Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 33(3): 284-298, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-37934801

RESUMEN

The sporadic nature of DUX4 expression in FSHD muscle challenges comparative transcriptome analyses between FSHD and control samples. A variety of DUX4 and FSHD-associated transcriptional changes have been identified, but bulk RNA-seq strategies prohibit comprehensive analysis of their spatiotemporal relation, interdependence and role in the disease process. In this study, we used single-nucleus RNA-sequencing of nuclei isolated from patient- and control-derived multinucleated primary myotubes to investigate the cellular heterogeneity in FSHD. Taking advantage of the increased resolution in snRNA-sequencing of fully differentiated myotubes, two distinct populations of DUX4-affected nuclei could be defined by their transcriptional profiles. Our data provides insights into the differences between these two populations and suggests heterogeneity in two well-known FSHD-associated transcriptional aberrations: increased oxidative stress and inhibition of myogenic differentiation. Additionally, we provide evidence that DUX4-affected nuclei share transcriptome features with early embryonic cells beyond the well-described cleavage stage, progressing into the 8-cell and blastocyst stages. Altogether, our data suggests that the FSHD transcriptional profile is defined by a mixture of individual and sometimes mutually exclusive DUX4-induced responses and cellular state-dependent downstream effects.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Humanos , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Transcriptoma/genética , Proteínas de Homeodominio/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Estrés Oxidativo/genética , Apoptosis , Músculo Esquelético/metabolismo , Regulación de la Expresión Génica/genética
2.
Hum Mol Genet ; 33(8): 698-708, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38268317

RESUMEN

Identifying the aberrant expression of DUX4 in skeletal muscle as the cause of facioscapulohumeral dystrophy (FSHD) has led to rational therapeutic development and clinical trials. Several studies support the use of MRI characteristics and the expression of DUX4-regulated genes in muscle biopsies as biomarkers of FSHD disease activity and progression. We performed lower-extremity MRI and muscle biopsies in the mid-portion of the tibialis anterior (TA) muscles bilaterally in FSHD subjects and validated our prior reports of the strong association between MRI characteristics and expression of genes regulated by DUX4 and other gene categories associated with FSHD disease activity. We further show that measurements of normalized fat content in the entire TA muscle strongly predict molecular signatures in the mid-portion of the TA, indicating that regional biopsies can accurately measure progression in the whole muscle and providing a strong basis for inclusion of MRI and molecular biomarkers in clinical trial design. An unanticipated finding was the strong correlations of molecular signatures in the bilateral comparisons, including markers of B-cells and other immune cell populations, suggesting that a systemic immune cell infiltration of skeletal muscle might have a role in disease progression.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Humanos , Distrofia Muscular Facioescapulohumeral/diagnóstico por imagen , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Proteínas de Homeodominio/genética , Ensayos Clínicos como Asunto , Músculo Esquelético/metabolismo , Imagen por Resonancia Magnética , Biomarcadores/metabolismo , Progresión de la Enfermedad
3.
PLoS Biol ; 21(9): e3002317, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37747887

RESUMEN

Translational control is critical for cell fate transitions during development, lineage specification, and tumorigenesis. Here, we show that the transcription factor double homeobox protein 4 (DUX4), and its previously characterized transcriptional program, broadly regulates translation to change the cellular proteome. DUX4 is a key regulator of zygotic genome activation in human embryos, whereas misexpression of DUX4 causes facioscapulohumeral muscular dystrophy (FSHD) and is associated with MHC-I suppression and immune evasion in cancer. We report that translation initiation and elongation factors are disrupted downstream of DUX4 expression in human myoblasts. Genome-wide translation profiling identified mRNAs susceptible to DUX4-induced translation inhibition, including those encoding antigen presentation factors and muscle lineage proteins, while DUX4-induced mRNAs were robustly translated. Endogenous expression of DUX4 in human FSHD myotubes and cancer cell lines also correlated with reduced protein synthesis and MHC-I presentation. Our findings reveal that DUX4 orchestrates cell state conversion by suppressing the cellular proteome while maintaining translation of DUX4-induced mRNAs to promote an early developmental program.


Asunto(s)
Proteínas de Homeodominio , Distrofia Muscular Facioescapulohumeral , Factores de Transcripción , Humanos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Proteoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Hum Mol Genet ; 32(11): 1864-1874, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-36728804

RESUMEN

Human DUX4 and its mouse ortholog Dux are normally expressed in the early embryo-the 4-cell or 2-cell cleavage stage embryo, respectively-and activate a portion of the first wave of zygotic gene expression. DUX4 is epigenetically suppressed in nearly all somatic tissue, whereas facioscapulohumeral dystrophy (FSHD)-causing mutations result in its aberrant expression in skeletal muscle, transcriptional activation of the early embryonic program and subsequent muscle pathology. Although DUX4 and Dux both activate an early totipotent transcriptional program, divergence of their DNA binding domains limits the use of DUX4 expressed in mice as a preclinical model for FSHD. In this study, we identify the porcine DUXC messenger ribonucleic acid expressed in early development and show that both pig DUXC and human DUX4 robustly activate a highly similar early embryonic program in pig muscle cells. These results support further investigation of pig preclinical models for FSHD.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Humanos , Animales , Ratones , Porcinos , Distrofia Muscular Facioescapulohumeral/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/metabolismo
5.
Hum Mol Genet ; 31(10): 1694-1704, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34888646

RESUMEN

Mis-expression of DUX4 in skeletal muscle causes facioscapulohumeral muscular dystrophy (FSHD). Human DUX4 and mouse Dux are retrogenes derived from retrotransposition of the mRNA from the parental DUXC gene. Primates and rodents have lost the parental DUXC gene, and it is unknown whether DUXC had a similar role in driving an early pluripotent transcriptional program. Dogs and other Laurasiatherians have retained DUXC, providing an opportunity to determine the functional similarity to the retrotransposed DUX4 and Dux. Here, we identify the expression of two isoforms of DUXC mRNA in canine testis tissues: one encoding the canonical double homeodomain protein (DUXC), similar to DUX4/Dux, and a second that includes an in-frame alternative exon that disrupts the conserved amino acid sequence of the first homeodomain (DUXC-ALT). The expression of DUXC in canine cells induces a pluripotent program similar to DUX4 and Dux and induces the expression of a similar set of retrotransposons of the ERV/MaLR and LINE-1 families, as well as pericentromeric satellite repeats; whereas DUXC-ALT did not robustly activate gene expression in these assays. Important for preclinical models of FSHD, human DUX4 and canine DUXC show higher conservation of their homeodomains and corresponding binding motifs compared with the conservation between human DUX4 and mouse Dux, and human DUX4 activates a highly similar transcriptional program in canine cells. Together, these findings show that retrotransposition resulted in the loss of an alternatively spliced isoform and that DUXC containing mammals might be good candidates for certain preclinical models ofFSHD.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Secuencia de Aminoácidos , Animales , Perros , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Mamíferos/metabolismo , Ratones , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , ARN Mensajero/metabolismo , Retroelementos/genética
6.
Hum Mol Genet ; 31(11): 1821-1829, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34919696

RESUMEN

Advances in understanding the pathophysiology of facioscapulohumeral dystrophy (FSHD) have led to several therapeutic approaches entering clinical trials and an increased need to develop biomarkers of disease activity and progression. Multiple prior studies have shown early elevation of RNAs encoding components of the complement pathways and relatively widespread activated complement complexes by immunodetection in FSHD muscle. The current study tested plasma from two independent cohorts of FSHD and control subjects and found elevated complement components in both FSHD cohorts. Combining subjects from both cohorts identified complement factors that best distinguished FSHD and controls. Within the FSHD group, a subset of subjects showed elevation in multiple complement components. Together these findings suggest the need for future studies to determine whether measurements of complement activation can be used as a non-invasive measurement of FSHD disease activity, progression and/or response to therapies. In addition, with the ongoing expansion of complement therapeutic approaches, consideration for precision-based targeting of this pathway is appropriate.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Biomarcadores , Humanos , Estudios Longitudinales , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/genética
7.
J Med Genet ; 59(2): 180-188, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33436523

RESUMEN

BACKGROUND: Facioscapulohumeral dystrophy (FSHD) is an inherited muscular dystrophy clinically characterised by muscle weakness starting with the facial and upper extremity muscles. A disease model has been developed that postulates that failure in somatic repression of the transcription factor DUX4 embedded in the D4Z4 repeat on chromosome 4q causes FSHD. However, due to the position of the D4Z4 repeat close to the telomere and the complex genetic and epigenetic aetiology of FSHD, there is ongoing debate about the transcriptional deregulation of closely linked genes and their involvement in FSHD. METHOD: Detailed genetic characterisation and gene expression analysis of patients with clinically confirmed FSHD and control individuals. RESULTS: Identification of two FSHD families in which the disease is caused by repeat contraction and DUX4 expression from chromosome 10 due to a de novo D4Z4 repeat exchange between chromosomes 4 and 10. We show that the genetic lesion causal to FSHD in these families is physically separated from other candidate genes on chromosome 4. We demonstrate that muscle cell cultures from affected family members exhibit the characteristic molecular features of FSHD, including DUX4 and DUX4 target gene expression, without showing evidence for transcriptional deregulation of other chromosome 4-specific candidate genes. CONCLUSION: This study shows that in rare situations, FSHD can occur on chromosome 10 due to an interchromosomal rearrangement with the FSHD locus on chromosome 4q. These findings provide further evidence that DUX4 derepression is the dominant disease pathway for FSHD. Hence, therapeutic strategies should focus on DUX4 as the primary target.


Asunto(s)
Cromosomas Humanos Par 10 , Proteínas de Homeodominio/genética , Distrofia Muscular Facioescapulohumeral/genética , Adulto , Células Cultivadas , Puntos de Rotura del Cromosoma , Cromosomas Humanos Par 4 , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Linaje , Secuencias Repetitivas de Ácidos Nucleicos , Transcriptoma
8.
Hum Mol Genet ; 29(6): 1030-1043, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32083293

RESUMEN

Advances in understanding the pathophysiology of facioscapulohumeral dystrophy (FSHD) have led to the discovery of candidate therapeutics, and it is important to identify markers of disease activity to inform clinical trial design. For drugs that inhibit DUX4 expression, measuring DUX4 or DUX4-target gene expression might be an interim measure of drug activity; however, only a subset of FHSD muscle biopsies shows evidence of DUX4 expression. Our prior study showed that MRI T2-STIR-positive muscles had a higher probability of showing DUX4 expression than muscles with normal MRI characteristics. In the current study, we performed a 1-year follow-up assessment of the same muscle with repeat MRI and muscle biopsy. There was little change in MRI characteristics over the 1-year period and, similar to the initial evaluation, MRI T2-STIR-postive muscles had a higher expression of DUX4-regulated genes, as well as genes associated with inflammation, extracellular matrix and cell cycle. Compared to the initial evaluation, overall the level of expression in these gene categories remained stable over the 1-year period; however, there was some variability for each individual muscle biopsied. The pooled data from both the initial and 1-year follow-up evaluations identified several FSHD subgroups based on gene expression, as well as a set of genes-composed of DUX4-target genes, inflammatory and immune genes and cell cycle control genes-that distinguished all of the FSHD samples from the controls. These candidate markers of disease activity need to be replicated in independent datasets and, if validated, may provide useful measures of disease progression and response to therapy.


Asunto(s)
Biomarcadores/análisis , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Músculo Esquelético/patología , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/patología , RNA-Seq/métodos , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Adulto Joven
9.
Hum Mol Genet ; 28(23): 3997-4011, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31630170

RESUMEN

The DUX4 transcription factor is normally expressed in the cleavage-stage embryo and regulates genes involved in embryonic genome activation. Misexpression of DUX4 in skeletal muscle, however, is toxic and causes facioscapulohumeral muscular dystrophy (FSHD). We recently showed DUX4-induced toxicity is due, in part, to the activation of the double-stranded RNA (dsRNA) response pathway and the accumulation of intranuclear dsRNA foci. Here, we determined the composition of DUX4-induced dsRNAs. We found that a subset of DUX4-induced dsRNAs originate from inverted Alu repeats embedded within the introns of DUX4-induced transcripts and from DUX4-induced dsRNA-forming intergenic transcripts enriched for endogenous retroviruses, Alu and LINE-1 elements. However, these repeat classes were also represented in dsRNAs from cells not expressing DUX4. In contrast, pericentric human satellite II (HSATII) repeats formed a class of dsRNA specific to the DUX4 expressing cells. Further investigation revealed that DUX4 can initiate the bidirectional transcription of normally heterochromatin-silenced HSATII repeats. DUX4-induced HSATII RNAs co-localized with DUX4-induced nuclear dsRNA foci and with intranuclear aggregation of EIF4A3 and ADAR1. Finally, gapmer-mediated knockdown of HSATII transcripts depleted DUX4-induced intranuclear ribonucleoprotein aggregates and decreased DUX4-induced cell death, suggesting that HSATII-formed dsRNAs contribute to DUX4 toxicity.


Asunto(s)
ADN Satélite/genética , Proteínas de Homeodominio/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Línea Celular , ADN Satélite/metabolismo , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Intrones , Modelos Biológicos , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/metabolismo , Mioblastos/metabolismo , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética
10.
Hum Mol Genet ; 28(7): 1064-1075, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30445587

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is characterized by sporadic de-repression of the transcription factor DUX4 in skeletal muscle. DUX4 activates a cascade of muscle disrupting events, eventually leading to muscle atrophy and apoptosis. Yet, how sporadic DUX4 expression leads to the generalized muscle wasting remains unclear. Transcriptome analyses have systematically been challenged by the majority of nuclei being DUX4neg, weakening the DUX4 transcriptome signature. Moreover, DUX4 has been shown to be expressed in a highly dynamic burst-like manner, likely resulting in the detection of the downstream cascade of events long after DUX4 expression itself has faded. Identifying the FSHD transcriptome in individual cells and unraveling the cascade of events leading to FSHD development may therefore provide important insights in the disease process. We employed single-cell RNA sequencing, combined with pseudotime trajectory modeling, to study FSHD disease etiology and cellular progression in human primary myocytes. We identified a small FSHD-specific cell population in all tested patient-derived cultures and detected new genes associated with DUX4 de-repression. We furthermore generated an FSHD cellular progression model, reflecting both the early burst-like DUX4 expression as well as the downstream activation of various FSHD-associated pathways, which allowed us to correlate DUX4 expression signature dynamics with that of regulatory complexes, thereby facilitating the prioritization of epigenetic targets for DUX4 silencing. Single-cell transcriptomics combined with pseudotime modeling thus holds valuable information on FSHD disease etiology and progression that can potentially guide biomarker and target selection for therapy.


Asunto(s)
Distrofia Muscular Facioescapulohumeral/etiología , Distrofia Muscular Facioescapulohumeral/genética , Adulto , Secuencia de Bases , Núcleo Celular/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Humanos , Masculino , Células Musculares , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Cultivo Primario de Células , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
11.
Hum Mol Genet ; 28(3): 476-486, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30312408

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is a common, dominantly inherited disease caused by the epigenetic de-repression of the DUX4 gene, a transcription factor normally repressed in skeletal muscle. As targeted therapies are now possible in FSHD, a better understanding of the relationship between DUX4 activity, muscle pathology and muscle magnetic resonance imaging (MRI) changes is crucial both to understand disease mechanisms and for the design of future clinical trials. Here, we performed MRIs of the lower extremities in 36 individuals with FSHD, followed by needle muscle biopsies in safely accessible muscles. We examined the correlation between MRI characteristics, muscle pathology and expression of DUX4 target genes. Results show that the presence of elevated MRI short tau inversion recovery signal has substantial predictive value in identifying muscles with active disease as determined by histopathology and DUX4 target gene expression. In addition, DUX4 target gene expression was detected only in FSHD-affected muscles and not in control muscles. These results support the use of MRI to identify FSHD muscles most likely to have active disease and higher levels of DUX4 target gene expression and might be useful in early phase therapeutic trials to demonstrate target engagement in therapies aiming to suppress DUX4 expression.


Asunto(s)
Proteínas de Homeodominio/genética , Músculo Esquelético/patología , Distrofia Muscular Facioescapulohumeral/diagnóstico por imagen , Adulto , Anciano , Biopsia , Femenino , Expresión Génica , Proteínas de Homeodominio/biosíntesis , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Distrofia Muscular Facioescapulohumeral/patología , Factores de Transcripción/genética
12.
BMC Musculoskelet Disord ; 22(1): 56, 2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33422031

RESUMEN

BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD) is a patchy and slowly progressive disease of skeletal muscle. MRI short tau inversion recovery (STIR) sequences of patient muscles often show increased hyperintensity that is hypothesized to be associated with inflammation. This is supported by the presence of inflammatory changes on biopsies of STIR-positive muscles. We hypothesized that the STIR positivity would normalize with targeted immunosuppressive therapy. CASE PRESENTATION: 45-year-old male with FSHD type 1 was treated with 12 weeks of immunosuppressive therapy, tacrolimus and prednisone. Tacrolimus was treated to a goal serum trough of > 5 ng/mL and prednisone was tapered every month. Quantitative strength exam, functional outcome measures, and muscle MRI were performed at baseline, week 6, and week 12. The patient reported subjective worsening as reflected in quantitative strength exam. The MRI STIR signal was slightly increased from 0.02 to 0.03 of total muscle; while the T1 fat fraction was stable. Functional outcome measures also were stable. CONCLUSIONS: Immunosuppressive therapy in refractive autoimmune myopathy in other contexts has been shown to reverse STIR signal hyperintensity, however this treatment did not reverse STIR signal in this patient with FSHD. In fact, STIR signal slightly increased throughout the treatment period. This is the first study of using MRI STIR and T1 fat fraction to follow treatment effect in FSHD. We find that STIR might not be a dynamic marker for suppressing inflammation in FSHD.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Músculo Esquelético/diagnóstico por imagen , Distrofia Muscular Facioescapulohumeral/diagnóstico por imagen , Distrofia Muscular Facioescapulohumeral/tratamiento farmacológico , Evaluación de Resultado en la Atención de Salud , Prednisona/uso terapéutico , Tacrolimus/uso terapéutico
13.
BMC Musculoskelet Disord ; 22(1): 262, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33691664

RESUMEN

BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD) is a patchy and slowly progressive disease of skeletal muscle. For MRI to be a useful biomarker in an FSHD clinical trial, it should reliably detect changes over relatively short time-intervals (~ 1 year). We hypothesized that fatty change over the study course would be most likely in muscles already demonstrating disease progression, and that the degree of MRI burden would be correlated with function. METHODS: We studied 36 patients with FSHD and lower-extremity weakness at baseline. Thirty-two patients returned in our 12-month longitudinal observational study. We analyzed DIXON MRI images of 16 lower-extremity muscles in each patient and compared them to quantitative strength measurement and ambulatory functional outcome measures. RESULTS: There was a small shift to higher fat fractions in the summed muscle data for each patient, however individual muscles demonstrated much larger magnitudes of change. The greatest increase in fat fraction was observed in muscles having an intermediate fat replacement at baseline, with minimally (baseline fat fraction < 0.10) or severely (> 0.70) affected muscles less likely to progress. Functional outcome measures did not demonstrate marked change over the interval; however, overall MRI disease burden was correlated with functional outcome measures. Direct comparison of the tibialis anterior (TA) fat fraction and quantitative strength measurement showed a sigmoidal relationship, with steepest drop being when the muscle gets more than ~ 20% fatty replaced. CONCLUSIONS: Assessing MRI changes in 16 lower-extremity muscles across 1 year demonstrated that those muscles having an intermediate baseline fat fraction were more likely to progress. Ambulatory functional outcome measures are generally related to overall muscle MRI burden but remain unchanged in the short term. Quantitative strength measurement of the TA showed a steep loss of strength when more fatty infiltration is present suggesting that MRI may be preferable for following incremental change or modulation with drug therapy.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Músculo Esquelético/diagnóstico por imagen , Distrofia Muscular Facioescapulohumeral/diagnóstico por imagen , Evaluación de Resultado en la Atención de Salud
14.
Genes Dev ; 27(11): 1247-59, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23723416

RESUMEN

Alternate splicing contributes extensively to cellular complexity by generating protein isoforms with divergent functions. However, the role of alternate isoforms in development remains poorly understood. Mef2 transcription factors are essential transducers of cell signaling that modulate differentiation of many cell types. Among Mef2 family members, Mef2D is unique, as it undergoes tissue-specific splicing to generate a muscle-specific isoform. Since the ubiquitously expressed (Mef2Dα1) and muscle-specific (Mef2Dα2) isoforms of Mef2D are both expressed in muscle, we examined the relative contribution of each Mef2D isoform to differentiation. Using both in vitro and in vivo models, we demonstrate that Mef2D isoforms act antagonistically to modulate differentiation. While chromatin immunoprecipitation (ChIP) sequencing analysis shows that the Mef2D isoforms bind an overlapping set of genes, only Mef2Dα2 activates late muscle transcription. Mechanistically, the differential ability of Mef2D isoforms to activate transcription depends on their susceptibility to phosphorylation by protein kinase A (PKA). Phosphorylation of Mef2Dα1 by PKA provokes its association with corepressors. Conversely, exon switching allows Mef2Dα2 to escape this inhibitory phosphorylation, permitting recruitment of Ash2L for transactivation of muscle genes. Thus, our results reveal a novel mechanism in which a tissue-specific alternate splicing event has evolved that permits a ubiquitously expressed transcription factor to escape inhibitory signaling for temporal regulation of gene expression.


Asunto(s)
Empalme Alternativo , Diferenciación Celular/genética , Músculos/citología , Músculos/metabolismo , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Animales , Inmunoprecipitación de Cromatina , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN/metabolismo , Exones/genética , Regulación de la Expresión Génica/genética , Genoma/genética , Factores de Transcripción MEF2 , Ratones , Músculos/enzimología , Mutación/genética , Factores Reguladores Miogénicos/química , Proteínas Nucleares/metabolismo , Especificidad de Órganos/genética , Fosforilación/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética
15.
Hum Mol Genet ; 27(R2): R153-R162, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29718206

RESUMEN

Facioscapulohumeral dystrophy (FSHD) is the third most prevalent muscular dystrophy. A progressive disease, it presents clinically as weakness and wasting of the face, shoulder and upper arm muscles, with later involvement of the trunk and lower extremities. FSHD develops through complex genetic and epigenetic events that converge on a common mechanism of toxicity with mis-expression of the transcription factor double homeobox 4 (DUX4). There is currently no treatment available for FSHD. However, the consensus that ectopic DUX4 expression in skeletal muscle is the root cause of FSHD pathophysiology has allowed research efforts to turn toward cultivating a deeper understanding of DUX4 biology and the pathways that underlie FSHD muscle pathology, and to translational studies aimed at developing targeted therapeutics using ever more sophisticated cell and animal-based models of FSHD. This review summarizes recent advances in our understanding of FSHD, including the regulation and activity of DUX4 in its normal developmental roles as well as its pathological contexts. We highlight how these advances raise new questions and challenges for the field as it moves into the next decade of FSHD research.


Asunto(s)
Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Distrofia Muscular Facioescapulohumeral/fisiopatología , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Humanos , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/embriología , Distrofia Muscular Facioescapulohumeral/genética
16.
Hum Mol Genet ; 27(15): 2644-2657, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29741619

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is caused by insufficient epigenetic repression of D4Z4 macrosatellite repeat where DUX4, an FSHD causing gene is embedded. There are two forms of FSHD, FSHD1 with contraction of D4Z4 repeat and FSHD2 with chromatin compaction defects mostly due to SMCHD1 mutation. Previous reports showed DUX4-induced gene expression changes as well as changes in microRNA expression in FSHD muscle cells. However, a genome wide analysis of small noncoding RNAs that might be regulated by DUX4 or by mutations in SMCHD1 has not been reported yet. Here, we identified several types of small noncoding RNAs including known microRNAs that are differentially expressed in FSHD2 muscle cells compared to control. Although fewer small RNAs were differentially expressed during muscle differentiation in FSHD2 cells compared to controls, most of the known myogenic microRNAs, such as miR1, miR133a and miR206 were induced in both FSHD2 and control muscle cells during differentiation. Our small RNA sequencing data analysis also revealed both DUX4- and SMCHD1-specific changes in FSHD2 muscle cells. Six FSHD2 microRNAs were affected by DUX4 overexpression in control myoblasts, whereas increased expression of tRNAs and 5S rRNAs in FSHD2 muscle cells was largely recapitulated in SMCHD1-depleted control myoblasts. Altogether, our studies suggest that the small noncoding RNA transcriptome changes in FSHD2 might be different from those in FSHD1 and that these differences may provide new diagnostic and therapeutic tools specific to FSHD2.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas de Homeodominio/genética , Distrofia Muscular Facioescapulohumeral/genética , ARN Pequeño no Traducido/genética , Estudios de Casos y Controles , Diferenciación Celular/genética , Regulación de la Expresión Génica , Humanos , MicroARNs/genética , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/fisiología , Mutación , Mioblastos/patología , Mioblastos/fisiología , ARN Ribosómico 5S/genética , ARN de Transferencia/genética , Reproducibilidad de los Resultados
17.
Hum Mol Genet ; 27(4): 716-731, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29281018

RESUMEN

In humans, a copy of the DUX4 retrogene is located in each unit of the D4Z4 macrosatellite repeat that normally comprises 8-100 units. The D4Z4 repeat has heterochromatic features and does not express DUX4 in somatic cells. Individuals with facioscapulohumeral muscular dystrophy (FSHD) have a partial failure of somatic DUX4 repression resulting in the presence of DUX4 protein in sporadic muscle nuclei. Somatic DUX4 derepression is caused by contraction of the D4Z4 repeat to 1-10 units (FSHD1) or by heterozygous mutations in genes responsible for maintaining the D4Z4 chromatin structure in a repressive state (FSHD2). One of the FSHD2 genes is the structural maintenance of chromosomes hinge domain 1 (SMCHD1) gene. SMCHD1 mutations have also been identified in FSHD1; patients carrying a contracted D4Z4 repeat and a SMCHD1 mutation are more severely affected than relatives with only a contracted repeat or a SMCHD1 mutation. To evaluate the modifier role of SMCHD1, we crossbred mice carrying a contracted D4Z4 repeat (D4Z4-2.5 mice) with mice that are haploinsufficient for Smchd1 (Smchd1MommeD1 mice). D4Z4-2.5/Smchd1MommeD1 mice presented with a significantly reduced body weight and developed skin lesions. The same skin lesions, albeit in a milder form, were also observed in D4Z4-2.5 mice, suggesting that reduced Smchd1 levels aggravate disease in the D4Z4-2.5 mouse model. Our study emphasizes the evolutionary conservation of the SMCHD1-dependent epigenetic regulation of the D4Z4 repeat array and further suggests that the D4Z4-2.5/Smchd1MommeD1 mouse model may be used to unravel the function of DUX4 in non-muscle tissues like the skin.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Haploinsuficiencia/fisiología , Animales , Western Blotting , Células Cultivadas , Proteínas Cromosómicas no Histona/genética , Metilación de ADN/genética , Metilación de ADN/fisiología , Fibroblastos/metabolismo , Citometría de Flujo , Haploinsuficiencia/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Queratinocitos/metabolismo , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Piel , Timocitos
18.
J Med Genet ; 56(12): 828-837, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31676591

RESUMEN

BACKGROUND: Facioscapulohumeral dystrophy (FSHD) is associated with partial chromatin relaxation of the DUX4 retrogene containing D4Z4 macrosatellite repeats on chromosome 4, and transcriptional de-repression of DUX4 in skeletal muscle. The common form of FSHD, FSHD1, is caused by a D4Z4 repeat array contraction. The less common form, FSHD2, is generally caused by heterozygous variants in SMCHD1. METHODS: We employed whole exome sequencing combined with Sanger sequencing to screen uncharacterised FSHD2 patients for extra-exonic SMCHD1 mutations. We also used CRISPR-Cas9 genome editing to repair a pathogenic intronic SMCHD1 variant from patient myoblasts. RESULTS: We identified intronic SMCHD1 variants in two FSHD families. In the first family, an intronic variant resulted in partial intron retention and inclusion of the distal 14 nucleotides of intron 13 into the transcript. In the second family, a deep intronic variant in intron 34 resulted in exonisation of 53 nucleotides of intron 34. In both families, the aberrant transcripts are predicted to be non-functional. Deleting the pseudo-exon by CRISPR-Cas9 mediated genome editing in primary and immortalised myoblasts from the index case of the second family restored wild-type SMCHD1 expression to a level that resulted in efficient suppression of DUX4. CONCLUSIONS: The estimated intronic mutation frequency of almost 2% in FSHD2, as exemplified by the two novel intronic SMCHD1 variants identified here, emphasises the importance of screening for intronic variants in SMCHD1. Furthermore, the efficient suppression of DUX4 after restoring SMCHD1 levels by genome editing of the mutant allele provides further guidance for therapeutic strategies.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas de Homeodominio/genética , Distrofia Muscular Facioescapulohumeral/genética , Adulto , Anciano , Alelos , Sistemas CRISPR-Cas/genética , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Cromosomas Humanos Par 4/genética , Metilación de ADN/genética , Femenino , Edición Génica/métodos , Expresión Génica/genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Facioescapulohumeral/fisiopatología , Distrofia Muscular Facioescapulohumeral/terapia , Mutación/genética
19.
PLoS Genet ; 13(3): e1006658, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28273136

RESUMEN

Facioscapulohumeral dystrophy (FSHD) is caused by the mis-expression of DUX4 in skeletal muscle cells. DUX4 is a transcription factor that activates genes normally associated with stem cell biology and its mis-expression in FSHD cells results in apoptosis. To identify genes and pathways necessary for DUX4-mediated apoptosis, we performed an siRNA screen in an RD rhabdomyosarcoma cell line with an inducible DUX4 transgene. Our screen identified components of the MYC-mediated apoptotic pathway and the double-stranded RNA (dsRNA) innate immune response pathway as mediators of DUX4-induced apoptosis. Further investigation revealed that DUX4 expression led to increased MYC mRNA, accumulation of nuclear dsRNA foci, and activation of the dsRNA response pathway in both RD cells and human myoblasts. Nuclear dsRNA foci were associated with aggregation of the exon junction complex component EIF4A3. The elevation of MYC mRNA, dsRNA accumulation, and EIF4A3 nuclear aggregates in FSHD muscle cells suggest that these processes might contribute to FSHD pathophysiology.


Asunto(s)
Apoptosis , Proteínas de Homeodominio/genética , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/patología , Proteínas Proto-Oncogénicas c-myc/genética , ARN Bicatenario/genética , Rabdomiosarcoma/genética , Caspasas/metabolismo , Muerte Celular , Línea Celular , Supervivencia Celular , ARN Helicasas DEAD-box/genética , Factor 4A Eucariótico de Iniciación/genética , Exones , Regulación de la Expresión Génica , Humanos , Inmunidad Innata , Mutación , Mioblastos/metabolismo , ARN Bicatenario/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/genética
20.
Am J Hum Genet ; 98(5): 1020-1029, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27153398

RESUMEN

Facioscapulohumeral dystrophy (FSHD) is associated with somatic chromatin relaxation of the D4Z4 repeat array and derepression of the D4Z4-encoded DUX4 retrogene coding for a germline transcription factor. Somatic DUX4 derepression is caused either by a 1-10 unit repeat-array contraction (FSHD1) or by mutations in SMCHD1, which encodes a chromatin repressor that binds to D4Z4 (FSHD2). Here, we show that heterozygous mutations in DNA methyltransferase 3B (DNMT3B) are a likely cause of D4Z4 derepression associated with low levels of DUX4 expression from the D4Z4 repeat and increased penetrance of FSHD. Recessive mutations in DNMT3B were previously shown to cause immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome. This study suggests that transcription of DUX4 in somatic cells is modified by variations in its epigenetic state and provides a basis for understanding the reduced penetrance of FSHD within families.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Represión Epigenética/genética , Distrofia Muscular Facioescapulohumeral/genética , Mutación/genética , Penetrancia , Secuencias Repetidas en Tándem/genética , Adolescente , Adulto , Anciano , Secuencia de Aminoácidos , Niño , Preescolar , Cromatina/genética , ADN (Citosina-5-)-Metiltransferasas/química , Metilación de ADN , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Linaje , Conformación Proteica , Homología de Secuencia de Aminoácido , ADN Metiltransferasa 3B
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA