Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(19): 3470-3484.e8, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37751741

RESUMEN

Folding of newly synthesized proteins poses challenges for a functional proteome. Dedicated protein quality control (PQC) systems either promote the folding of nascent polypeptides at ribosomes or, if this fails, ensure their degradation. Although well studied for cytosolic protein biogenesis, it is not understood how these processes work for mitochondrially encoded proteins, key subunits of the oxidative phosphorylation (OXPHOS) system. Here, we identify dedicated hubs in proximity to mitoribosomal tunnel exits coordinating mitochondrial protein biogenesis and quality control. Conserved prohibitin (PHB)/m-AAA protease supercomplexes and the availability of assembly chaperones determine the fate of newly synthesized proteins by molecular triaging. The localization of these competing activities in the vicinity of the mitoribosomal tunnel exit allows for a prompt decision on whether newly synthesized proteins are fed into OXPHOS assembly or are degraded.


Asunto(s)
Mitocondrias , Triaje , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Ribosomas/metabolismo , Biosíntesis de Proteínas , Fosforilación Oxidativa , Proteínas Ribosómicas/metabolismo
2.
Nature ; 575(7782): 361-365, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31695197

RESUMEN

Reprogramming of mitochondria provides cells with the metabolic flexibility required to adapt to various developmental transitions such as stem cell activation or immune cell reprogramming, and to respond to environmental challenges such as those encountered under hypoxic conditions or during tumorigenesis1-3. Here we show that the i-AAA protease YME1L rewires the proteome of pre-existing mitochondria in response to hypoxia or nutrient starvation. Inhibition of mTORC1 induces a lipid signalling cascade via the phosphatidic acid phosphatase LIPIN1, which decreases phosphatidylethanolamine levels in mitochondrial membranes and promotes proteolysis. YME1L degrades mitochondrial protein translocases, lipid transfer proteins and metabolic enzymes to acutely limit mitochondrial biogenesis and support cell growth. YME1L-mediated mitochondrial reshaping supports the growth of pancreatic ductal adenocarcinoma (PDAC) cells as spheroids or xenografts. Similar changes to the mitochondrial proteome occur in the tumour tissues of patients with PDAC, suggesting that YME1L is relevant to the pathophysiology of these tumours. Our results identify the mTORC1-LIPIN1-YME1L axis as a post-translational regulator of mitochondrial proteostasis at the interface between metabolism and mitochondrial dynamics.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Metabolismo de los Lípidos , Metaloendopeptidasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Hipoxia de la Célula , Línea Celular , Proliferación Celular , Humanos , Lípidos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metaloendopeptidasas/genética , Proteínas Mitocondriales/genética , Proteolisis
3.
Mol Cell ; 67(3): 471-483.e7, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28712724

RESUMEN

Mutations in mitochondrial acylglycerol kinase (AGK) cause Sengers syndrome, which is characterized by cataracts, hypertrophic cardiomyopathy, and skeletal myopathy. AGK generates phosphatidic acid and lysophosphatidic acid, bioactive phospholipids involved in lipid signaling and the regulation of tumor progression. However, the molecular mechanisms of the mitochondrial pathology remain enigmatic. Determining its mitochondrial interactome, we have identified AGK as a constituent of the TIM22 complex in the mitochondrial inner membrane. AGK assembles with TIMM22 and TIMM29 and supports the import of a subset of multi-spanning membrane proteins. The function of AGK as a subunit of the TIM22 complex does not depend on its kinase activity. However, enzymatically active AGK is required to maintain mitochondrial cristae morphogenesis and the apoptotic resistance of cells. The dual function of AGK as lipid kinase and constituent of the TIM22 complex reveals that disturbances in both phospholipid metabolism and mitochondrial protein biogenesis contribute to the pathogenesis of Sengers syndrome.


Asunto(s)
Cardiomiopatías/enzimología , Catarata/enzimología , Mitocondrias/enzimología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Translocador 1 del Nucleótido Adenina/metabolismo , Antiportadores/metabolismo , Apoptosis , Proteínas de Unión al Calcio/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/patología , Catarata/genética , Catarata/patología , Predisposición Genética a la Enfermedad , Células HEK293 , Células HeLa , Humanos , Mitocondrias/patología , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Complejos Multiproteicos , Mutación , Fenotipo , Fosfolípidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Transporte de Proteínas , Factores de Tiempo , Transfección
4.
EMBO J ; 38(1)2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30420558

RESUMEN

As a consequence of impaired glucose or fatty acid metabolism, bioenergetic stress in skeletal muscles may trigger myopathy and rhabdomyolysis. Genetic mutations causing loss of function of the LPIN1 gene frequently lead to severe rhabdomyolysis bouts in children, though the metabolic alterations and possible therapeutic interventions remain elusive. Here, we show that lipin1 deficiency in mouse skeletal muscles is sufficient to trigger myopathy. Strikingly, muscle fibers display strong accumulation of both neutral and phospholipids. The metabolic lipid imbalance can be traced to an altered fatty acid synthesis and fatty acid oxidation, accompanied by a defect in acyl chain elongation and desaturation. As an underlying cause, we reveal a severe sarcoplasmic reticulum (SR) stress, leading to the activation of the lipogenic SREBP1c/SREBP2 factors, the accumulation of the Fgf21 cytokine, and alterations of SR-mitochondria morphology. Importantly, pharmacological treatments with the chaperone TUDCA and the fatty acid oxidation activator bezafibrate improve muscle histology and strength of lipin1 mutants. Our data reveal that SR stress and alterations in SR-mitochondria contacts are contributing factors and potential intervention targets of the myopathy associated with lipin1 deficiency.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Enfermedades Musculares/genética , Fosfatidato Fosfatasa/genética , Retículo Sarcoplasmático/metabolismo , Ácido Tauroquenodesoxicólico/farmacología , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Transgénicos , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Chaperonas Moleculares/farmacología , Chaperonas Moleculares/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/tratamiento farmacológico , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/patología , Ácido Tauroquenodesoxicólico/uso terapéutico
5.
J Biol Chem ; 296: 100335, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33497623

RESUMEN

Lipid transfer proteins of the Ups1/PRELID1 family facilitate the transport of phospholipids across the intermembrane space of mitochondria in a lipid-specific manner. Heterodimeric complexes of yeast Ups1/Mdm35 or human PRELID1/TRIAP1 shuttle phosphatidic acid (PA) mainly synthesized in the endoplasmic reticulum (ER) to the inner membrane, where it is converted to cardiolipin (CL), the signature phospholipid of mitochondria. Loss of Ups1/PRELID1 proteins impairs the accumulation of CL and broadly affects mitochondrial structure and function. Unexpectedly and unlike yeast cells lacking the CL synthase Crd1, Ups1-deficient yeast cells exhibit glycolytic growth defects, pointing to functions of Ups1-mediated PA transfer beyond CL synthesis. Here, we show that the disturbed intramitochondrial transport of PA in ups1Δ cells leads to altered unfolded protein response (UPR) and mTORC1 signaling, independent of disturbances in CL synthesis. The impaired flux of PA into mitochondria is associated with the increased synthesis of phosphatidylcholine and a reduced phosphatidylethanolamine/phosphatidylcholine ratio in the ER of ups1Δ cells which suppresses the UPR. Moreover, we observed inhibition of target of rapamycin complex 1 (TORC1) signaling in these cells. Activation of either UPR by ER protein stress or of TORC1 signaling by disruption of its negative regulator, the Seh1-associated complex inhibiting TORC1 complex, increased cytosolic protein synthesis, and restored glycolytic growth of ups1Δ cells. These results demonstrate that PA influx into mitochondria is required to preserve ER membrane homeostasis and that its disturbance is associated with impaired glycolytic growth and cellular stress signaling.


Asunto(s)
Mitocondrias/metabolismo , Ácidos Fosfatidicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Transporte Biológico , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Respuesta de Proteína Desplegada
6.
EMBO J ; 37(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29301859

RESUMEN

Intramembrane-cleaving peptidases of the rhomboid family regulate diverse cellular processes that are critical for development and cell survival. The function of the rhomboid protease PARL in the mitochondrial inner membrane has been linked to mitophagy and apoptosis, but other regulatory functions are likely to exist. Here, we identify the START domain-containing protein STARD7 as an intramitochondrial lipid transfer protein for phosphatidylcholine. We demonstrate that PARL-mediated cleavage during mitochondrial import partitions STARD7 to the cytosol and the mitochondrial intermembrane space. Negatively charged amino acids in STARD7 serve as a sorting signal allowing mitochondrial release of mature STARD7 upon cleavage by PARL On the other hand, membrane insertion of STARD7 mediated by the TIM23 complex promotes mitochondrial localization of mature STARD7. Mitochondrial STARD7 is necessary and sufficient for the accumulation of phosphatidylcholine in the inner membrane and for the maintenance of respiration and cristae morphogenesis. Thus, PARL preserves mitochondrial membrane homeostasis via STARD7 processing and is emerging as a critical regulator of protein localization between mitochondria and the cytosol.


Asunto(s)
Proteínas Portadoras/metabolismo , Citosol/metabolismo , Metaloproteasas/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Secuencia de Aminoácidos , Apoptosis , Células HEK293 , Células HeLa , Humanos , Mitofagia , Homología de Secuencia
7.
EMBO J ; 33(6): 578-93, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550258

RESUMEN

The dynamic network of mitochondria fragments under stress allowing the segregation of damaged mitochondria and, in case of persistent damage, their selective removal by mitophagy. Mitochondrial fragmentation upon depolarisation of mitochondria is brought about by the degradation of central components of the mitochondrial fusion machinery. The OMA1 peptidase mediates the degradation of long isoforms of the dynamin-like GTPase OPA1 in the inner membrane. Here, we demonstrate that OMA1-mediated degradation of OPA1 is a general cellular stress response. OMA1 is constitutively active but displays strongly enhanced activity in response to various stress insults. We identify an amino terminal stress-sensor domain of OMA1, which is only present in homologues of higher eukaryotes and which modulates OMA1 proteolysis and activation. OMA1 activation is associated with its autocatalyic degradation, which initiates from both termini of OMA1 and results in complete OMA1 turnover. Autocatalytic proteolysis of OMA1 ensures the reversibility of the response and allows OPA1-mediated mitochondrial fusion to resume upon alleviation of stress. This differentiated stress response maintains the functional integrity of mitochondria and contributes to cell survival.


Asunto(s)
Activación Enzimática/fisiología , GTP Fosfohidrolasas/metabolismo , Metaloproteasas/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Estrés Fisiológico/fisiología , Animales , Centrifugación por Gradiente de Densidad , Electroforesis en Gel de Poliacrilamida , Fibroblastos , Immunoblotting , Metaloproteasas/genética , Ratones , Ratones Noqueados , Microscopía Fluorescente , Proteínas Mitocondriales/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-27542541

RESUMEN

Mitochondrial functions and architecture rely on a defined lipid composition of their outer and inner membranes, which are characterized by a high content of non-bilayer phospholipids such as cardiolipin (CL) and phosphatidylethanolamine (PE). Mitochondrial membrane lipids are synthesized in the endoplasmic reticulum (ER) or within mitochondria from ER-derived precursor lipids, are asymmetrically distributed within mitochondria and can relocate in response to cellular stress. Maintenance of lipid homeostasis thus requires multiple lipid transport processes to be orchestrated within mitochondria. Recent findings identified members of the Ups/PRELI family as specific lipid transfer proteins in mitochondria that shuttle phospholipids between mitochondrial membranes. They cooperate with membrane organizing proteins that preserve the spatial organization of mitochondrial membranes and the formation of membrane contact sites, unravelling an intimate crosstalk of membrane lipid transport and homeostasis with the structural organization of mitochondria. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.


Asunto(s)
Transporte Biológico/fisiología , Mitocondrias/metabolismo , Fosfolípidos/metabolismo , Animales , Cardiolipinas/metabolismo , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Lípidos de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Fosfatidiletanolaminas/metabolismo
9.
EMBO Rep ; 16(7): 824-35, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26071602

RESUMEN

The composition of the mitochondrial membrane is important for its architecture and proper function. Mitochondria depend on a tightly regulated supply of phospholipid via intra-mitochondrial synthesis and by direct import from the endoplasmic reticulum. The Ups1/PRELI-like family together with its mitochondrial chaperones (TRIAP1/Mdm35) represent a unique heterodimeric lipid transfer system that is evolutionary conserved from yeast to man. Work presented here provides new atomic resolution insight into the function of a human member of this system. Crystal structures of free TRIAP1 and the TRIAP1-SLMO1 complex reveal how the PRELI domain is chaperoned during import into the intermembrane mitochondrial space. The structural resemblance of PRELI-like domain of SLMO1 with that of mammalian phoshatidylinositol transfer proteins (PITPs) suggest that they share similar lipid transfer mechanisms, in which access to a buried phospholipid-binding cavity is regulated by conformationally adaptable loops.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Fosfolípidos/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Transporte Biológico , Cristalografía por Rayos X , Retículo Endoplásmico/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Fosfolípidos/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
10.
Mol Cell ; 35(5): 574-85, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19748354

RESUMEN

Ring-shaped AAA+ ATPases control a variety of cellular processes by substrate unfolding and remodeling of macromolecular structures. However, how ATP hydrolysis within AAA+ rings is regulated and coupled to mechanical work is poorly understood. Here we demonstrate coordinated ATP hydrolysis within m-AAA protease ring complexes, conserved AAA+ machines in the inner membrane of mitochondria. ATP binding to one AAA subunit inhibits ATP hydrolysis by the neighboring subunit, leading to coordinated rather than stochastic ATP hydrolysis within the AAA ring. Unbiased genetic screens define an intersubunit signaling pathway involving conserved AAA motifs and reveal an intimate coupling of ATPase activities to central AAA pore loops. Coordinated ATP hydrolysis between adjacent subunits is required for membrane dislocation of substrates, but not for substrate processing. These findings provide insight into how AAA+ proteins convert energy derived from ATP hydrolysis into mechanical work.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Fúngicas/metabolismo , Metaloendopeptidasas/metabolismo , Membranas Mitocondriales/enzimología , Transducción de Señal , Levaduras/enzimología , Proteasas ATP-Dependientes , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Regulación Alostérica , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Secuencia Conservada , Metabolismo Energético , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Humanos , Hidrólisis , Cinética , Metaloendopeptidasas/química , Metaloendopeptidasas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Puntual , Subunidades de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato , Levaduras/genética , Levaduras/crecimiento & desarrollo
11.
EMBO J ; 31(5): 1293-307, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22252130

RESUMEN

Respiratory chain (RC) complexes are organized into supercomplexes forming 'respirasomes'. The mechanism underlying the interdependence of individual complexes is still unclear. Here, we show in human patient cells that the presence of a truncated COX1 subunit leads to destabilization of complex IV (CIV) and other RC complexes. Surprisingly, the truncated COX1 protein is integrated into subcomplexes, the holocomplex and even into supercomplexes, which however are all unstable. Depletion of the m-AAA protease AFG3L2 increases stability of the truncated COX1 and other mitochondrially encoded proteins, whereas overexpression of wild-type AFG3L2 decreases their stability. Both full-length and truncated COX1 proteins physically interact with AFG3L2. Expression of a dominant negative AFG3L2 variant also promotes stabilization of CIV proteins as well as the assembled complex and rescues the severe phenotype in heteroplasmic cells. Our data indicate that the mechanism underlying pathogenesis in these patients is the rapid clearance of unstable respiratory complexes by quality control pathways, rather than their impaired assembly.


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , Codón sin Sentido , Ciclooxigenasa 1/genética , Ciclooxigenasa 1/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Células Cultivadas , Ciclooxigenasa 1/química , Transporte de Electrón , Complejo IV de Transporte de Electrones/química , Estabilidad de Enzimas , Humanos , Unión Proteica , Mapeo de Interacción de Proteínas , Multimerización de Proteína
12.
EMBO J ; 30(13): 2545-56, 2011 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-21610694

RESUMEN

m-AAA proteases exert dual functions in the mitochondrial inner membrane: they mediate the processing of specific regulatory proteins and ensure protein quality control degrading misfolded polypeptides to peptides. Loss of these activities leads to neuronal cell death in several neurodegenerative disorders. However, it is unclear how the m-AAA protease chooses between specific processing and complete degradation. A central and conserved function of the m-AAA protease is the processing of the ribosomal subunit MrpL32, which regulates ribosome biogenesis and the formation of respiratory complexes. Here, we demonstrate that the formation of a tightly folded domain harbouring a conserved CxxC-X(9)-CxxC sequence motif halts degradation initiated from the N-terminus and triggers the release of mature MrpL32. Oxidative stress impairs folding of MrpL32, resulting in its degradation by the m-AAA protease and decreased mitochondrial translation. Surprisingly, MrpL32 folding depends on its mitochondrial targeting sequence. Presequence-assisted folding of MrpL32 requires the complete import of the MrpL32 precursor before maturation occurs and therefore explains the need for post-translocational processing by the m-AAA protease rather than co-translocational cleavage by the general mitochondrial processing peptidase.


Asunto(s)
Secuencia de Aminoácidos/fisiología , Metaloendopeptidasas/metabolismo , Mitocondrias/metabolismo , Pliegue de Proteína , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Dominio Catalítico/genética , Deinococcus/enzimología , Deinococcus/metabolismo , Metaloendopeptidasas/genética , Metaloendopeptidasas/fisiología , Mitocondrias/fisiología , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Organismos Modificados Genéticamente , Unión Proteica/fisiología , Procesamiento Proteico-Postraduccional , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido
13.
J Cell Sci ; 126(Pt 23): 5317-23, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24190879

RESUMEN

Lipids are the building blocks of cellular membranes and are synthesized at distinct parts of the cell. A precise control of lipid synthesis and distribution is crucial for cell function and survival. The endoplasmic reticulum (ER) is the major lipid-synthesizing organelle. However, a subset of lipids is synthesized within mitochondria, and this aspect has become a focus of recent lipid research. Mitochondria form a dynamic membrane network that is reshaped by fusion and fission events. Their functionality therefore depends on a continuous lipid supply from the ER and the distribution of lipids between both mitochondrial membranes. The mechanisms of mitochondrial lipid trafficking are only now emerging and appear to involve membrane contact sites and lipid transfer proteins. In this Cell Science at a Glance article, we will discuss recent discoveries in the field of mitochondrial lipid trafficking that build on long-standing observations and shed new light on the shuttling of membrane lipids between mitochondria and other organelles.


Asunto(s)
Metabolismo de los Lípidos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Transporte Biológico , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica , Humanos , Lípidos/química , Mitocondrias/química , Mitocondrias/genética , Membranas Mitocondriales/química , Proteínas Mitocondriales/genética , Peroxisomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal
14.
BMC Med Genet ; 16: 16, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25927548

RESUMEN

BACKGROUND: Hereditary ataxias are a heterogeneous group of neurodegenerative disorders, where exome sequencing may become an important diagnostic tool to solve clinically or genetically complex cases. METHODS: We describe an Italian family in which three sisters were affected by ataxia with postural/intentional myoclonus and involuntary movements at onset, which persisted during the disease. Oculomotor apraxia was absent. Clinical and genetic data did not allow us to exclude autosomal dominant or recessive inheritance and suggest a disease gene. RESULTS: Exome sequencing identified a homozygous c.6292C > T (p.Arg2098*) mutation in SETX and a heterozygous c.346G > A (p.Gly116Arg) mutation in AFG3L2 shared by all three affected individuals. A fourth sister (II.7) had subclinical myoclonic jerks at proximal upper limbs and perioral district, confirmed by electrophysiology, and carried the p.Gly116Arg change. Three siblings were healthy. Pathogenicity prediction and a yeast-functional assay suggested p.Gly116Arg impaired m-AAA (ATPases associated with various cellular activities) complex function. CONCLUSIONS: Exome sequencing is a powerful tool in identifying disease genes. We identified an atypical form of Ataxia with Oculoapraxia type 2 (AOA2) with myoclonus at onset associated with the c.6292C > T (p.Arg2098*) homozygous mutation. Because the same genotype was described in six cases from a Tunisian family with a typical AOA2 without myoclonus, we speculate this latter feature is associated with a second mutated gene, namely AFG3L2 (p.Gly116Arg variant). We suggest that variant phenotypes may be due to the combined effect of different mutated genes associated to ataxia or related disorders, that will become more apparent as the costs of exome sequencing progressively will reduce, amplifying its diagnostics use, and meanwhile proposing significant challenges in the interpretation of the data.


Asunto(s)
Proteasas ATP-Dependientes/genética , Mutación , Mioclonía/complicaciones , ARN Helicasas/genética , Degeneraciones Espinocerebelosas/complicaciones , Degeneraciones Espinocerebelosas/genética , Proteasas ATP-Dependientes/química , ATPasas Asociadas con Actividades Celulares Diversas , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Niño , ADN Helicasas , Análisis Mutacional de ADN , Exoma/genética , Femenino , Homocigoto , Humanos , Datos de Secuencia Molecular , Enzimas Multifuncionales , Linaje , Postura , Degeneraciones Espinocerebelosas/fisiopatología , Adulto Joven
15.
J Biol Chem ; 288(7): 4792-8, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23283966

RESUMEN

Sorting of mitochondrial inner membrane proteins is a complex process in which translocons and proteases function in a concerted way. Many inner membrane proteins insert into the membrane via the TIM23 translocon, and some are then further acted upon by the mitochondrial m-AAA protease, a molecular motor capable of dislocating proteins from the inner membrane. This raises the possibility that the threshold hydrophobicity for the retention of transmembrane segments in the inner membrane is different depending on whether they belong to membrane proteins that are m-AAA protease substrates or not. Here, using model transmembrane segments engineered into m-AAA protease-dependent proteins, we show that the threshold hydrophobicity for membrane retention measured in yeast cells in the absence of a functional m-AAA protease is markedly lower than that measured in its presence. Whether a given hydrophobic segment in a mitochondrial inner membrane protein will ultimately form a transmembrane helix may therefore depend on whether or not it will be exposed to the pulling force exerted by the m-AAA protease during biogenesis.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Metaloendopeptidasas/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas Fúngicas/metabolismo , Prueba de Complementación Genética , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Modelos Genéticos , Plásmidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Nat Commun ; 15(1): 7533, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215029

RESUMEN

Polymers can facilitate detergent-free extraction of membrane proteins into nanodiscs (e.g., SMALPs, DIBMALPs), incorporating both integral membrane proteins as well as co-extracted native membrane lipids. Lipid-only SMALPs and DIBMALPs have been shown to possess a unique property; the ability to exchange lipids through 'collisional lipid mixing'. Here we expand upon this mixing to include protein-containing DIBMALPs, using the rhomboid protease GlpG. Through lipidomic analysis before and after incubation with DMPC or POPC DIBMALPs, we show that lipids are rapidly exchanged between protein and lipid-only DIBMALPs, and can be used to identify bound or associated lipids through 'washing-in' exogenous lipids. Additionally, through the requirement of rhomboid proteases to cleave intramembrane substrates, we show that this mixing can be performed for two protein-containing DIBMALP populations, assessing the native function of intramembrane proteolysis and demonstrating that this mixing has no deleterious effects on protein stability or structure.


Asunto(s)
Endopeptidasas , Proteínas de Escherichia coli , Proteínas de la Membrana , Nanopartículas , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Endopeptidasas/metabolismo , Endopeptidasas/química , Nanopartículas/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Lípidos de la Membrana/metabolismo , Lípidos de la Membrana/química , Polímeros/química , Polímeros/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Proteolisis , Lipidómica/métodos , Fosfatidilcolinas
17.
Biochim Biophys Acta ; 1823(1): 49-55, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22001671

RESUMEN

Mitochondrial AAA proteases play an important role in the maintenance of mitochondrial proteostasis. They regulate and promote biogenesis of mitochondrial proteins by acting as processing enzymes and ensuring the selective turnover of misfolded proteins. Impairment of AAA proteases causes pleiotropic defects in various organisms including neurodegeneration in humans. AAA proteases comprise ring-like hexameric complexes in the mitochondrial inner membrane and are functionally conserved from yeast to man, but variations are evident in the subunit composition of orthologous enzymes. Recent structural and biochemical studies revealed how AAA proteases degrade their substrates in an ATP dependent manner. Intersubunit coordination of the ATP hydrolysis leads to an ordered ATP hydrolysis within the AAA ring, which ensures efficient substrate dislocation from the membrane and translocation to the proteolytic chamber. In this review, we summarize recent findings on the molecular mechanisms underlying the versatile functions of mitochondrial AAA proteases and their relevance to those of the other AAA+ machines.


Asunto(s)
Proteasas ATP-Dependientes/química , Mitocondrias/enzimología , Proteínas Mitocondriales/química , Proteasas ATP-Dependientes/genética , Proteasas ATP-Dependientes/metabolismo , Animales , Humanos , Mitocondrias/metabolismo , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/genética , Estructura Terciaria de Proteína , Proteolisis
18.
Biochim Biophys Acta Proteins Proteom ; 1871(1): 140867, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36309326

RESUMEN

The PRELID-TRIAP1 family of proteins is responsible for lipid transfer in mitochondria. Multiple structures have been resolved of apo and lipid substrate bound forms, allowing us to begin to piece together the molecular level details of the full lipid transfer cycle. Here, we used molecular dynamics simulations to demonstrate that the lipid binding is mediated by an extended, water-mediated hydrogen bonding network. A key mutation, R53E, was found to disrupt this network, causing lipid to be released from the complex. The X-ray crystal structure of R53E was captured in a fully closed and apo state. Lipid transfer assays and molecular simulations allow us to interpret the observed conformation in the context of the biological role. Together, our work provides further understanding of the mechanistic control of lipid transport by PRELID-TRIAP1 in mitochondria.


Asunto(s)
Hidrógeno , Simulación de Dinámica Molecular , Enlace de Hidrógeno , Lípidos
19.
Nat Cell Biol ; 25(2): 246-257, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36658222

RESUMEN

Coenzyme Q (or ubiquinone) is a redox-active lipid that serves as universal electron carrier in the mitochondrial respiratory chain and antioxidant in the plasma membrane limiting lipid peroxidation and ferroptosis. Mechanisms allowing cellular coenzyme Q distribution after synthesis within mitochondria are not understood. Here we identify the cytosolic lipid transfer protein STARD7 as a critical factor of intracellular coenzyme Q transport and suppressor of ferroptosis. Dual localization of STARD7 to the intermembrane space of mitochondria and the cytosol upon cleavage by the rhomboid protease PARL ensures the synthesis of coenzyme Q in mitochondria and its transport to the plasma membrane. While mitochondrial STARD7 preserves coenzyme Q synthesis, oxidative phosphorylation function and cristae morphogenesis, cytosolic STARD7 is required for the transport of coenzyme Q to the plasma membrane and protects against ferroptosis. A coenzyme Q variant competes with phosphatidylcholine for binding to purified STARD7 in vitro. Overexpression of cytosolic STARD7 increases ferroptotic resistance of the cells, but limits coenzyme Q abundance in mitochondria and respiratory cell growth. Our findings thus demonstrate the need to coordinate coenzyme Q synthesis and cellular distribution by PARL-mediated STARD7 processing and identify PARL and STARD7 as promising targets to interfere with ferroptosis.


Asunto(s)
Mitocondrias , Ubiquinona , Transporte Biológico , Transporte de Electrón , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Oxidación-Reducción , Ubiquinona/farmacología , Ubiquinona/metabolismo , Proteínas Portadoras/metabolismo
20.
J Biol Chem ; 286(6): 4404-11, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21147776

RESUMEN

FtsH-related AAA proteases are conserved membrane-anchored, ATP-dependent molecular machines, which mediate the processing and turnover of soluble and membrane-embedded proteins in eubacteria, mitochondria, and chloroplasts. Homo- and hetero-oligomeric proteolytic complexes exist, which are composed of homologous subunits harboring an ATPase domain of the AAA family and an H41 metallopeptidase domain. Mutations in subunits of mitochondrial m-AAA proteases have been associated with different neurodegenerative disorders in human, raising questions on the functional differences between homo- and hetero-oligomeric AAA proteases. Here, we have analyzed the hetero-oligomeric yeast m-AAA protease composed of homologous Yta10 and Yta12 subunits. We combined genetic and structural approaches to define the molecular determinants for oligomer assembly and to assess functional similarities between Yta10 and Yta12. We demonstrate that replacement of only two amino acid residues within the metallopeptidase domain of Yta12 allows its assembly into homo-oligomeric complexes. To provide a molecular explanation, we determined the 12 Å resolution structure of the intact yeast m-AAA protease with its transmembrane domains by electron cryomicroscopy (cryo-EM) and atomic structure fitting. The full-length m-AAA protease has a bipartite structure and is a hexamer in solution. We found that residues in Yta12, which facilitate homo-oligomerization when mutated, are located at the interface between neighboring protomers in the hexamer ring. Notably, the transmembrane and intermembrane space domains are separated from the main body, creating a passage on the matrix side, which is wide enough to accommodate unfolded but not folded polypeptides. These results suggest a mechanism regarding how proteins are recognized and degraded by m-AAA proteases.


Asunto(s)
Metaloendopeptidasas/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/metabolismo , Pliegue de Proteína , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Microscopía por Crioelectrón , Humanos , Metaloendopeptidasas/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Mutación , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/genética , Multimerización de Proteína/fisiología , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA