping on the Au nanoparticles enables bifunctional CO2 reduction where CO is produced at more positive potentials and HCOO- at more negative potentials. With citrate capping or no capping, the Au-SnO2 interactions steer the selectivity toward H2 evolution at all potentials. Using electrochemical CO oxidation as a probe reaction, we further confirm that the metal-oxide interactions are strongly influenced by the capping ligand.

6.
ACS Appl Mater Interfaces ; 8(51): 35390-35397, 2016 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-27966855

RESUMEN

Noble metal free electrocatalysts for water splitting are key to low-cost, sustainable hydrogen production. In this work, we demonstrate that metal-organic frameworks (MOFs) can be controllably converted into catalysts for the oxygen evolution reaction (OER) or the hydrogen evolution reaction (HER). The OER catalyst is composed of FeNi alloy nanoparticles encapsulated in N-doped carbon nanotubes, which is obtained by thermal decomposition of a trimetallic (Zn2+, Fe2+, and Ni2+) zeolitic imidazolate framework (ZIF). It reaches 10 mA cm-2 at the overpotential of 300 mV with a low Tafel slope of 47.7 mV dec-1. The HER catalyst consists of Ni nanoparticles coated with a thin layer of N-doped carbon. It is obtained by thermal decomposition of a Ni-MOF in NH3. It shows low overpotential of only 77 mV at 20 mA cm-2 with low Tafel slope of 68 mV dec-1. The above noble metal free OER and HER electrocatalysts are applied in an alkaline electrolyzer driven by a commercial polycrystalline solar cell. It achieves electrolysis efficiency of 64.4% at 65 mA cm-2 under sun irradiation of 50 mW cm-2. This practical application shows the promising prospect of low-cost and high-efficiency sustainable hydrogen production from combination of solar cells with high-performance noble metal free electrocatalysts.

7.
ACS Appl Mater Interfaces ; 8(13): 8436-44, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-26938272

RESUMEN

A highly efficient noble-metal-free catalyst for the oxygen reduction reaction (ORR) is derived from a composite of polyaniline (PANI) and Prussian blue analogue (PBA, Co3[Fe(CN)6]2) by pyrolysis. The composite consists of 2-5 nm PBA nanocrystals homogeneously dispersed in PANI. During the pyrolysis, the PBA nanocrystals serve as both the template for the pore formation and the precursor for the ORR active sites, which results in a nanoporous structure strongly coupled with the ORR active sites. The catalyst exhibits superior ORR performance in both alkaline and acidic electrolyte, comparable to that of the commercial Pt/C with 20 wt % Pt loading.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA