Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 184(16): 4329-4347.e23, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34237253

RESUMEN

We have produced gene expression profiles of all 302 neurons of the C. elegans nervous system that match the single-cell resolution of its anatomy and wiring diagram. Our results suggest that individual neuron classes can be solely identified by combinatorial expression of specific gene families. For example, each neuron class expresses distinct codes of ∼23 neuropeptide genes and ∼36 neuropeptide receptors, delineating a complex and expansive "wireless" signaling network. To demonstrate the utility of this comprehensive gene expression catalog, we used computational approaches to (1) identify cis-regulatory elements for neuron-specific gene expression and (2) reveal adhesion proteins with potential roles in process placement and synaptic specificity. Our expression data are available at https://cengen.org and can be interrogated at the web application CengenApp. We expect that this neuron-specific directory of gene expression will spur investigations of underlying mechanisms that define anatomy, connectivity, and function throughout the C. elegans nervous system.


Asunto(s)
Caenorhabditis elegans/metabolismo , Sistema Nervioso/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colorantes Fluorescentes/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Larva/metabolismo , Neuronas/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Motivos de Nucleótidos/genética , RNA-Seq , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Transcripción Genética
2.
Cell ; 180(5): 1002-1017.e31, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32109417

RESUMEN

Genome-wide CRISPR screens enable systematic interrogation of gene function. However, guide RNA libraries are costly to synthesize, and their limited diversity compromises the sensitivity of CRISPR screens. Using the Streptococcus pyogenes CRISPR-Cas adaptation machinery, we developed CRISPR adaptation-mediated library manufacturing (CALM), which turns bacterial cells into "factories" for generating hundreds of thousands of crRNAs covering 95% of all targetable genomic sites. With an average gene targeted by more than 100 distinct crRNAs, these highly comprehensive CRISPRi libraries produced varying degrees of transcriptional repression critical for uncovering novel antibiotic resistance determinants. Furthermore, by iterating CRISPR adaptation, we rapidly generated dual-crRNA libraries representing more than 100,000 dual-gene perturbations. The polarized nature of spacer adaptation revealed the historical contingency in the stepwise acquisition of genetic perturbations leading to increasing antibiotic resistance. CALM circumvents the expense, labor, and time required for synthesis and cloning of gRNAs, allowing generation of CRISPRi libraries in wild-type bacteria refractory to routine genetic manipulation.


Asunto(s)
Sistemas CRISPR-Cas/genética , Genoma Bacteriano/genética , Biblioteca Genómica , Staphylococcus aureus/genética , Escherichia coli/genética , Humanos , ARN Bacteriano/genética , ARN Guía de Kinetoplastida/genética , Streptococcus pyogenes/genética
3.
Cell ; 162(6): 1299-308, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26321680

RESUMEN

N(6)-methyladenosine (m(6)A) is the most abundant internal modification of messenger RNA. While the presence of m(6)A on transcripts can impact nuclear RNA fates, a reader of this mark that mediates processing of nuclear transcripts has not been identified. We find that the RNA-binding protein HNRNPA2B1 binds m(6)A-bearing RNAs in vivo and in vitro and its biochemical footprint matches the m(6)A consensus motif. HNRNPA2B1 directly binds a set of nuclear transcripts and elicits similar alternative splicing effects as the m(6)A writer METTL3. Moreover, HNRNPA2B1 binds to m(6)A marks in a subset of primary miRNA transcripts, interacts with the microRNA Microprocessor complex protein DGCR8, and promotes primary miRNA processing. Also, HNRNPA2B1 loss and METTL3 depletion cause similar processing defects for these pri-miRNA precursors. We propose HNRNPA2B1 to be a nuclear reader of the m(6)A mark and to mediate, in part, this mark's effects on primary microRNA processing and alternative splicing. PAPERCLIP.


Asunto(s)
Adenosina/análogos & derivados , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Procesamiento Postranscripcional del ARN , Adenosina/metabolismo , Empalme Alternativo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Metilación , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Transcriptoma
4.
Cell ; 150(2): 248-50, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22817888

RESUMEN

To fulfill systems biology's promise of providing fundamental new insights will require the development of quantitative and predictive models of whole cells. In this issue, Karr et al. present the first integrated and dynamic computational model of a bacterium that accounts for all of its components and their interactions.

5.
Annu Rev Cell Dev Biol ; 28: 363-84, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22559263

RESUMEN

Microbial regulatory strategies have long been understood in terms of the homeostatic framework, in which a response is interpreted as a restoring force counteracting the immediate intracellular consequences of a change in the environment. In this review, we summarize the breadth of recent discoveries of cellular behavior extending beyond the homeostatic framework. We argue that the nonrandom structure of native habitats makes environmental fluctuations inherently multidimensional. Beyond its utility for accurate perception of immediate events, the temporal regularity of this multidimensional correlation structure allows microbes to make predictions about the trajectory of their sensory environment. We describe recently discovered examples of such predictive behavior, their physiological benefits, and the underlying evolutionary forces shaping them. These observations compel us to go beyond homeostasis and consider a predictive-dynamic framework in which cellular behavior is orchestrated in response to the meaning of an environmental perturbation, not only its direct and immediate fitness consequences.


Asunto(s)
Adaptación Fisiológica , Homeostasis , Modelos Biológicos , Animales , Bacterias/genética , Bacterias/metabolismo , Fenómenos Fisiológicos Bacterianos , Ambiente , Hongos/genética , Hongos/metabolismo , Hongos/fisiología , Tracto Gastrointestinal/microbiología , Humanos
6.
PLoS Biol ; 20(4): e3001557, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35476699

RESUMEN

[This corrects the article DOI: 10.1371/journal.pbio.3001306.].

7.
PLoS Genet ; 18(10): e1010456, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36279294

RESUMEN

Thymidine starvation causes rapid cell death. This enigmatic process known as thymineless death (TLD) is the underlying killing mechanism of diverse antimicrobial and antineoplastic drugs. Despite decades of investigation, we still lack a mechanistic understanding of the causal sequence of events that culminate in TLD. Here, we used a diverse set of unbiased approaches to systematically determine the genetic and regulatory underpinnings of TLD in Escherichia coli. In addition to discovering novel genes in previously implicated pathways, our studies revealed a critical and previously unknown role for intracellular acidification in TLD. We observed that a decrease in cytoplasmic pH is a robust early event in TLD across different genetic backgrounds. Furthermore, we show that acidification is a causal event in the death process, as chemical and genetic perturbations that increase intracellular pH substantially reduce killing. We also observe a decrease in intracellular pH in response to exposure to the antibiotic gentamicin, suggesting that intracellular acidification may be a common mechanistic step in the bactericidal effects of other antibiotics.


Asunto(s)
Escherichia coli , Timina , Escherichia coli/metabolismo , ADN Bacteriano/genética , Viabilidad Microbiana , Timina/metabolismo , Recombinación Genética , Concentración de Iones de Hidrógeno
8.
PLoS Biol ; 19(6): e3001306, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34170902

RESUMEN

Free-living bacteria adapt to environmental change by reprogramming gene expression through precise interactions of hundreds of DNA-binding proteins. A predictive understanding of bacterial physiology requires us to globally monitor all such protein-DNA interactions across a range of environmental and genetic perturbations. Here, we show that such global observations are possible using an optimized version of in vivo protein occupancy display technology (in vivo protein occupancy display-high resolution, IPOD-HR) and present a pilot application to Escherichia coli. We observe that the E. coli protein-DNA interactome organizes into 2 distinct prototypic features: (1) highly dynamic condition-dependent transcription factor (TF) occupancy; and (2) robust kilobase scale occupancy by nucleoid factors, forming silencing domains analogous to eukaryotic heterochromatin. We show that occupancy dynamics across a range of conditions can rapidly reveal the global transcriptional regulatory organization of a bacterium. Beyond discovery of previously hidden regulatory logic, we show that these observations can be utilized to computationally determine sequence specificity models for the majority of active TFs. Our study demonstrates that global observations of protein occupancy combined with statistical inference can rapidly and systematically reveal the transcriptional regulatory and structural features of a bacterial genome. This capacity is particularly crucial for non-model bacteria that are not amenable to routine genetic manipulation.


Asunto(s)
Cromosomas Bacterianos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Unión al ADN/metabolismo , Ambiente , Escherichia coli/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Factor sigma/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(43): 26710-26718, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33037152

RESUMEN

Large-scale proteomic methods are essential for the functional characterization of proteins in their native cellular context. However, proteomics has lagged far behind genomic approaches in scalability, standardization, and cost. Here, we introduce in vivo mRNA display, a technology that converts a variety of proteomics applications into a DNA sequencing problem. In vivo-expressed proteins are coupled with their encoding messenger RNAs (mRNAs) via a high-affinity stem-loop RNA binding domain interaction, enabling high-throughput identification of proteins with high sensitivity and specificity by next generation DNA sequencing. We have generated a high-coverage in vivo mRNA display library of the Saccharomyces cerevisiae proteome and demonstrated its potential for characterizing subcellular localization and interactions of proteins expressed in their native cellular context. In vivo mRNA display libraries promise to circumvent the limitations of mass spectrometry-based proteomics and leverage the exponentially improving cost and throughput of DNA sequencing to systematically characterize native functional proteomes.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos , ARN Mensajero , ADN de Hongos/análisis , ADN de Hongos/genética , Biblioteca de Genes , Proteoma/análisis , Proteoma/genética , ARN Mensajero/análisis , ARN Mensajero/genética , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN
10.
Genome Res ; 29(7): 1100-1114, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31227602

RESUMEN

Posttranscriptional regulation plays a crucial role in shaping gene expression. During the maternal-to-zygotic transition (MZT), thousands of maternal transcripts are regulated. However, how different cis-elements and trans-factors are integrated to determine mRNA stability remains poorly understood. Here, we show that most transcripts are under combinatorial regulation by multiple decay pathways during zebrafish MZT. By using a massively parallel reporter assay, we identified cis-regulatory sequences in the 3' UTR, including U-rich motifs that are associated with increased mRNA stability. In contrast, miR-430 target sequences, UAUUUAUU AU-rich elements (ARE), CCUC, and CUGC elements emerged as destabilizing motifs, with miR-430 and AREs causing mRNA deadenylation upon genome activation. We identified trans-factors by profiling RNA-protein interactions and found that poly(U)-binding proteins are preferentially associated with 3' UTR sequences and stabilizing motifs. We show that this activity is antagonized by C-rich motifs and correlated with protein binding. Finally, we integrated these regulatory motifs into a machine learning model that predicts reporter mRNA stability in vivo.


Asunto(s)
Regiones no Traducidas 3' , Regulación del Desarrollo de la Expresión Génica , Estabilidad del ARN/genética , Proteínas de Unión al ARN/metabolismo , Secuencias de Aminoácidos , Animales , Sitios de Unión , Aprendizaje Automático , Modelos Genéticos , Secuencias Reguladoras de Ácido Ribonucleico , Pez Cebra/embriología , Pez Cebra/genética , Cigoto
11.
PLoS Biol ; 16(4): e2004979, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29672507

RESUMEN

Proneural genes are among the most early-acting genes in nervous system development, instructing blast cells to commit to a neuronal fate. Drosophila Atonal and Achaete-Scute complex (AS-C) genes, as well as their vertebrate orthologs, are basic helix-loop-helix (bHLH) transcription factors with such proneural activity. We show here that a C. elegans AS-C homolog, hlh-4, functions in a fundamentally different manner. In the embryonic, larval, and adult nervous systems, hlh-4 is expressed exclusively in a single nociceptive neuron class, ADL, and its expression in ADL is maintained via transcriptional autoregulation throughout the life of the animal. However, in hlh-4 null mutants, the ADL neuron is generated and still appears neuronal in overall morphology and expression of panneuronal and pansensory features. Rather than acting as a proneural gene, we find that hlh-4 is required for the ADL neuron to function properly, to adopt its correct morphology, to express its unusually large repertoire of olfactory receptor-encoding genes, and to express other known features of terminal ADL identity, including neurotransmitter phenotype, neuropeptides, ion channels, and electrical synapse proteins. hlh-4 is sufficient to induce ADL identity features upon ectopic expression in other neuron types. The expression of ADL terminal identity features is directly controlled by HLH-4 via a phylogenetically conserved E-box motif, which, through bioinformatic analysis, we find to constitute a predictive feature of ADL-expressed terminal identity markers. The lineage that produces the ADL neuron was previously shown to require the conventional, transient proneural activity of another AS-C homolog, hlh-14, demonstrating sequential activities of distinct AS-C-type bHLH genes in neuronal specification. Taken together, we have defined here an unconventional function of an AS-C-type bHLH gene as a terminal selector of neuronal identity and we speculate that such function could be reflective of an ancestral function of an "ur-" bHLH gene.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Nociceptores/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Biología Computacional , Sinapsis Eléctricas/metabolismo , Sinapsis Eléctricas/ultraestructura , Embrión no Mamífero , Ontología de Genes , Canales Iónicos/genética , Canales Iónicos/metabolismo , Larva/citología , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Anotación de Secuencia Molecular , Neuropéptidos/genética , Neuropéptidos/metabolismo , Neurotransmisores/metabolismo , Nociceptores/citología , Fenotipo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Transcripción Genética
12.
Nature ; 513(7517): 256-60, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25043050

RESUMEN

Aberrant regulation of RNA stability has an important role in many disease states. Deregulated post-transcriptional modulation, such as that governed by microRNAs targeting linear sequence elements in messenger RNAs, has been implicated in the progression of many cancer types. A defining feature of RNA is its ability to fold into structures. However, the roles of structural mRNA elements in cancer progression remain unexplored. Here we performed an unbiased search for post-transcriptional modulators of mRNA stability in breast cancer by conducting whole-genome transcript stability measurements in poorly and highly metastatic isogenic human breast cancer lines. Using a computational framework that searches RNA sequence and structure space, we discovered a family of GC-rich structural cis-regulatory RNA elements, termed sRSEs for structural RNA stability elements, which are significantly overrepresented in transcripts displaying reduced stability in highly metastatic cells. By integrating computational and biochemical approaches, we identified TARBP2, a double-stranded RNA-binding protein implicated in microRNA processing, as the trans factor that binds the sRSE family and similar structural elements--collectively termed TARBP2-binding structural elements (TBSEs)--in transcripts. TARBP2 is overexpressed in metastatic cells and metastatic human breast tumours and destabilizes transcripts containing TBSEs. Endogenous TARBP2 promotes metastatic cell invasion and colonization by destabilizing amyloid precursor protein (APP) and ZNF395 transcripts, two genes previously associated with Alzheimer's and Huntington's disease, respectively. We reveal these genes to be novel metastasis suppressor genes in breast cancer. The cleavage product of APP, extracellular amyloid-α peptide, directly suppresses invasion while ZNF395 transcriptionally represses a pro-metastatic gene expression program. The expression levels of TARBP2, APP and ZNF395 in human breast carcinomas support their experimentally uncovered roles in metastasis. Our findings establish a non-canonical and direct role for TARBP2 in mammalian gene expression regulation and reveal that regulated RNA destabilization through protein-mediated binding of mRNA structural elements can govern cancer progression.


Asunto(s)
Estabilidad del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Metástasis de la Neoplasia , Unión Proteica , Proteínas de Unión al ARN/genética , Factores de Transcripción/metabolismo
13.
Nature ; 485(7397): 264-8, 2012 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-22495308

RESUMEN

Decoding post-transcriptional regulatory programs in RNA is a critical step towards the larger goal of developing predictive dynamical models of cellular behaviour. Despite recent efforts, the vast landscape of RNA regulatory elements remains largely uncharacterized. A long-standing obstacle is the contribution of local RNA secondary structure to the definition of interaction partners in a variety of regulatory contexts, including--but not limited to--transcript stability, alternative splicing and localization. There are many documented instances where the presence of a structural regulatory element dictates alternative splicing patterns (for example, human cardiac troponin T) or affects other aspects of RNA biology. Thus, a full characterization of post-transcriptional regulatory programs requires capturing information provided by both local secondary structures and the underlying sequence. Here we present a computational framework based on context-free grammars and mutual information that systematically explores the immense space of small structural elements and reveals motifs that are significantly informative of genome-wide measurements of RNA behaviour. By applying this framework to genome-wide human mRNA stability data, we reveal eight highly significant elements with substantial structural information, for the strongest of which we show a major role in global mRNA regulation. Through biochemistry, mass spectrometry and in vivo binding studies, we identified human HNRPA2B1 (heterogeneous nuclear ribonucleoprotein A2/B1, also known as HNRNPA2B1) as the key regulator that binds this element and stabilizes a large number of its target genes. We created a global post-transcriptional regulatory map based on the identity of the discovered linear and structural cis-regulatory elements, their regulatory interactions and their target pathways. This approach could also be used to reveal the structural elements that modulate other aspects of RNA behaviour.


Asunto(s)
Conformación de Ácido Nucleico , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regiones no Traducidas 3'/genética , Regiones no Traducidas 3'/fisiología , Algoritmos , Animales , Neoplasias de la Mama/genética , Línea Celular Tumoral , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genoma Humano/genética , Genómica , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Humanos , Ratones , Motivos de Nucleótidos , Estabilidad del ARN/genética , ARN Mensajero/química , ARN Interferente Pequeño , Factores de Tiempo , Transcripción Genética
14.
PLoS Genet ; 11(12): e1005715, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26647077

RESUMEN

Microorganisms exist almost exclusively in interactive multispecies communities, but genetic determinants of the fitness of interacting bacteria, and accessible adaptive pathways, remain uncharacterized. Here, using a two-species system, we studied the antagonism of Pseudomonas aeruginosa against Escherichia coli. Our unbiased genome-scale approach enabled us to identify multiple factors that explained the entire antagonism observed. We discovered both forms of ecological competition-sequestration of iron led to exploitative competition, while phenazine exposure engendered interference competition. We used laboratory evolution to discover adaptive evolutionary trajectories in our system. In the presence of P. aeruginosa toxins, E. coli populations showed parallel molecular evolution and adaptive convergence at the gene-level. The multiple resistance pathways discovered provide novel insights into mechanisms of toxin entry and activity. Our study reveals the molecular complexity of a simple two-species interaction, an important first-step in the application of systems biology to detailed molecular dissection of interactions within native microbiomes.


Asunto(s)
Escherichia coli/genética , Evolución Molecular , Pseudomonas aeruginosa/genética , Biología de Sistemas , Escherichia coli/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Aptitud Genética/efectos de los fármacos , Genoma Bacteriano , Fenazinas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos
15.
Mol Cell ; 35(2): 247-53, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19647521

RESUMEN

Protein-DNA interactions are fundamental to core biological processes, including transcription, DNA replication, and chromosomal organization. We have developed in vivo protein occupancy display (IPOD), a technology that reveals protein occupancy across an entire bacterial chromosome at the resolution of individual binding sites. Application to Escherichia coli reveals thousands of protein occupancy peaks, highly enriched within and in close proximity to noncoding regulatory regions. In addition, we discovered extensive (>1 kilobase) protein occupancy domains (EPODs), some of which are localized to highly expressed genes, enriched in RNA-polymerase occupancy. However, the majority are localized to transcriptionally silent loci dominated by conserved hypothetical ORFs. These regions are highly enriched in both predicted and experimentally determined binding sites of nucleoid proteins and exhibit extreme biophysical characteristics such as high intrinsic curvature. Our observations implicate these transcriptionally silent EPODs as the elusive organizing centers, long proposed to topologically isolate chromosomal domains.


Asunto(s)
Cromosomas Bacterianos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Genoma Bacteriano , Sitios de Unión , Cromosomas Bacterianos/química , Huella de ADN , Proteínas de Unión al ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Perfilación de la Expresión Génica , Hibridación Genética , ARN Mensajero/metabolismo
16.
Mol Cell ; 36(5): 900-11, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-20005852

RESUMEN

The discovery of pathways and regulatory networks whose perturbation contributes to neoplastic transformation remains a fundamental challenge for cancer biology. We show that such pathway perturbations, and the cis-regulatory elements through which they operate, can be efficiently extracted from global gene expression profiles. Our approach utilizes information-theoretic analysis of expression levels, pathways, and genomic sequences. Analysis across a diverse set of human cancers reveals the majority of previously known cancer pathways. Through de novo motif discovery we associate these pathways with transcription-factor binding sites and miRNA targets, including those of E2F, NF-Y, p53, and let-7. Follow-up experiments confirmed that these predictions correspond to functional in vivo regulatory interactions. Strikingly, the majority of the perturbations, associated with putative cis-regulatory elements, fall outside of known cancer pathways. Our study provides a systems-level dissection of regulatory perturbations in cancer-an essential component of a rational strategy for therapeutic intervention and drug-target discovery.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Elementos Reguladores de la Transcripción , Programas Informáticos , Neoplasias de la Vejiga Urinaria/genética , Linfoma de Burkitt/genética , Análisis por Conglomerados , Biología Computacional , Perfilación de la Expresión Génica , Humanos , Linfoma de Células B Grandes Difuso/genética
17.
PLoS Genet ; 9(7): e1003617, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874220

RESUMEN

The metabolic capabilities and regulatory networks of bacteria have been optimized by evolution in response to selective pressures present in each species' native ecological niche. In a new environment, however, the same bacteria may grow poorly due to regulatory constraints or biochemical deficiencies. Adaptation to such conditions can proceed through the acquisition of new cellular functionality due to gain of function mutations or via modulation of cellular networks. Using selection experiments on transposon-mutagenized libraries of bacteria, we illustrate that even under conditions of extreme nutrient limitation, substantial adaptation can be achieved solely through loss of function mutations, which rewire the metabolism of the cell without gain of enzymatic or sensory function. A systematic analysis of similar experiments under more than 100 conditions reveals that adaptive loss of function mutations exist for many environmental challenges. Drawing on a wealth of examples from published articles, we detail the range of mechanisms through which loss-of-function mutations can generate such beneficial regulatory changes, without the need for rare, specific mutations to fine-tune enzymatic activities or network connections. The high rate at which loss-of-function mutations occur suggests that null mutations play an underappreciated role in the early stages of adaption of bacterial populations to new environments.


Asunto(s)
Adaptación Fisiológica/genética , Bacterias/genética , Evolución Molecular Dirigida , Selección Genética , Elementos Transponibles de ADN/genética , Ambiente , Alimentos , Mutación
18.
PLoS Genet ; 8(5): e1002744, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22693458

RESUMEN

Regulatory networks allow organisms to match adaptive behavior to the complex and dynamic contingencies of their native habitats. Upon a sudden transition to a novel environment, the mismatch between the native behavior and the new niche provides selective pressure for adaptive evolution through mutations in elements that control gene expression. In the case of core components of cellular regulation and metabolism, with broad control over diverse biological processes, such mutations may have substantial pleiotropic consequences. Through extensive phenotypic analyses, we have characterized the systems-level consequences of one such mutation (rho*) in the global transcriptional terminator Rho of Escherichia coli. We find that a single amino acid change in Rho results in a massive change in the fitness landscape of the cell, with widely discrepant fitness consequences of identical single locus perturbations in rho* versus rho(WT) backgrounds. Our observations reveal the extent to which a single regulatory mutation can transform the entire fitness landscape of the cell, causing a massive change in the interpretation of individual mutations and altering the evolutionary trajectories which may be accessible to a bacterial population.


Asunto(s)
Adaptación Biológica , Escherichia coli , Regulación Bacteriana de la Expresión Génica , Factor Rho/genética , Sustitución de Aminoácidos , Elementos Transponibles de ADN , Evolución Molecular Dirigida , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Aptitud Genética , Mutagénesis , Mutación , Factor Rho/metabolismo
19.
Proc Natl Acad Sci U S A ; 109(31): 12740-5, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22802628

RESUMEN

Phenotypic heterogeneity displayed by a clonal bacterial population permits a small fraction of cells to survive prolonged exposure to antibiotics. Although first described over 60 y ago, the molecular mechanisms underlying this behavior, termed persistence, remain largely unknown. To systematically explore the genetic basis of persistence, we selected a library of transposon-mutagenized Escherichia coli cells for survival to multiple rounds of lethal ampicillin exposure. Application of microarray-based genetic footprinting revealed a large number of loci that drastically elevate persistence frequency through null mutations and domain disruptions. In one case, the C-terminal disruption of methionyl-tRNA synthetase (MetG) results in a 10,000-fold higher persistence frequency than wild type. We discovered a mechanism by which null mutations in transketolase A (tktA) and glycerol-3-phosphate (G3P) dehydrogenase (glpD) increase persistence through metabolic flux alterations that increase intracellular levels of the growth-inhibitory metabolite methylglyoxal. Systematic double-mutant analyses revealed the genetic network context in which such persistent mutants function. Our findings reveal a large mutational target size for increasing persistence frequency, which has fundamental implications for the emergence of antibiotic tolerance in the clinical setting.


Asunto(s)
Ampicilina/farmacología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Proteínas de Escherichia coli , Escherichia coli , Mutación , Huella de ADN , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos
20.
J Bacteriol ; 196(4): 825-39, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24317396

RESUMEN

Divergent phenotypes for distantly related strains of bacteria, such as differing antibiotic resistances or organic solvent tolerances, are of keen interest both from an evolutionary perspective and for the engineering of novel microbial organisms and consortia in synthetic biology applications. A prerequisite for any practical application of this phenotypic diversity is knowledge of the genetic determinants for each trait of interest. Sequence divergence between strains is often so extensive as to make brute-force approaches to identifying the loci contributing to a given trait impractical. Here we describe a global linkage analysis approach, GLINT, for rapid discovery of the causal genetic variants underlying phenotypic divergence between distantly related strains of Escherichia coli. This general strategy will also be usable, with minor modifications, for revealing genotype-phenotype associations between naturally occurring strains of other bacterial species.


Asunto(s)
Escherichia coli/genética , Ligamiento Genético , Variación Genética , Genética Microbiana/métodos , Escherichia coli/fisiología , Genoma Bacteriano , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA