Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nat Immunol ; 21(12): 1574-1584, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33077975

RESUMEN

A classical view of blood cell development is that multipotent hematopoietic stem and progenitor cells (HSPCs) become lineage-restricted at defined stages. Lin-c-Kit+Sca-1+Flt3+ cells, termed lymphoid-primed multipotent progenitors (LMPPs), have lost megakaryocyte and erythroid potential but are heterogeneous in their fate. Here, through single-cell RNA sequencing, we identify the expression of Dach1 and associated genes in this fraction as being coexpressed with myeloid/stem genes but inversely correlated with lymphoid genes. Through generation of Dach1-GFP reporter mice, we identify a transcriptionally and functionally unique Dach1-GFP- subpopulation within LMPPs with lymphoid potential with low to negligible classic myeloid potential. We term these 'lymphoid-primed progenitors' (LPPs). These findings define an early definitive branch point of lymphoid development in hematopoiesis and a means for prospective isolation of LPPs.


Asunto(s)
Biomarcadores , Proteínas del Ojo/metabolismo , Genómica , Células Progenitoras Linfoides/metabolismo , Análisis de la Célula Individual , Animales , Células Cultivadas , Biología Computacional/métodos , Proteínas del Ojo/genética , Perfilación de la Expresión Génica , Genómica/métodos , Hematopoyesis/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Células Progenitoras Linfoides/citología , Células Progenitoras Linfoides/inmunología , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteómica , Análisis de la Célula Individual/métodos
2.
Nature ; 614(7947): 343-348, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36697821

RESUMEN

Transcriptional enhancer elements are responsible for orchestrating the temporal and spatial control over gene expression that is crucial for programming cell identity during development1-3. Here we describe a novel enhancer element that is important for regulating the expression of Prox1 in lymphatic endothelial cells. This evolutionarily conserved enhancer is bound by key lymphatic transcriptional regulators including GATA2, FOXC2, NFATC1 and PROX1. Genome editing of the enhancer to remove five nucleotides encompassing the GATA2-binding site resulted in perinatal death of homozygous mutant mice due to profound lymphatic vascular defects. Lymphatic endothelial cells in enhancer mutant mice exhibited reduced expression of genes characteristic of lymphatic endothelial cell identity and increased expression of genes characteristic of haemogenic endothelium, and acquired the capacity to generate haematopoietic cells. These data not only reveal a transcriptional enhancer element important for regulating Prox1 expression and lymphatic endothelial cell identity but also demonstrate that the lymphatic endothelium has haemogenic capacity, ordinarily repressed by Prox1.


Asunto(s)
Células Endoteliales , Elementos de Facilitación Genéticos , Hematopoyesis , Vasos Linfáticos , Animales , Ratones , Células Endoteliales/metabolismo , Elementos de Facilitación Genéticos/genética , Hematopoyesis/genética , Proteínas de Homeodominio/metabolismo , Vasos Linfáticos/citología , Vasos Linfáticos/metabolismo , Factores de Transcripción/metabolismo
3.
Blood ; 143(4): 342-356, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37922495

RESUMEN

ABSTRACT: Glycoprotein Ibα (GPIbα) is expressed on the surface of platelets and megakaryocytes (MKs) and anchored to the membrane skeleton by filamin A (flnA). Although GPIb and flnA have fundamental roles in platelet biogenesis, the nature of this interaction in megakaryocyte biology remains ill-defined. We generated a mouse model expressing either human wild-type (WT) GPIbα (hGPIbαWT) or a flnA-binding mutant (hGPIbαFW) and lacking endogenous mouse GPIbα. Mice expressing the mutant GPIbα transgene exhibited macrothrombocytopenia with preserved GPIb surface expression. Platelet clearance was normal and differentiation of MKs to proplatelets was unimpaired in hGPIbαFW mice. The most striking abnormalities in hGPIbαFW MKs were the defective formation of the demarcation membrane system (DMS) and the redistribution of flnA from the cytoplasm to the peripheral margin of MKs. These abnormalities led to disorganized internal MK membranes and the generation of enlarged megakaryocyte membrane buds. The defective flnA-GPIbα interaction also resulted in misdirected release of buds away from the vasculature into bone marrow interstitium. Restoring the linkage between flnA and GPIbα corrected the flnA redistribution within MKs and DMS ultrastructural defects as well as restored normal bud size and release into sinusoids. These studies define a new mechanism of macrothrombocytopenia resulting from dysregulated MK budding. The link between flnA and GPIbα is not essential for the MK budding process, however, it plays a major role in regulating the structure of the DMS, bud morphogenesis, and the localized release of buds into the circulation.


Asunto(s)
Megacariocitos , Complejo GPIb-IX de Glicoproteína Plaquetaria , Trombocitopenia , Animales , Humanos , Ratones , Plaquetas/metabolismo , Citoplasma/metabolismo , Filaminas/genética , Filaminas/metabolismo , Megacariocitos/metabolismo , Morfogénesis , Complejo GPIb-IX de Glicoproteína Plaquetaria/genética , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Trombocitopenia/genética , Trombocitopenia/metabolismo
4.
Genomics ; 116(2): 110793, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38220132

RESUMEN

Single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful tool for understanding cellular heterogeneity and function. However the choice of sample multiplexing reagents can impact data quality and experimental outcomes. In this study, we compared various multiplexing reagents, including MULTI-Seq, Hashtag antibody, and CellPlex, across diverse sample types such as human peripheral blood mononuclear cells (PBMCs), mouse embryonic brain and patient-derived xenografts (PDXs). We found that all multiplexing reagents worked well in cell types robust to ex vivo manipulation but suffered from signal-to-noise issues in more delicate sample types. We compared multiple demultiplexing algorithms which differed in performance depending on data quality. We find that minor improvements to laboratory workflows such as titration and rapid processing are critical to optimal performance. We also compared the performance of fixed scRNA-Seq kits and highlight the advantages of the Parse Biosciences kit for fragile samples. Highly multiplexed scRNA-Seq experiments require more sequencing resources, therefore we evaluated CRISPR-based destruction of non-informative genes to enhance sequencing value. Our comprehensive analysis provides insights into the selection of appropriate sample multiplexing reagents and protocols for scRNA-Seq experiments, facilitating more accurate and cost-effective studies.


Asunto(s)
Leucocitos Mononucleares , Análisis de la Célula Individual , Humanos , Animales , Ratones , RNA-Seq , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Algoritmos , Perfilación de la Expresión Génica/métodos
5.
Blood ; 139(15): 2355-2360, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35148538

RESUMEN

Whether increasing platelet counts in fetal and neonatal alloimmune thrombocytopenia (FNAIT) is effective at preventing intracerebral hemorrhage (ICH) has been a subject of debate. The crux of the matter has been whether thrombocytopenia is the major driver of ICH in diseases such as FNAIT. We recently demonstrated in mice that severe thrombocytopenia was sufficient to drive ICH in utero and in early neonatal life. It remains unclear what degree of thrombocytopenia is required to drive ICH and for how long after birth thrombocytopenia can cause ICH. By inducing a thrombocytopenic range, we demonstrate that there is a large buffer zone of mild thrombocytopenia that does not result in ICH, that ICH becomes probabilistic at 40% of the normal platelet number, and that ICH becomes fully penetrant below 10% of the normal platelet number. We also demonstrate that although the neonatal mouse is susceptible to thrombocytopenia-induced ICH, this sensitivity is rapidly lost between postnatal days 7 and 14. These findings provide important insights into the risk of in utero ICH with varying degrees of thrombocytopenia and into defining the developmental high-risk period for thrombocytopenia-driven ICH in a mouse model of FNAIT.


Asunto(s)
Antígenos de Plaqueta Humana , Trombocitopenia Neonatal Aloinmune , Animales , Hemorragia Cerebral , Femenino , Feto , Humanos , Ratones , Embarazo , Atención Prenatal
6.
Blood ; 138(10): 885-897, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34189583

RESUMEN

Intracerebral hemorrhage (ICH) has a devastating impact on the neonatal population. Whether thrombocytopenia is sufficient to cause ICH in neonates is still being debated. In this study, we comprehensively investigated the consequences of severe thrombocytopenia on the integrity of the cerebral vasculature by using 2 orthogonal approaches: by studying embryogenesis in the Nfe2-/- mouse line and by using biologics (anti-GP1Bα antibodies) to induce severe thrombocytopenia at defined times during development. By using a mouse model, we acquired data demonstrating that platelets are required throughout fetal development and into neonatal life for maintaining the integrity of the cerebral vasculature to prevent hemorrhage and that the location of cerebral hemorrhage is dependent on when thrombocytopenia occurs during development. Importantly, this study demonstrates that fetal and neonatal thrombocytopenia-associated ICH occurs within regions of the brain which, in humans, could lead to neurologic damage.


Asunto(s)
Hemorragia Cerebral/metabolismo , Feto/metabolismo , Trombocitopenia/metabolismo , Animales , Animales Recién Nacidos , Hemorragia Cerebral/genética , Hemorragia Cerebral/patología , Feto/patología , Ratones , Ratones Noqueados , Gravedad del Paciente , Trombocitopenia/genética , Trombocitopenia/patología
7.
Immunol Cell Biol ; 99(10): 1006-1010, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34664303

RESUMEN

We hypothesize that thrombosis with thrombocytopenia syndrome recently described after administration of adenovirus-vectored vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurs as a result of the unique properties of the adenovirus vectors, which can have widespread biodistribution throughout the body. The antigen is delivered to megakaryocyte cells, which act as part of the primary immune system and distribute the antigen within progeny platelets, also a key component of the immune system. The interaction of the antigen induces preformed antiplatelet factor 4 (PF4) antibodies to bind to PF4-heparan sulfate complexes in the absence of exogenous heparin, at sites where the heparan sulfate concentration in the vascular glycocalyx is optimal for complex formation, causing thrombosis and thrombocytopenia as observed clinically. This hypothesis is testable in cell culture and animal models, and potentially in vivo, and if proven correct has significant implications for vaccine development and our understanding of the links between the coagulation and immune systems.


Asunto(s)
COVID-19 , Trombocitopenia , Trombosis , Vacunas , Adenoviridae , Animales , Humanos , SARS-CoV-2 , Distribución Tisular , Vacunación
8.
Genes Dev ; 25(3): 251-62, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21245161

RESUMEN

Although many genes are known to be critical for early hematopoiesis in the embryo, it remains unclear whether distinct regulatory pathways exist to control hematopoietic specification versus hematopoietic stem cell (HSC) emergence and function. Due to their interaction with key regulators of hematopoietic commitment, particular interest has focused on the role of the ETS family of transcription factors; of these, ERG is predicted to play an important role in the initiation of hematopoiesis, yet we do not know if or when ERG is required. Using in vitro and in vivo models of hematopoiesis and HSC development, we provide strong evidence that ERG is at the center of a distinct regulatory program that is not required for hematopoietic specification or differentiation but is critical for HSC maintenance during embryonic development. We show that, from the fetal period, ERG acts as a direct upstream regulator of Gata2 and Runx1 gene activity. Without ERG, physiological HSC maintenance fails, leading to the rapid exhaustion of definitive hematopoiesis.


Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Proteínas Oncogénicas/metabolismo , Animales , Células Cultivadas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Factor de Transcripción GATA2/metabolismo , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Oncogénicas/genética , Factores de Transcripción , Regulador Transcripcional ERG
9.
Blood ; 126(6): 807-16, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25995324

RESUMEN

The thrombopoietic environment of the neonate is established during prenatal life; therefore, a comprehensive understanding of platelet-forming cell development during embryogenesis is critical to understanding the etiology of early-onset thrombocytopenia. The recent discovery that the first platelet-forming cells of the conceptus are not megakaryocytes (MKs) but diploid platelet-forming cells (DPFCs) revealed a previously unappreciated complexity in thrombopoiesis. This raises important questions, including the following. When do conventional MKs appear? Do pathogenic genetic lesions of adult MKs affect DPFCs? What role does myeloproliferative leukemia virus (MPL), a key regulator of adult megakaryopoiesis, play in prenatal platelet-forming lineages? We performed a comprehensive study to determine the spatial and temporal appearance of prenatal platelet-forming lineages. We demonstrate that DPFCs originate in the yolk sac and then rapidly migrate to other extra- and intraembryonic tissues. Using gene disruption models of Gata1 and Nfe2, we demonstrate that perturbing essential adult MK genes causes an analogous phenotype in the early embryo before the onset of hematopoietic stem/progenitor cell-driven (definitive) hematopoiesis. Finally, we present the surprising finding that DPFC and MK commitment from their respective precursors is MPL independent in vivo but that completion of MK differentiation and establishment of the prenatal platelet mass is dependent on MPL expression.


Asunto(s)
Plaquetas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Megacariocitos/metabolismo , Receptores de Trombopoyetina/genética , Trombopoyesis/genética , Saco Vitelino/metabolismo , Animales , Plaquetas/citología , Diferenciación Celular , Linaje de la Célula/genética , Desarrollo Embrionario/genética , Factor de Transcripción GATA1/deficiencia , Factor de Transcripción GATA1/genética , Eliminación de Gen , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Megacariocitos/citología , Ratones , Ratones Noqueados , Subunidad p45 del Factor de Transcripción NF-E2/deficiencia , Subunidad p45 del Factor de Transcripción NF-E2/genética , Receptores de Trombopoyetina/metabolismo , Transcripción Genética , Saco Vitelino/citología , Saco Vitelino/crecimiento & desarrollo
10.
Blood ; 124(17): 2725-9, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25079356

RESUMEN

In this study, we test the assumption that the hematopoietic progenitor/colony-forming cells of the embryonic yolk sac (YS), which are endowed with megakaryocytic potential, differentiate into the first platelet-forming cells in vivo. We demonstrate that from embryonic day (E) 8.5 all megakaryocyte (MK) colony-forming cells belong to the conventional hematopoietic progenitor cell (HPC) compartment. Although these cells are indeed capable of generating polyploid MKs, they are not the source of the first platelet-forming cells. We show that proplatelet formation first occurs in a unique and previously unrecognized lineage of diploid platelet-forming cells, which develop within the YS in parallel to HPCs but can be specified in the E8.5 Runx1-null embryo despite the absence of the progenitor cell lineage.


Asunto(s)
Linaje de la Célula/genética , Diploidia , Embrión de Mamíferos/metabolismo , Células Progenitoras de Megacariocitos/metabolismo , Megacariocitos/metabolismo , Poliploidía , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Regulación del Desarrollo de la Expresión Génica , Células Progenitoras de Megacariocitos/citología , Megacariocitos/citología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de Tiempo , Transcriptoma , Saco Vitelino/citología , Saco Vitelino/embriología , Saco Vitelino/metabolismo
12.
Development ; 138(6): 1017-31, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21343360

RESUMEN

Definitive hematopoietic stem cells (HSCs) lie at the foundation of the adult hematopoietic system and provide an organism throughout its life with all blood cell types. Several tissues demonstrate hematopoietic activity at early stages of embryonic development, but which tissue is the primary source of these important cells and what are the early embryonic ancestors of definitive HSCs? Here, we review recent advances in the field of HSC research that have shed light on such questions, while setting them into a historical context, and discuss key issues currently circulating in this field.


Asunto(s)
Desarrollo Embrionario/fisiología , Células Madre Hematopoyéticas/fisiología , Sistema Hematopoyético/embriología , Adulto , Animales , Investigaciones con Embriones , Embrión de Mamíferos , Hematopoyesis/fisiología , Humanos , Modelos Biológicos
13.
Blood ; 127(19): 2267-8, 2016 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-27206663
14.
Nat Cell Biol ; 24(8): 1211-1225, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35902769

RESUMEN

Mouse haematopoietic stem cells (HSCs) first emerge at embryonic day 10.5 (E10.5), on the ventral surface of the dorsal aorta, by endothelial-to-haematopoietic transition. We investigated whether mesenchymal stem cells, which provide an essential niche for long-term HSCs (LT-HSCs) in the bone marrow, reside in the aorta-gonad-mesonephros and contribute to the development of the dorsal aorta and endothelial-to-haematopoietic transition. Here we show that mesoderm-derived PDGFRA+ stromal cells (Mesp1der PSCs) contribute to the haemogenic endothelium of the dorsal aorta and populate the E10.5-E11.5 aorta-gonad-mesonephros but by E13.5 were replaced by neural-crest-derived PSCs (Wnt1der PSCs). Co-aggregating non-haemogenic endothelial cells with Mesp1der PSCs but not Wnt1der PSCs resulted in activation of a haematopoietic transcriptional programme in endothelial cells and generation of LT-HSCs. Dose-dependent inhibition of PDGFRA or BMP, WNT and NOTCH signalling interrupted this reprogramming event. Together, aorta-gonad-mesonephros Mesp1der PSCs could potentially be harnessed to manufacture LT-HSCs from endothelium.


Asunto(s)
Hemangioblastos , Mesonefro , Animales , Aorta , Hematopoyesis/genética , Células Madre Hematopoyéticas , Mesodermo , Ratones
15.
Nat Cell Biol ; 23(3): 219-231, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33649477

RESUMEN

Regulation of haematopoietic stem and progenitor cell (HSPC) fate is crucial during homeostasis and under stress conditions. Here we examine the aetiology of the Flt3 ligand (Flt3L)-mediated increase of type 1 conventional dendritic cells (cDC1s). Using cellular barcoding we demonstrate this occurs through selective clonal expansion of HSPCs that are primed to produce cDC1s and not through activation of cDC1 fate by other HSPCs. In particular, multi/oligo-potent clones selectively amplify their cDC1 output, without compromising the production of other lineages, via a process we term tuning. We then develop Divi-Seq to simultaneously profile the division history, surface phenotype and transcriptome of individual HSPCs. We discover that Flt3L-responsive HSPCs maintain a proliferative 'early progenitor'-like state, leading to the selective expansion of multiple transitional cDC1-primed progenitor stages that are marked by Irf8 expression. These findings define the mechanistic action of Flt3L through clonal tuning, which has important implications for other models of 'emergency' haematopoiesis.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Hematopoyesis/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Proteínas de la Membrana/farmacología , RNA-Seq , Análisis de la Célula Individual , Transcriptoma/efectos de los fármacos , Animales , Linaje de la Célula , Células Cultivadas , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/metabolismo , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo
16.
J Exp Med ; 217(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32706855

RESUMEN

How platelets are produced by megakaryocytes in vivo remains controversial despite more than a century of investigation. Megakaryocytes readily produce proplatelet structures in vitro; however, visualization of platelet release from proplatelets in vivo has remained elusive. We show that within the native prenatal and adult environments, the frequency and rate of proplatelet formation is incompatible with the physiological demands of platelet replacement. We resolve this inconsistency by performing in-depth analysis of plasma membrane budding, a cellular process that has previously been dismissed as a source of platelet production. Our studies demonstrate that membrane budding results in the sustained release of platelets directly into the peripheral circulation during both fetal and adult life without induction of cell death or proplatelet formation. In support of this model, we demonstrate that in mice deficient for NF-E2 (the thrombopoietic master regulator), the absence of membrane budding correlates with failure of in vivo platelet production. Accordingly, we propose that membrane budding, rather than proplatelet formation, supplies the majority of the platelet biomass.


Asunto(s)
Plaquetas/citología , Membrana Celular/metabolismo , Animales , Plaquetas/metabolismo , Plaquetas/ultraestructura , Células de la Médula Ósea/citología , Linaje de la Célula , Membrana Celular/ultraestructura , Bases de Datos como Asunto , Embrión de Mamíferos/citología , Feto/citología , Regulación de la Expresión Génica , Imagenología Tridimensional , Integrasas/metabolismo , Hígado/embriología , Megacariocitos/citología , Megacariocitos/metabolismo , Ratones Endogámicos C57BL , Ploidias , Reproducibilidad de los Resultados , Cráneo/citología
17.
Genesis ; 47(5): 346-51, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19370754

RESUMEN

Cellular reaggregation methods have been used to generate in vitro organotypic cultures as a means to elucidate the cellular and molecular requirements of organogenesis. However, reproducibility from experiment to experiment has remained problematic and furthermore, current protocols do not support reaggregation of many important tissues. Here, using the thymus as a model organ, we present a novel reaggregation method termed "compaction reaggregation" that offers improved kinetics of reaggregation and greatly improved efficiency. Using compaction reaggregation we have been able to reaggregate the aorta-gonad- mesonephros region, a tissue that previously proved refractory to commonly used reaggregation methods, enabling the study of hematopoietic stem cell emergence and expansion. Additionally, compaction reaggregation permits the juxtaposition of different cell layers within the aggregated structure thus providing the means to study inductive interactions between different cell populations in vitro.


Asunto(s)
Agregación Celular/fisiología , Linaje de la Célula , Timo/citología , Animales , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Queratinas/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Técnicas de Cultivo de Órganos/métodos , Embarazo , Timo/embriología , Timo/metabolismo
18.
Stem Cell Reports ; 12(5): 1056-1068, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-30956115

RESUMEN

Definitive hematopoietic stem cells (HSCs) first emerge in the aorta-gonad-mesonephros (AGM) region in both mice and humans. An ex vivo culture approach has enabled recapitulation and analysis of murine HSC development. Knowledge of early human HSC development is hampered by scarcity of tissue: analysis of both CFU-C and HSC development in the human embryo is limited. Here, we characterized the spatial distribution and temporal kinetics of CFU-C development within early human embryonic tissues. We then sought to adapt the murine ex vivo culture system to recapitulate human HSC development. We show robust expansion of CFU-Cs and maintenance, but no significant expansion, of human HSCs in culture. Furthermore, we demonstrate that HSCs emerge predominantly in the middle section of the dorsal aorta in our culture system. We conclude that there are important differences between early mouse and human hematopoiesis, which currently hinder the quest to recapitulate human HSC development ex vivo.


Asunto(s)
Aorta/citología , Embrión de Mamíferos/citología , Células Madre Hematopoyéticas/citología , Análisis Espacio-Temporal , Células Madre/citología , Animales , Proliferación Celular/fisiología , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Embrión de Mamíferos/embriología , Gónadas/citología , Hematopoyesis/fisiología , Trasplante de Células Madre Hematopoyéticas/métodos , Xenoinjertos , Humanos , Subunidad gamma Común de Receptores de Interleucina/deficiencia , Subunidad gamma Común de Receptores de Interleucina/genética , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID
19.
Nat Commun ; 7: 10784, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26952187

RESUMEN

During embryonic development, adult haematopoietic stem cells (HSCs) emerge preferentially in the ventral domain of the aorta in the aorta-gonad-mesonephros (AGM) region. Several signalling pathways such as Notch, Wnt, Shh and RA are implicated in this process, yet how these interact to regulate the emergence of HSCs has not previously been described in mammals. Using a combination of ex vivo and in vivo approaches, we report here that stage-specific reciprocal dorso-ventral inductive interactions and lateral input from the urogenital ridges are required to drive HSC development in the aorta. Our study strongly suggests that these inductive interactions in the AGM region are mediated by the interplay between spatially polarized signalling pathways. Specifically, Shh produced in the dorsal region of the AGM, stem cell factor in the ventral and lateral regions, and BMP inhibitory signals in the ventral tissue are integral parts of the regulatory system involved in the development of HSCs.


Asunto(s)
Aorta/metabolismo , Gónadas/metabolismo , Células Madre Hematopoyéticas/metabolismo , Mesonefro/metabolismo , Transducción de Señal , Animales , Aorta/embriología , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Femenino , Gónadas/embriología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Masculino , Mesonefro/embriología , Ratones Endogámicos C57BL
20.
J Exp Med ; 208(6): 1305-15, 2011 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-21624936

RESUMEN

The aorta-gonad-mesonephros region plays an important role in hematopoietic stem cell (HSC) development during mouse embryogenesis. The vascular endothelial cadherin⁺ CD45⁺ (VE-cad⁺CD45⁺) population contains the major type of immature pre-HSCs capable of developing into long-term repopulating definitive HSCs. In this study, we developed a new coaggregation culture system, which supports maturation of a novel population of CD45-negative (VE-cad⁺CD45⁻CD41⁺) pre-HSCs into definitive HSCs. The appearance of these pre-HSCs precedes development of the VE-cad⁺CD45⁺ pre-HSCs (termed here type I and type II pre-HSCs, respectively), thus establishing a hierarchical directionality in the developing HSC lineage. By labeling the luminal surface of the dorsal aorta, we show that both type I and type II pre-HSCs are distributed broadly within the endothelial and subendothelial aortic layers, in contrast to mature definitive HSCs which localize to the aortic endothelial layer. In agreement with expression of CD41 in pre-HSCs, in vivo CD41-Cre-mediated genetic tagging occurs in embryonic pre-HSCs and persists in all lymphomyeloid lineages of the adult animal.


Asunto(s)
Células Madre Hematopoyéticas/citología , Antígenos Comunes de Leucocito/biosíntesis , Animales , Aorta/metabolismo , Cadherinas/metabolismo , Linaje de la Célula , Separación Celular , Endotelio Vascular/citología , Citometría de Flujo , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Modelos Genéticos , Fenotipo , Glicoproteína IIb de Membrana Plaquetaria/biosíntesis , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA