Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cancer Sci ; 115(4): 1114-1128, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38332689

RESUMEN

The direction and magnitude of immune responses are critically affected when dead cells are disposed of. Milk fat globule-epidermal growth factor-factor 8 (MFG-E8) promotes the engulfment of apoptotic normal and cancerous cells without inducing inflammation. We have previously reported that a certain proportion of the cancer cells express abundant MFG-E8, and that such expression is associated with the shorter survival of patients with esophageal cancer who had received chemotherapy before surgery. However, the influence of tumor-derived and systemically existing MFG-E8 on antitumor immune responses has not yet been fully investigated. Herein, we showed that CTL-dependent antitumor immune responses were observed in mice with no or decreased levels of systemic MFG-E8, and that such responses were enhanced further with the administration of anti-PD-1 antibody. In mice with decreased levels of systemic MFG-E8, the dominance of regulatory T cells in tumor-infiltrating lymphocytes was inverted to CD8+ T cell dominance. MFG-E8 expression by tumor cells appears to affect antitumor immune responses only when the level of systemic MFG-E8 is lower than the physiological status. We have also demonstrated in the clinical setting that lower levels of plasma MFG-E8, but not MFG-E8 expression in tumor cells, before the treatment was associated with objective responses to anti-PD-1 therapy in patients with non-small cell lung cancer. These results suggest that systemic MFG-E8 plays a critical role during the immunological initiation process of antigen-presenting cells to increase tumor-specific CTLs. Regulation of the systemic level of MFG-E8 might induce efficient antitumor immune responses and enhance the potency of anti-PD-1 therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Esofágicas , Neoplasias Pulmonares , Animales , Humanos , Ratones , Antígenos de Superficie/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Esofágicas/tratamiento farmacológico , Inflamación/patología , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas de la Leche/metabolismo , Linfocitos T Citotóxicos/metabolismo
2.
Cancer Sci ; 107(2): 123-32, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26663681

RESUMEN

The role of cells expressing stem cell markers deltaNp63 and CD44v has not yet been elucidated in peripheral-type lung squamous cell carcinoma (pLSCC) carcinogenesis. Female A/J mice were painted topically with N-nitroso-tris-chloroethylurea (NTCU) for induction of pLSCC, and the histopathological and molecular characteristics of NTCU-induced lung lesions were examined. Histopathologically, we found atypical bronchiolar hyperplasia, squamous metaplasia, squamous dysplasia, and pLSCCs in the treated mice. Furthermore, we identified deltaNp63(pos)CD44v(pos)CK5/6(pos)CC10(pos) clara cells as key constituents of early precancerous atypical bronchiolar hyperplasia. In addition, deltaNp63(pos)CD44v(pos) cells existed throughout the atypical bronchiolar hyperplasias, squamous metaplasias, squamous dysplasias, and pLSCCs. Overall, our findings suggest that NTCU induces pLSCC through an atypical bronchiolar hyperplasia-metaplasia-dysplasia-SCC sequence in mouse lung bronchioles. Notably, Ki67-positive deltaNp63(pos)CD44v(pos) cancer cells, cancer cells overexpressing phosphorylated epidermal growth factor receptor and signal transducer and activator of transcription 3, and tumor-associated macrophages were all present in far greater numbers in the peripheral area of the pLSCCs compared with the central area. These findings suggest that deltaNp63(pos)CD44v(pos) clara cells in mouse lung bronchioles might be the origin of the NTCU-induced pLSCCs. Our findings also suggest that tumor-associated macrophages may contribute to creating a tumor microenvironment in the peripheral area of pLSCCs that allows deltaNp63(pos)CD44v(pos) cancer cell expansion through activation of epidermal growth factor receptor signaling, and that exerts an immunosuppressive effect through activation of signal transducer and activator of transcription 3 signaling.


Asunto(s)
Carcinoma de Células Escamosas/patología , Neoplasias Pulmonares/patología , Células Madre Neoplásicas/patología , Lesiones Precancerosas/patología , Microambiente Tumoral/inmunología , Animales , Carcinógenos/toxicidad , Carcinoma de Células Escamosas/inmunología , Carmustina/análogos & derivados , Carmustina/toxicidad , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Receptores de Hialuranos/biosíntesis , Receptores de Hialuranos/inmunología , Tolerancia Inmunológica/inmunología , Inmunohistoquímica , Neoplasias Pulmonares/inmunología , Macrófagos/patología , Ratones , Fosfoproteínas/biosíntesis , Fosfoproteínas/inmunología , Transactivadores/biosíntesis , Transactivadores/inmunología , Escape del Tumor/inmunología
3.
J Environ Sci (China) ; 49: 125-130, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28007167

RESUMEN

Arsenic is a well-known human bladder and liver carcinogen, but its exact mechanism of carcinogenicity is not fully understood. Dimethylarsinic acid (DMAV) is a major urinary metabolite of sodium arsenite (iAsIII) and induces urinary bladder cancers in rats. DMAV and iAsIII are negative in in vitro mutagenicity tests. However, their in vivo mutagenicities have not been determined. The purpose of present study is to evaluate the in vivo mutagenicities of DMAV and iAsIII in rat urinary bladder epithelium and liver using gpt delta F344 rats. Ten-week old male gpt delta F344 rats were randomized into 3 groups and administered 0, 92mg/L DMAV, or 87mg/L iAsIII (each 50mg/L As) for 13weeks in the drinking water. In the mutation assay, point mutations are detected in the gpt gene by 6-thioguanine selection (gpt assay) and deletion mutations are identified in the red/gam genes by Spi- selection (Spi- assay). Results of the gpt and Spi- assays showed that DMAV and iAsIII had no effects on the mutant frequencies or mutation spectrum in urinary bladder epithelium or liver. These findings indicate that DMAV and iAsIII are not mutagenic in urinary bladder epithelium or liver in rats.


Asunto(s)
Arsenitos/toxicidad , Ácido Cacodílico/toxicidad , Carcinógenos/toxicidad , Pruebas de Mutagenicidad , Compuestos de Sodio/toxicidad , Animales , Proteínas de Escherichia coli/genética , Hígado , Pentosiltransferasa/genética , Ratas , Ratas Endogámicas F344 , Urotelio
4.
Cancer Med ; 13(3): e7042, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38400666

RESUMEN

BACKGROUND: Liver injury associated with oxaliplatin (L-OHP)-based chemotherapy can significantly impact the treatment outcomes of patients with colorectal cancer liver metastases, especially when combined with surgery. To date, no definitive biomarker that can predict the risk of liver injury has been identified. This study aimed to investigate whether organoids can be used as tools to predict the risk of liver injury. METHODS: We examined the relationship between the clinical signs of L-OHP-induced liver injury and the responses of patient-derived liver organoids in vitro. Organoids were established from noncancerous liver tissues obtained from 10 patients who underwent L-OHP-based chemotherapy and hepatectomy for colorectal cancer. RESULTS: Organoids cultured in a galactose differentiation medium, which can activate the mitochondria of organoids, showed sensitivity to L-OHP cytotoxicity, which was significantly related to clinical liver toxicity induced by L-OHP treatment. Organoids from patients who presented with a high-grade liver injury to the L-OHP regimen showed an obvious increase in mitochondrial superoxide levels and a significant decrease in mitochondrial membrane potential with L-OHP exposure. L-OHP-induced mitochondrial oxidative stress was not observed in the organoids from patients with low-grade liver injury. CONCLUSIONS: These results suggested that L-OHP-induced liver injury may be caused by mitochondrial oxidative damage. Furthermore, patient-derived liver organoids may be used to assess susceptibility to L-OHP-induced liver injury in individual patients.


Asunto(s)
Antineoplásicos , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Neoplasias Colorrectales , Humanos , Oxaliplatino/efectos adversos , Neoplasias Colorrectales/patología , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/tratamiento farmacológico , Organoides/patología , Antineoplásicos/efectos adversos
5.
Endosc Int Open ; 10(1): E82-E87, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35036290

RESUMEN

Background and study aims In patients with pancreatic cancer (PC), patient-derived organoid cultures can be useful tools for personalized drug selection and preclinical evaluation of novel therapies. To establish a less invasive method of creating organoids from a patient's tumor, we examined whether PC organoids can be established using residual samples from saline flushes (RSSFs) during endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA). Methods Five patients with PC who underwent EUS-FNA were enrolled in a prospective study conducted at our institution. RSSFs obtained during EUS-FNA procedures were collected. An organoid culture was considered as established when ≥ 5 passages were successful. Organoid-derived xenografts were created using established organoids. Results EUS-FNA was performed using a 22- or 25-gauge lancet needle without complications. Patient-derived organoids were successfully established in four patients (80.0 %) with the complete medium and medium for the selection of KRAS mutants. Organoid-derived xenografts were successfully created and histologically similar to EUS-FNA samples. Conclusions Patient-derived PC organoids were successfully established using EUS-FNA RSSFs, which are produced as a byproduct of standard manipulations, but are usually not used for diagnosis. This method can be applied to all patients with PC, without additional invasive procedures, and can contribute to the development of personalized medicine and molecular research.

6.
Cancers (Basel) ; 13(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802238

RESUMEN

In the present study, potential molecular biomarkers of NASH hepatocarcinogenesis were investigated using the STAM mice NASH model, characterized by impaired insulin secretion and development of insulin resistance. In this model, 2-days-old C57BL/6N mice were subjected to a single subcutaneous (s.c.) injection of 200 µg streptozotocin (STZ) to induce diabetes mellitus (DM). Four weeks later, mice were administered high-fat diet (HFD) HFD-60 for 14 weeks (STAM group), or fed control diet (STZ group). Eighteen-week-old mice were euthanized to allow macroscopic, microscopic, histopathological, immunohistochemical and proteome analyses. The administration of HFD to STZ-treated mice induced significant fat accumulation and fibrosis development in the liver, which progressed to NASH, and rise of hepatocellular adenomas (HCAs) and carcinomas (HCCs). In 18-week-old animals, a significant increase in the incidence and multiplicity of HCAs and HCCs was found. On the basis of results of proteome analysis of STAM mice HCCs, a novel highly elevated protein in HCCs, cache domain-containing 1 (CACHD1), was chosen as a potential NASH-HCC biomarker candidate. Immunohistochemical assessment demonstrated that STAM mice liver basophilic, eosinophilic and mixed-type altered foci, HCAs and HCCs were strongly positive for CACHD1. The number and area of CACHD1-positive foci, and cell proliferation index in the area of foci in mice of the STAM group were significantly increased compared to that of STZ group. In vitro siRNA knockdown of CACHD1 in human Huh7 and HepG2 liver cancer cell lines resulted in significant inhibition of cell survival and proliferation. Analysis of the proteome of knockdown cells indicated that apoptosis and autophagy processes could be activated. From these results, CACHD1 is an early NASH-associated biomarker of liver preneoplastic and neoplastic lesions, and a potential target protein in DM/NASH-associated hepatocarcinogenesis.

7.
Exp Toxicol Pathol ; 69(1): 1-7, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28029482

RESUMEN

Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. The purpose of the present study was to evaluate the potential toxicity of DPAA when administered to rats in their drinking water for 52 weeks. DPAA was administered to groups 1-4 at concentrations of 0, 5, 10, and 20ppm in their drinking water for 52 weeks. There were no significant differences in the final body weights between the control groups and the treatment groups in male or female rats. In serum biochemistry, in females 20ppm DPAA significantly increased alkaline phosphatase and γ-glitamyl transferase compared to controls, and 10 and 20ppm DPAA significantly increased total cholesterol compared to controls. Absolute and relative liver weights were significantly increased in females treated with 20ppm DPAA compared to the control group. Dilation of the common bile duct outside the papilla of Vater and stenosis of the papilla of Vater was observed in all male and female rats administered 20ppm DPAA. The incidence of intrahepatic bile duct hyperplasia was significantly increased in male and female rats treated with 20ppm DPAA compared to the control groups. These results suggest that DPAA is toxic to the bile duct epithelium in rats. The no-observed adverse effect levels of DPAA were estimated to be 10ppm (0.48mg/kg b.w./day) for males and 5ppm (0.35mg/kg b.w./day) for females under the conditions of this study.


Asunto(s)
Arsenicales/efectos adversos , Conductos Biliares/efectos de los fármacos , Animales , Enfermedad Crónica , Agua Potable , Femenino , Masculino , Ratas , Ratas Endogámicas F344
8.
J Toxicol Sci ; 40(5): 647-56, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26354381

RESUMEN

Based on the findings of epidemiological studies in Japan that occupational exposure to 1,2-dichloropropane (1,2-DCP) was associated with increased cholangiocarcinomas, 1,2-DCP has recently been classified as being carcinogenic to humans (Group 1). However, the cholangiocarcinogenicity of 1,2-DCP has not been demonstrated experimentally, and it was negative for cholangiocarcinogenicity in rats and mice. The present study determined the effects of 1,2-DCP on N-nitrosobis(2-oxopropyl)amine (BOP)-induced cholangiocarcinogenesis in male hamsters. We found that 1,2-DCP did not enhance the development of BOP-induced atypical biliary hyperplasia and did not induce any lesions in liver bile duct when administered alone. Notably, 1,2-DCP had no effect on the proliferative activity of bile duct epithelial cells regardless of BOP-initiation. These results demonstrate that 1,2-DCP lacks promoting effects on BOP-induced cholangiocarcinogenesis and suggest the possibility that 1,2-DCP is not cholangiocarcinogenic to the hamster in the present model. In addition, 1,2-DCP also lacks promoting effects on pancreatic, lung, and renal carcinogenesis. As the occurrence of occupational cholangiocarcinomas in Japan might be attributed to exposure to multiple chemicals, the results of the present study indicate that it will be necessary to determine the cholangiocarcinogenic effects of concurrent exposure of 1,2-DCP and the other halogen solvents to which workers with cholangiocarcinomas were exposed.


Asunto(s)
Neoplasias de los Conductos Biliares/inducido químicamente , Colangiocarcinoma/inducido químicamente , Nitrosaminas , Propano/análogos & derivados , Animales , Modelos Animales de Enfermedad , Masculino , Mesocricetus , Exposición Profesional/efectos adversos , Propano/efectos adversos , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA