Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(5): 1201-1216.e19, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31031005

RESUMEN

Innate immune responses are intricately linked with intracellular metabolism of myeloid cells. Toll-like receptor (TLR) stimulation shifts intracellular metabolism toward glycolysis, while anti-inflammatory signals depend on enhanced mitochondrial respiration. How exogenous metabolic signals affect the immune response is unknown. We demonstrate that TLR-dependent responses of dendritic cells (DCs) are exacerbated by a high-fatty-acid (FA) metabolic environment. FAs suppress the TLR-induced hexokinase activity and perturb tricarboxylic acid cycle metabolism. These metabolic changes enhance mitochondrial reactive oxygen species (mtROS) production and, in turn, the unfolded protein response (UPR), leading to a distinct transcriptomic signature with IL-23 as hallmark. Interestingly, chemical or genetic suppression of glycolysis was sufficient to induce this specific immune response. Conversely, reducing mtROS production or DC-specific deficiency in XBP1 attenuated IL-23 expression and skin inflammation in an IL-23-dependent model of psoriasis. Thus, fine-tuning of innate immunity depends on optimization of metabolic demands and minimization of mtROS-induced UPR.


Asunto(s)
Microambiente Celular/inmunología , Células Dendríticas/inmunología , Inmunidad Innata , Mitocondrias/inmunología , Especies Reactivas de Oxígeno/inmunología , Respuesta de Proteína Desplegada/inmunología , Animales , Microambiente Celular/genética , Ciclo del Ácido Cítrico/genética , Ciclo del Ácido Cítrico/inmunología , Células Dendríticas/patología , Hexoquinasa/genética , Hexoquinasa/inmunología , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Ratones , Ratones Noqueados , Mitocondrias/genética , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología , Respuesta de Proteína Desplegada/genética , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/inmunología
3.
Nat Immunol ; 15(3): 248-57, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24441789

RESUMEN

The role of the unfolded protein response (UPR) and endoplasmic reticulum (ER) stress in homeostasis of the immune system is incompletely understood. Here we found that dendritic cells (DCs) constitutively activated the UPR sensor IRE-1α and its target, the transcription factor XBP-1, in the absence of ER stress. Loss of XBP-1 in CD11c+ cells led to defects in phenotype, ER homeostasis and antigen presentation by CD8α+ conventional DCs, yet the closely related CD11b+ DCs were unaffected. Whereas the dysregulated ER in XBP-1-deficient DCs resulted from loss of XBP-1 transcriptional activity, the phenotypic and functional defects resulted from regulated IRE-1α-dependent degradation (RIDD) of mRNAs, including those encoding CD18 integrins and components of the major histocompatibility complex (MHC) class I machinery. Thus, a precisely regulated feedback circuit involving IRE-1α and XBP-1 controls the homeostasis of CD8α+ conventional DCs.


Asunto(s)
Reactividad Cruzada/inmunología , Proteínas de Unión al ADN/inmunología , Células Dendríticas/inmunología , Endorribonucleasas/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Desplegamiento Proteico , Factores de Transcripción/inmunología , Respuesta de Proteína Desplegada/inmunología , Animales , Presentación de Antígeno/inmunología , Antígenos CD8/inmunología , Antígenos CD8/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Dendríticas/metabolismo , Retículo Endoplásmico/inmunología , Endorribonucleasas/metabolismo , Retroalimentación Fisiológica/fisiología , Homeostasis/inmunología , Immunoblotting , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción del Factor Regulador X , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/metabolismo , Proteína 1 de Unión a la X-Box
4.
Immunity ; 45(3): 669-684, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27637149

RESUMEN

Dendritic cells (DCs) are professional antigen-presenting cells that hold great therapeutic potential. Multiple DC subsets have been described, and it remains challenging to align them across tissues and species to analyze their function in the absence of macrophage contamination. Here, we provide and validate a universal toolbox for the automated identification of DCs through unsupervised analysis of conventional flow cytometry and mass cytometry data obtained from multiple mouse, macaque, and human tissues. The use of a minimal set of lineage-imprinted markers was sufficient to subdivide DCs into conventional type 1 (cDC1s), conventional type 2 (cDC2s), and plasmacytoid DCs (pDCs) across tissues and species. This way, a large number of additional markers can still be used to further characterize the heterogeneity of DCs across tissues and during inflammation. This framework represents the way forward to a universal, high-throughput, and standardized analysis of DC populations from mutant mice and human patients.


Asunto(s)
Células Dendríticas/fisiología , Animales , Diferenciación Celular/fisiología , Citometría de Flujo , Humanos , Inflamación/patología , Macaca , Ratones , Ratones Endogámicos C57BL
5.
Clin Immunol ; 264: 110252, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38744408

RESUMEN

Children with Multisystem Inflammatory Syndrome in Children (MIS-C) can present with thrombocytopenia, which is a key feature of hemophagocytic lymphohistiocytosis (HLH). We hypothesized that thrombocytopenic MIS-C patients have more features of HLH. Clinical characteristics and routine laboratory parameters were collected from 228 MIS-C patients, of whom 85 (37%) were thrombocytopenic. Thrombocytopenic patients had increased ferritin levels; reduced leukocyte subsets; and elevated levels of ASAT and ALAT. Soluble IL-2RA was higher in thrombocytopenic children than in non-thrombocytopenic children. T-cell activation, TNF-alpha and IFN-gamma signaling markers were inversely correlated with thrombocyte levels, consistent with a more pronounced cytokine storm syndrome. Thrombocytopenia was not associated with severity of MIS-C and no pathogenic variants were identified in HLH-related genes. This suggests that thrombocytopenia in MIS-C is not a feature of a more severe disease phenotype, but the consequence of a distinct hyperinflammatory immunopathological process in a subset of children.


Asunto(s)
Linfohistiocitosis Hemofagocítica , Síndrome de Respuesta Inflamatoria Sistémica , Trombocitopenia , Humanos , Linfohistiocitosis Hemofagocítica/sangre , Linfohistiocitosis Hemofagocítica/inmunología , Linfohistiocitosis Hemofagocítica/genética , Niño , Masculino , Preescolar , Femenino , Síndrome de Respuesta Inflamatoria Sistémica/sangre , Síndrome de Respuesta Inflamatoria Sistémica/inmunología , Trombocitopenia/sangre , Trombocitopenia/inmunología , Lactante , Adolescente , Fenotipo , Proteómica , COVID-19/inmunología , COVID-19/sangre , COVID-19/complicaciones
6.
Am J Med Genet A ; 194(4): e63486, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38041217

RESUMEN

Aicardi-Goutières syndrome (AGS) is an autosomal recessive inflammatory syndrome that manifests as an early-onset encephalopathy with both neurologic and extraneurologic clinical findings. AGS has been associated with pathogenic variants in nine genes: TREX1, RNASEH2B, RNASEH2C, RNASEH2A, SAMHD1, ADAR, IFIH1, LSM11, and RNU7-1. Diagnosis is established by clinical findings (encephalopathy and acquired microcephaly, intellectual and physical impairments, dystonia, hepatosplenomegaly, sterile pyrexia, and/or chilblains), characteristic abnormalities on cranial CT (calcification of the basal ganglia and white matter) and MRI (leukodystrophic changes), or the identification of pathogenic/likely pathogenic variants in the known genes. One of the genes associated with AGS, SAMHD1, has also been associated with a spectrum of cerebrovascular diseases, including moyamoya disease (MMD). In this report, we describe a 31-year-old male referred to genetics for MMD since childhood who lacked the hallmark features of AGS patients but was found to have compound heterozygous SAMHD1 variants. He later developed mitral valve insufficiency due to recurrent chordal rupture and ultimately underwent a heart transplant at 37 years of age. Thus, these data suggest that SAMHD1 pathogenic variants can cause MMD without typical AGS symptoms and support that SAMHD1 should be assessed in MMD patients even in the absence of AGS features.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Encefalopatías , Enfermedad de Moyamoya , Malformaciones del Sistema Nervioso , Masculino , Humanos , Niño , Adulto , Proteína 1 que Contiene Dominios SAM y HD/genética , Enfermedad de Moyamoya/complicaciones , Válvula Mitral/patología , Mutación , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Malformaciones del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/patología , Encefalopatías/complicaciones
7.
J Clin Immunol ; 42(5): 962-974, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35320431

RESUMEN

BACKGROUND: Aicardi-Goutières syndrome (AGS) is a type I interferonopathy usually characterized by early-onset neurologic regression. Biallelic mutations in LSM11 and RNU7-1, components of the U7 small nuclear ribonucleoprotein (snRNP) complex, have been identified in a limited number of genetically unexplained AGS cases. Impairment of U7 snRNP function results in misprocessing of replication-dependent histone (RDH) pre-mRNA and disturbance of histone occupancy of nuclear DNA, ultimately driving cGAS-dependent type I interferon (IFN-I) release. OBJECTIVE: We performed a clinical, genetic, and immunological workup of 3 unrelated patients with uncharacterized AGS. METHODS: Whole exome sequencing (WES) and targeted Sanger sequencing of RNU7-1 were performed. Primary fibroblasts were used for mechanistic studies. IFN-I signature and STAT1/2 phosphorylation were assessed in peripheral blood. Cytokines were profiled on serum and cerebrospinal fluid (CSF). Histopathology was examined on brain and kidney tissue. RESULTS: Sequencing revealed compound heterozygous RNU7-1 mutations, resulting in impaired RDH pre-mRNA processing. The 3' stem-loop mutations reduced stability of the secondary U7 snRNA structure. A discrete IFN-I signature in peripheral blood was paralleled by MCP-1 (CCL2) and CXCL10 upregulation in CSF. Histopathological analysis of the kidney showed thrombotic microangiopathy. We observed dysregulated STAT phosphorylation upon cytokine stimulation. Clinical overview of all reported patients with RNU7-1-related disease revealed high mortality and high incidence of organ involvement compared to other AGS genotypes. CONCLUSIONS: Targeted RNU7-1 sequencing is recommended in genetically unexplained AGS cases. CSF cytokine profiling represents an additional diagnostic tool to identify aberrant IFN-I signaling. Clinical follow-up of RNU7-1-mutated patients should include screening for severe end-organ involvement including liver disease and nephropathy.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Malformaciones del Sistema Nervioso , ARN Nuclear Pequeño/genética , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico , Enfermedades Autoinmunes del Sistema Nervioso/genética , Quimiocina CXCL10/genética , Histonas , Humanos , Interferones , Mutación , Malformaciones del Sistema Nervioso/diagnóstico , Malformaciones del Sistema Nervioso/genética , ARN , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/genética
8.
Respir Res ; 23(1): 202, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945604

RESUMEN

BACKGROUND: The efficacy and safety of complement inhibition in COVID-19 patients is unclear. METHODS: A multicenter randomized controlled, open-label trial. Hospitalized COVID-19 patients with signs of systemic inflammation and hypoxemia (PaO2/FiO2 below 350 mmHg) were randomized (2:1 ratio) to receive standard of care with or without the C5 inhibitor zilucoplan daily for 14 days, under antibiotic prophylaxis. The primary outcome was improvement in oxygenation at day 6 and 15. RESULTS: 81 patients were randomly assigned to zilucoplan (n = 55) or the control group (n = 26). 78 patients were included in the safety and primary analysis. Most were men (87%) and the median age was 63 years. The mean improvement in PaO2/FiO2 from baseline to day 6 was 56.4 mmHg in the zilucoplan group and 20.6 mmHg in the control group (mean difference + 35.8; 95% confidence interval (CI) - 9.4 to 80.9; p = 0.12), an effect also observed at day 15. Day 28 mortality was 9% in the zilucoplan and 21% in the control group (odds ratio 0.4; 95% CI 0.1 to 1.5). At long-term follow up, the distance walked in a 6-min test was 539.7 m in zilucoplan and 490.6 m in the control group (p = 0.18). Zilucoplan lowered serum C5b-9 (p < 0.001) and interleukin-8 (p = 0.03) concentration compared with control. No relevant safety differences between the zilucoplan and control group were identified. CONCLUSION: Administration of zilucoplan to COVID-19 patients in this proof-of-concept randomized trial was well tolerated under antibiotic prophylaxis. While not reaching statistical significance, indicators of respiratory function (PaO2/FiO2) and clinical outcome (mortality and 6-min walk test) suggest that C5 inhibition might be beneficial, although this requires further research in larger randomized studies.


Asunto(s)
Antiinfecciosos , Tratamiento Farmacológico de COVID-19 , Complemento C5 , Inactivadores del Complemento/efectos adversos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Péptidos Cíclicos , SARS-CoV-2 , Resultado del Tratamiento
9.
Proc Natl Acad Sci U S A ; 116(38): 19055-19063, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31484767

RESUMEN

Juvenile-onset recurrent respiratory papillomatosis (JRRP) is a rare and debilitating childhood disease that presents with recurrent growth of papillomas in the upper airway. Two common human papillomaviruses (HPVs), HPV-6 and -11, are implicated in most cases, but it is still not understood why only a small proportion of children develop JRRP following exposure to these common viruses. We report 2 siblings with a syndromic form of JRRP associated with mild dermatologic abnormalities. Whole-exome sequencing of the patients revealed a private homozygous mutation in NLRP1, encoding Nucleotide-Binding Domain Leucine-Rich Repeat Family Pyrin Domain-Containing 1. We find the NLRP1 mutant allele to be gain of function (GOF) for inflammasome activation, as demonstrated by the induction of inflammasome complex oligomerization and IL-1ß secretion in an overexpression system. Moreover, patient-derived keratinocytes secrete elevated levels of IL-1ß at baseline. Finally, both patients displayed elevated levels of inflammasome-induced cytokines in the serum. Six NLRP1 GOF mutations have previously been described to underlie 3 allelic Mendelian diseases with differing phenotypes and modes of inheritance. Our results demonstrate that an autosomal recessive, syndromic form of JRRP can be associated with an NLRP1 GOF mutation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Mutación con Ganancia de Función , Homocigoto , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/patología , Infecciones del Sistema Respiratorio/genética , Infecciones del Sistema Respiratorio/patología , Preescolar , Citocinas/metabolismo , Femenino , Humanos , Lactante , Inflamasomas , Queratinocitos/citología , Queratinocitos/inmunología , Queratinocitos/metabolismo , Masculino , Proteínas NLR , Linaje , Hermanos , Síndrome
10.
Clin Genet ; 99(2): 292-297, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33073370

RESUMEN

Pathogenic biallelic variants in the BLM/RECQL3 gene cause a rare autosomal recessive disorder called Bloom syndrome (BS). This syndrome is characterized by severe growth delay, immunodeficiency, dermatological manifestations and a predisposition to a wide variety of cancers, often multiple and very early in life. Literature shows that the main mode of BLM inactivation is protein translation termination. We expanded the molecular spectrum of BS by reporting the first deep intronic variant causing intron exonisation. We describe a patient with a clinical phenotype of BS and a strong increase in sister chromatid exchanges (SCE), who was found to be compound heterozygous for a novel nonsense variant c.3379C>T, p.(Gln1127Ter) in exon 18 and a deep intronic variant c.3020-258A>G in intron 15 of the BLM gene. The deep intronic variant creates a high-quality de novo donor splice site, which leads to retention of two intron segments. Both pseudo-exons introduce a premature stop codon into the reading frame and abolish BLM protein expression, confirmed by Western Blot analysis. These findings illustrate the role of non-coding variation in Mendelian disorders and herewith highlight an unmet need in routine testing of Mendelian disorders, being the added value of RNA-based approaches to provide a complete molecular diagnosis.


Asunto(s)
Síndrome de Bloom/genética , Codón sin Sentido , Intrones/genética , RecQ Helicasas/genética , Exones/genética , Heterocigoto , Humanos , Patrón de Herencia , Masculino , Linaje , Fenotipo , Adulto Joven
11.
Br J Haematol ; 188(5): 768-773, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31710708

RESUMEN

GATA2 deficiency, first described in 2011, is a bone marrow failure disorder resulting in a complex haematological and immunodeficiency syndrome characterised by cytopenias, severe infections, myelodysplasia and leukaemia. The only curative treatment is allogeneic haematopoietic stem cell transplantation (HSCT). Although knowledge on this syndrome has greatly expanded, in clinical practice many challenges remain. In particular, guidelines on optimal donor and stem cell source and conditioning regimens regarding HSCT are lacking. Additionally, genetic analysis of GATA2 is technically cumbersome and could easily result in false-negative results. With this report, we wish to raise awareness of these pitfalls amongst physicians dealing with haematological malignancies and primary immunodeficiencies.


Asunto(s)
Deficiencia GATA2/terapia , Trasplante de Células Madre Hematopoyéticas , Adulto , Aloinjertos , Femenino , Deficiencia GATA2/diagnóstico por imagen , Neoplasias Hematológicas/diagnóstico por imagen , Neoplasias Hematológicas/terapia , Humanos , Síndromes de Inmunodeficiencia/diagnóstico por imagen , Síndromes de Inmunodeficiencia/terapia , Masculino
12.
Curr Top Microbiol Immunol ; 414: 45-72, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28702709

RESUMEN

The endoplasmic reticulum (ER) is the primary site for the folding of proteins destined for the membranous compartment and the extracellular space. This elaborate function is coordinated by the unfolded protein response (UPR), a stress-activated cellular program that governs proteostasis. In multicellular organisms, cells have adopted specialized functions, which required functional adaptations of the ER and its UPR. Recently, it has become clear that in immune cells, the UPR has acquired functions that stretch far beyond its original scope. In this review, we will discuss the role of the UPR in the immune system and highlight the plasticity of this signaling cascade throughout immune cell development .


Asunto(s)
Linfopoyesis , Respuesta de Proteína Desplegada/fisiología , Animales , Retículo Endoplásmico , Células Madre Hematopoyéticas/fisiología , Humanos , Sistema Inmunológico/fisiología , Transducción de Señal/fisiología
13.
J Pathol ; 241(4): 547-558, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27981571

RESUMEN

Prolyl hydroxylase domain-containing proteins (PHDs) regulate the adaptation of cells to hypoxia. Pan-hydroxylase inhibition is protective in experimental colitis, in which PHD1 plays a prominent role. However, it is currently unknown how PHD1 targeting regulates this protection and which cell type(s) are involved. Here, we demonstrated that Phd1 deletion in endothelial and haematopoietic cells (Phd1f/f Tie2:cre) protected mice from dextran sulphate sodium (DSS)-induced colitis, with reduced epithelial erosions, immune cell infiltration, and colonic microvascular dysfunction, whereas the response of Phd2f/+ Tie2:cre and Phd3f/f Tie2:cre mice to DSS was similar to that of their littermate controls. Using bone marrow chimeras and cell-specific cre mice, we demonstrated that ablation of Phd1 in haematopoietic cells but not in endothelial cells was both necessary and sufficient to inhibit experimental colitis. This effect relied, at least in part, on skewing of Phd1-deficient bone marrow-derived macrophages towards an anti-inflammatory M2 phenotype. These cells showed an attenuated nuclear factor-κB-dependent response to lipopolysaccharide (LPS), which in turn diminished endothelial chemokine expression. In addition, Phd1 deficiency in dendritic cells significantly reduced interleukin-1ß production in response to LPS. Taken together, our results further support the development of selective PHD1 inhibitors for ulcerative colitis, and identify haematopoietic cells as their primary target. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Colitis Ulcerosa/tratamiento farmacológico , Macrófagos/metabolismo , Procolágeno-Prolina Dioxigenasa/antagonistas & inhibidores , Animales , Médula Ósea/efectos de los fármacos , Médula Ósea/inmunología , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/patología , Colon/efectos de los fármacos , Colon/patología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/patología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Femenino , Eliminación de Gen , Humanos , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolisacáridos , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/genética , FN-kappa B/metabolismo , Procolágeno-Prolina Dioxigenasa/deficiencia , Procolágeno-Prolina Dioxigenasa/genética
16.
Artículo en Inglés | MEDLINE | ID: mdl-38934089

RESUMEN

The study of sensitive and specific biomarkers, such as blood inflammatory cytokines, could provide an answer to the challenges faced in the differential diagnosis of patients with systemic inflammation. Limited data exist on the impact of age on serum levels of inflammatory cytokines. We collected serum samples of 42 healthy children and young adults (1 month to 21 years). Serum levels of interleukin 1 receptor antagonist (IL-1Ra), IL-1ß, IL-6, IL-18, tumor necrosis factor-alpha (TNF-α), CXCL9, and CXCL10 were measured. Data were analyzed for three different age groups (<6, 6-17, and 18-21 years). IL-18, TNF-α, and CXCL9 values varied significantly according to age group. Median values of IL-18 and TNF-α decline with age, whereas CXCL9 and CXCL10 are lowest at 6-17 years. IL-1Ra is stable among age groups. In the majority of cases, IL-1ß and IL-6 are not measurable above the lower limit of quantification. A scoping literature review revealed highly variable data on IL-1Ra, IL-18, TNF-α, and CXCL10. For CXCL9, pediatric reference data are scarce. In conclusion, we report an age-dependent signature of multiple inflammatory cytokines measured in the serum of healthy children and young adults, suggesting the need to use age-specific reference values in future pediatric studies.

17.
Eur J Endocrinol ; 190(1): 34-43, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38128121

RESUMEN

OBJECTIVE: NR5A1 is a key regulator of sex differentiation and has been implicated in spleen development through transcription activation of TLX1. Concerns exist about hypo- or asplenism in individuals who have a difference of sex development (DSD) due to an NR5A1 disease-causing variant. We aimed to assess spleen anatomy and function in a clinical cohort of such individuals and in their asymptomatic family member carriers. DESIGN: Cross-sectional assessment in 22 patients with a DSD or primary ovarian insufficiency and 5 asymptomatic carriers from 18 families, harboring 14 different NR5A1 variants. METHODS: Spleen anatomy was assessed by ultrasound, spleen function by peripheral blood cell count, white blood cell differentiation, percentage of nonswitched memory B cells, specific pneumococcal antibody response, % pitted red blood cells, and Howell-Jolly bodies. RESULTS: Patients and asymptomatic heterozygous individuals had significantly decreased nonswitched memory B cells compared to healthy controls, but higher than asplenic patients. Thrombocytosis and spleen hypoplasia were present in 50% of heterozygous individuals. Four out of 5 individuals homozygous for the previously described p.(Arg103Gln) variant had asplenia. CONCLUSIONS: Individuals harboring a heterozygous NR5A1 variant that may cause DSD have a considerable risk for functional hyposplenism, irrespective of their gonadal phenotype. Splenic function should be assessed in these individuals, and if affected or unknown, prophylaxis is recommended to prevent invasive encapsulated bacterial infections. The splenic phenotype associated with NR5A1 variants is more severe in homozygous individuals and is, at least for the p.(Arg103Gln) variant, associated with asplenism.


Asunto(s)
Bazo , Factor Esteroidogénico 1 , Humanos , Estudios Transversales , Heterocigoto , Mutación , Fenotipo , Bazo/diagnóstico por imagen , Factor Esteroidogénico 1/genética
18.
Sci Transl Med ; 15(710): eadi0252, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37611083

RESUMEN

Improvements in COVID-19 treatments, especially for the critically ill, require deeper understanding of the mechanisms driving disease pathology. The complement system is not only a crucial component of innate host defense but can also contribute to tissue injury. Although all complement pathways have been implicated in COVID-19 pathogenesis, the upstream drivers and downstream effects on tissue injury remain poorly defined. We demonstrate that complement activation is primarily mediated by the alternative pathway, and we provide a comprehensive atlas of the complement alterations around the time of respiratory deterioration. Proteomic and single-cell sequencing mapping across cell types and tissues reveals a division of labor between lung epithelial, stromal, and myeloid cells in complement production, in addition to liver-derived factors. We identify IL-6 and STAT1/3 signaling as an upstream driver of complement responses, linking complement dysregulation to approved COVID-19 therapies. Furthermore, an exploratory proteomic study indicates that inhibition of complement C5 decreases epithelial damage and markers of disease severity. Collectively, these results support complement dysregulation as a key druggable feature of COVID-19.


Asunto(s)
COVID-19 , Interleucina-6 , Humanos , Proteómica , Proteínas del Sistema Complemento , Activación de Complemento
19.
Sci Immunol ; 8(83): eadd3955, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37172103

RESUMEN

Dendritic cells (DCs) mature in an immunogenic or tolerogenic manner depending on the context in which an antigen is perceived, preserving the balance between immunity and tolerance. Whereas the pathways driving immunogenic maturation in response to infectious insults are well-characterized, the signals that drive tolerogenic maturation during homeostasis are still poorly understood. We found that the engulfment of apoptotic cells triggered homeostatic maturation of type 1 conventional DCs (cDC1s) within the spleen. This maturation process could be mimicked by engulfment of empty, nonadjuvanted lipid nanoparticles (LNPs), was marked by intracellular accumulation of cholesterol, and was highly specific to cDC1s. Engulfment of either apoptotic cells or cholesterol-rich LNPs led to the activation of the liver X receptor (LXR) pathway, which promotes the efflux of cellular cholesterol, and repressed genes associated with immunogenic maturation. In contrast, simultaneous engagement of TLR3 to mimic viral infection via administration of poly(I:C)-adjuvanted LNPs repressed the LXR pathway, thus delaying cellular cholesterol efflux and inducing genes that promote T cell-mediated immunity. These data demonstrate that conserved cellular cholesterol efflux pathways are differentially regulated in tolerogenic versus immunogenic cDC1s and suggest that administration of nonadjuvanted cholesterol-rich LNPs may be an approach for inducing tolerogenic DC maturation.


Asunto(s)
Células Dendríticas , Transducción de Señal , Receptores X del Hígado/metabolismo , Transducción de Señal/genética , Homeostasis , Colesterol
20.
Sci Immunol ; 7(77): eabq4531, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36399538

RESUMEN

Herpes simplex virus 1 (HSV-1) infects several billion people worldwide and can cause life-threatening herpes simplex encephalitis (HSE) in some patients. Monogenic defects in components of the type I interferon system have been identified in patients with HSE, emphasizing the role of inborn errors of immunity underlying HSE pathogenesis. Here, we identify compound heterozygous loss-of-function mutations in the gene GTF3A encoding for transcription factor IIIA (TFIIIA), a component of the RNA polymerase III complex, in a patient with common variable immunodeficiency and HSE. Patient fibroblasts and GTF3A gene-edited cells displayed impaired HSV-1-induced innate immune responses and enhanced HSV-1 replication. Chromatin immunoprecipitation sequencing analysis identified the 5S ribosomal RNA pseudogene 141 (RNA5SP141), an endogenous ligand of the RNA sensor RIG-I, as a transcriptional target of TFIIIA. GTF3A mutant cells exhibited diminished RNA5SP141 expression and abrogated RIG-I activation upon HSV-1 infection. Our work unveils a crucial role for TFIIIA in transcriptional regulation of a cellular RIG-I agonist and shows that GTF3A genetic defects lead to impaired cell-intrinsic anti-HSV-1 responses and can predispose to HSE.


Asunto(s)
Encefalitis por Herpes Simple , Herpesvirus Humano 1 , Humanos , Encefalitis por Herpes Simple/genética , Encefalitis por Herpes Simple/patología , Seudogenes , ARN , Ligandos , Factor de Transcripción TFIIIA/genética , Herpesvirus Humano 1/genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA