Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Comput Biol ; 19(10): e1011503, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37862377

RESUMEN

Populations of cells typically maintain a consistent size, despite cell division rarely being precisely symmetrical. Therefore, cells must possess a mechanism of "size control", whereby the cell volume at birth affects cell-cycle progression. While size control mechanisms have been elucidated in a number of other organisms, it is not yet clear how this mechanism functions in plants. Here, we present a mathematical model of the key interactions in the plant cell cycle. Model simulations reveal that the network of interactions exhibits limit-cycle solutions, with biological switches underpinning both the G1/S and G2/M cell-cycle transitions. Embedding this network model within growing cells, we test hypotheses as to how cell-cycle progression can depend on cell size. We investigate two different mechanisms at both the G1/S and G2/M transitions: (i) differential expression of cell-cycle activator and inhibitor proteins (with synthesis of inhibitor proteins being independent of cell size), and (ii) equal inheritance of inhibitor proteins after cell division. The model demonstrates that both these mechanisms can lead to larger daughter cells progressing through the cell cycle more rapidly, and can thus contribute to cell-size control. To test how these features enable size homeostasis over multiple generations, we then simulated these mechanisms in a cell-population model with multiple rounds of cell division. These simulations suggested that integration of size-control mechanisms at both G1/S and G2/M provides long-term cell-size homeostasis. We concluded that while both size independence and equal inheritance of inhibitor proteins can reduce variations in cell size across individual cell-cycle phases, combining size-control mechanisms at both G1/S and G2/M is essential to maintain size homeostasis over multiple generations. Thus, our study reveals how features of the cell-cycle network enable cell-cycle progression to depend on cell size, and provides a mechanistic understanding of how plant cell populations maintain consistent size over generations.


Asunto(s)
Modelos Teóricos , Células Vegetales , Humanos , Recién Nacido , División Celular , Ciclo Celular/fisiología , Tamaño de la Célula
2.
Biomolecules ; 9(10)2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31557840

RESUMEN

The plant hormone auxin controls almost all aspects of plant development through the gene regulatory properties of auxin response factors (ARFs) which bind so-called auxin responsive elements (AuxREs) in regulatory regions of their target genes. It has been proposed that ARFs interact and cooperate with other transcription factors (TFs) to bind to complex DNA-binding sites harboring cis-elements for several TFs. Complex DNA-binding sites have not been studied systematically for ARF target genes. ETTIN (ETT; ARF3) is a key regulator of gynoecium development. Cooperatively with its interacting partner INDEHISCENT (IND), ETT regulates PINOID (PID), a gene involved in the regulation gynoecium apical development (style development). Here, we mutated two ETT-bound AuxREs within the PID promoter and observed increased style length in gynoecia of plants carrying mutated promoter variants. Furthermore, mutating the AuxREs led to ectopic repression of PID in one developmental context while leading to ectopically upregulated PID expression in another stage. Our data also show that IND associates with the PID promoter in an auxin-sensitive manner. In summary, we demonstrate that targeted mutations of cis-regulatory elements can be used to dissect the importance of single cis-regulatory elements within complex regulatory regions supporting the importance of the ETT-IND interaction for PID regulation. At the same time, our work also highlights the challenges of such studies, as gene regulation is highly robust, and mutations within gene regulatory regions may only display subtle phenotypes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Homeodominio/metabolismo , Ácidos Indolacéticos/farmacología , Proteínas Serina-Treonina Quinasas/genética , Arabidopsis/genética , Flores/genética , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación , Regiones Promotoras Genéticas , Elementos de Respuesta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA