Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Entomol ; 69: 159-182, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37625116

RESUMEN

Dengue, caused by the dengue virus, is the most widespread arboviral infectious disease of public health significance globally. This review explores the communicative function of olfactory cues that mediate host-seeking, egg-laying, plant-feeding, and mating behaviors in Aedes aegypti and Aedes albopictus, two mosquito vectors that drive dengue virus transmission. Aedes aegypti has adapted to live in close association with humans, preferentially feeding on them and laying eggs in human-fabricated water containers and natural habitats. In contrast, Ae. albopictus is considered opportunistic in its feeding habits and tends to inhabit more vegetative areas. Additionally, the ability of both mosquito species to locate suitable host plants for sugars and find mates for reproduction contributes to their survival. Advances in chemical ecology, functional genomics, and behavioral analyses have improved our understanding of the underlying neural mechanisms and reveal novel and specific olfactory semiochemicals that these species use to locate and discriminate among resources in their environment. Physiological status; learning; and host- and habitat-associated factors, including microbial infection and abundance, shape olfactory responses of these vectors. Some of these semiochemicals can be integrated into the toolbox for dengue surveillance and control.


Asunto(s)
Aedes , Dengue , Humanos , Animales , Ecología , Feromonas
2.
J Chem Ecol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976099

RESUMEN

Tsetse flies are vectors of the parasite trypanosoma that cause the neglected tropical diseases human and animal African trypanosomosis. Semiochemicals play important roles in the biology and ecology of tsetse flies. Previous reviews have focused on olfactory-based attractants of tsetse flies. Here, we present an overview of the identification of repellents and their development into control tools for tsetse flies. Both natural and synthetic repellents have been successfully tested in laboratory and field assays against specific tsetse fly species. Thus, these repellents presented as innovative mobile tools offer opportunities for their use in integrated disease management strategies.

3.
J Chem Ecol ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38532168

RESUMEN

This study investigates the efficacy of three different olfactory cues - cyclohexanone, linalool oxide (LO), and 6-methyl-5-heptan-2-one (sulcatone) - in attracting Aedes aegypti, the primary vector of dengue, using BG sentinel traps in a dengue-endemic area (urban Ukunda) in coastal Kenya. Two experiments were conducted. Experiment 1 compared solid formulations of the compounds in polymer beads against liquid formulations with hexane as the solvent. CO2-baited traps served as controls. In Experiment 2, traps were baited with each compound in the polymer beads, commercial BG-Lure, and CO2. Our results indicate that CO2-baited traps recorded the greatest Ae. aegypti captures in both Experiment 1 and 2, whereas trap captures with polymer beads and solvent-based treatments were comparable. In experiment 2, polymer bead-based treatments yielded significantly greater female captures, each recording ~ 2-fold more captures than traps baited with the BG-Lure. There was no significant difference, however, between the treatments. Female Ae. aegypti captured in CO2-baited traps were mainly unfed (91%), with fewer gravid mosquitoes (6.4%) compared to traps with test compounds (range; 12.7-21.1%). Male captures were lower in LO and BG-Lure baited traps compared to other treatments. Gravimetric analysis showed LO had a slower release rate compared to other compounds. The findings suggest that host-associated compounds loaded on polymer beads are more effective in trapping Ae. aegypti than commercial BG-Lure and reveal sex-specific differences in mosquito responses. These results have implications for mosquito surveillance and control programs, highlighting the potential for selective trapping strategies.

4.
Med Vet Entomol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747253

RESUMEN

Accurate knowledge of blood meal hosts of different mosquito species is critical for identifying potential vectors and establishing the risk of pathogen transmission. We compared the performance of Miseq next generation sequencing approach relative to conventional Sanger sequencing approach in identification of mosquito blood meals using genetic markers targeting the 12S rRNA and cytochrome oxidase I (COI) genes. We analysed the blood meals of three mosquito vector species (Aedes aegypti, Aedes simpsoni s.l. and Culex pipiens s.l.) collected outdoors, and compared the frequency of single- versus multiple-blood feeding. Single host blood meals were mostly recovered for Sanger-based sequencing of the mitochondrial 12S rRNA gene, whereas Miseq sequencing employing this marker and the COI marker detected both single and multiple blood meal hosts in individual mosquitoes. Multiple blood meals (two or more hosts) which mostly included humans were detected in 19%-22.7% of Ae. aegypti samples. Most single host blood meals for this mosquito species were from humans (47.7%-57.1%) and dogs (9.1%-19.0%), with livestock, reptile and rodent hosts collectively accounting for 4.7%-28.9% of single host blood meals. The frequency of two or more host blood meals in Ae. simpsoni s.l. was 26.3%-45.5% mostly including humans, while single host blood meals were predominantly from humans (31.8%-47.4%) with representation of rodent, reptile and livestock blood meals (18.2%-68.2%). Single host blood meals from Cx. pipiens s.l. were mostly from humans (27.0%-39.4%) and cows (11.5%-27.36%). Multiple blood meal hosts that mostly included humans occurred in 21.2%-24.4% of Cx. pipiens s.l. samples. Estimated human blood indices ranged from 53%-76% for Ae. aegypti, 32%-82% for Ae. simpsoni s.l. and 26%-61% for Cx. pipiens s.l. and were consistently lower for Sanger-based sequencing approach compared to Miseq-based sequencing approach. These findings demonstrate that Miseq sequencing approach is superior to Sanger sequencing approach as it can reliably identify mixed host blood meals in a single mosquito, improving our ability to understand the transmission dynamics of mosquito-borne pathogens.

5.
BMC Public Health ; 22(1): 930, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538444

RESUMEN

BACKGROUND: The combined application of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are commonly used malaria interventions that target indoor Anopheles vectors. Recent studies on the effects of house screening (HS) and LLINs have demonstrated a reduction in indoor vector densities and malaria when the interventions are combined. In addition, complementary interventions are needed to curb co-occurring pest populations which pose menace to agricultural crop productivity and food security. However, interventions that impact malaria mainly centre on public health strategies, overlooking subtle but important component of agricultural measures. Addressing the coexisting risks of malaria and crop pests could contribute to improved livelihood of communities. METHODS: A four-armed household, cluster-randomized, controlled study will be conducted to assess the combined impact of HS, LLINs and push-pull agricultural technology (PPT) against clinical malaria in children in Ethiopia. The unit of randomization will be the household, which includes a house and its occupants. A total of 838 households will be enrolled in this study. In this trial 246 households will receive LLINs and HS, 250 will receive LLINs, HS and PPT, 175 households will receive LLINs and PPT. The remaining 167 houses which receive LLINs only will be used as control. One child aged ≤14 years will be enrolled per household in each treatment and followed for clinical malaria using active case detection to estimate malaria incidence for two malaria transmission seasons. DISCUSSION: Episodes of clinical malaria, density of indoor biting malaria vectors, sporozoite infection rate, improved crop infestation rate, crop yield gain, livestock productivity and cost effectiveness analysis will be the end points of this study. Socio-economic, social demographic, cost-effectiveness analysis will be conducted using qualitative and participatory methods to explore the acceptability of HS and PPT. Documenting the combined impact of LLINs, HS and PPT on the prevalence of clinical malaria and crop pest damage will be the first of its kind. TRIAL REGISTRATION: Pan African Clinical Trials Registry, PACTR202006878245287. 24/06/2020. https://pactr.samrc.ac.za/TrialDisplay.aspx?TrialID=11101 .


Asunto(s)
Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Animales , Niño , Etiopía/epidemiología , Humanos , Insecticidas/uso terapéutico , Malaria/epidemiología , Malaria/prevención & control , Control de Mosquitos/métodos , Mosquitos Vectores , Ensayos Clínicos Controlados Aleatorios como Asunto , Proyectos de Investigación , Tecnología
6.
Emerg Infect Dis ; 25(4): 681-690, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30882303

RESUMEN

We describe a novel virus, designated Ntepes virus (NPV), isolated from sand flies in Kenya. NPV has the characteristic phlebovirus trisegmented genome architecture and is related to, but distinct from, Gabek Forest phlebovirus. Diverse cell cultures derived from wildlife, livestock, and humans were susceptible to NPV, with pronounced permissiveness in swine and rodent cells. NPV infection of newborn mice caused rapid and fatal illness. Permissiveness for NPV replication in sand fly cells, but not mosquito cells, suggests a vector-specific adaptation. Specific neutralizing antibodies were found in 13.9% (26/187) of human serum samples taken at the site of isolation of NPV as well as a disparate site in northeastern Kenya, suggesting a wide distribution. We identify a novel human-infecting arbovirus and highlight the importance of rural areas in tropical Africa for arbovirus surveillance as well as extending arbovirus surveillance to include hematophagous arthropods other than mosquitoes.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Infecciones por Bunyaviridae/epidemiología , Infecciones por Bunyaviridae/inmunología , Phlebovirus/inmunología , Psychodidae/virología , Adolescente , Adulto , Animales , Infecciones por Bunyaviridae/transmisión , Infecciones por Bunyaviridae/virología , Línea Celular , Niño , Femenino , Genoma de los Insectos , Genoma Viral , Genómica/métodos , Geografía Médica , Humanos , Insectos Vectores/virología , Kenia/epidemiología , Masculino , Ratones , Phlebovirus/clasificación , Phlebovirus/genética , Phlebovirus/aislamiento & purificación , Filogenia , Psychodidae/clasificación , Psychodidae/genética , Vigilancia en Salud Pública , Adulto Joven
7.
Proc Biol Sci ; 286(1914): 20192136, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31690238

RESUMEN

Interactions between Aedes (Stegomyia) species and non-human primate (NHP) and human hosts govern the transmission of the pathogens, dengue, zika, yellow fever and chikungunya viruses. Little is known about Aedes mosquito olfactory interactions with these hosts in the domestic and sylvatic cycles where these viruses circulate. Here, we explore how the different host-derived skin odours influence Aedes mosquito responses in these two environments. In field assays, we show that the cyclic ketone cyclohexanone is a signature cue for Aedes mosquitoes to detect the NHP baboon, sykes and vervet, whereas for humans, it is the unsaturated aliphatic keto-analogue 6-methyl-5-hepten-2-one (sulcatone). We find that in the sylvatic environment, CO2-baited traps combined with either cyclohexanone or sulcatone increased trap catches of Aedes mosquitoes compared to traps either baited with CO2 alone or CO2 combined with NHP- or human-derived crude skin odours. In the domestic environment, each of these odourants and crude human skin odours increased Aedes aegypti catches in CO2-baited traps. These results expand our knowledge on the role of host odours in the ecologies of Aedes mosquitoes, and the likelihood of associated spread of pathogens between primates and humans. Both cyclohexanone and sulcatone have potential practical applications as lures for monitoring Aedes disease vectors.


Asunto(s)
Aedes/fisiología , Dengue/transmisión , Mosquitos Vectores , Animales , Virus del Dengue , Vectores de Enfermedades , Humanos , Olfato
8.
Int J Health Geogr ; 13: 12, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24885061

RESUMEN

BACKGROUND: Predicting anopheles vectors' population densities and boundary shifts is crucial in preparing for malaria risks and unanticipated outbreaks. Although shifts in the distribution and boundaries of the major malaria vectors (Anopheles gambiae s.s. and An. arabiensis) across Africa have been predicted, quantified areas of absolute change in zone of suitability for their survival have not been defined. In this study, we have quantified areas of absolute change conducive for the establishment and survival of these vectors, per African country, under two climate change scenarios and based on our findings, highlight practical measures for effective malaria control in the face of changing climatic patterns. METHODS: We developed a model using CLIMEX simulation platform to estimate the potential geographical distribution and seasonal abundance of these malaria vectors in relation to climatic factors (temperature, rainfall and relative humidity). The model yielded an eco-climatic index (EI) describing the total favourable geographical locations for the species. The EI values were classified and exported to a GIS package. Using ArcGIS, the EI shape points were clipped to the extent of Africa and then converted to a raster layer using Inverse Distance Weighted (IDW) interpolation method. Generated maps were then transformed into polygon-based geo-referenced data set and their areas computed and expressed in square kilometers (km(2)). RESULTS: Five classes of EI were derived indicating the level of survivorship of these malaria vectors. The proportion of areas increasing or decreasing in level of survival of these malaria vectors will be more pronounced in eastern and southern African countries than those in western Africa. Angola, Ethiopia, Kenya, Mozambique, Tanzania, South Africa and Zambia appear most likely to be affected in terms of absolute change of malaria vectors suitability zones under the selected climate change scenarios. CONCLUSION: The potential shifts of these malaria vectors have implications for human exposure to malaria, as recrudescence of the disease is likely to be recorded in several new areas and regions. Therefore, the need to develop, compile and share malaria preventive measures, which can be adapted to different climatic scenarios, remains crucial.


Asunto(s)
Anopheles , Cambio Climático , Mapeo Geográfico , Insectos Vectores , Malaria/epidemiología , África/epidemiología , Animales , Humanos , Malaria/diagnóstico , Análisis de Supervivencia
9.
Curr Opin Insect Sci ; : 101274, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39341456

RESUMEN

Phlebotomine sand flies are vectors of multiple human pathogens but are well known for enabling transmission of Leishmania parasites which cause leishmaniasis; the visceral form constituting a serious public health disease and a second parasitic killer in the world after malaria. Sensory ecology shapes sand fly behavior including host seeking for a blood meal, nectar foraging, oviposition and reproduction which directly impact on disease transmission. As such, knowledge of sand fly sensory ecology including olfactory and physical (visual, tactile, thermal and acoustic) cues is essential to enable their exploitation in the development of novel tools for sand fly surveillance and control. A previous review discussed the chemical ecology of sand flies with a focus on plant feeding (nectar foraging) behavior. Here, we contribute to the existing literature by providing an analysis of the feasibility of using knowledge gained from studies on sand fly sensory ecology for control of the vector.

10.
Sci Rep ; 14(1): 20625, 2024 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232051

RESUMEN

Improved understanding of mosquito-plant feeding interactions can reveal insights into the ecological dynamics of pathogen transmission. In wild malaria vectors Anopheles gambiae s.l. and An. funestus group surveyed in selected dryland ecosystems of Kenya, we found a low level of plant feeding (2.8%) using biochemical cold anthrone test but uncovered 14-fold (41%) higher rate via DNA barcoding targeting the chloroplast rbcL gene. Plasmodium falciparum positivity was associated with either reduced or increased total sugar levels and varied by mosquito species. Gut analysis revealed the mosquitoes to frequently feed on acacia plants (~ 89%) (mainly Vachellia tortilis) in the family Fabaceae. Chemical analysis revealed 1-octen-3-ol (29.9%) as the dominant mosquito attractant, and the sugars glucose, sucrose, fructose, talose and inositol enriched in the vegetative parts, of acacia plants. Nutritional analysis of An. longipalpis C with high plant feeding rates detected fewer sugars (glucose, talose, fructose) compared to acacia plants. These results demonstrate (i) the sensitivity of DNA barcoding to detect plant feeding in malaria vectors, (ii) Plasmodium infection status affects energetic reserves of wild anopheline vectors and (iii) nutrient content and olfactory cues likely represent potent correlates of acacia preferred as a host plant by diverse malaria vectors. The results have relevance in the development of odor-bait control strategies including attractive targeted sugar-baits.


Asunto(s)
Anopheles , Código de Barras del ADN Taxonómico , Ecosistema , Mosquitos Vectores , Plasmodium falciparum , Animales , Mosquitos Vectores/parasitología , Mosquitos Vectores/genética , Anopheles/parasitología , Anopheles/genética , Anopheles/metabolismo , Kenia , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Malaria/transmisión , Malaria/parasitología , Acacia/metabolismo , Acacia/parasitología , Acacia/genética , Conducta Alimentaria/fisiología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Ribulosa-Bifosfato Carboxilasa/genética
11.
Sci Rep ; 14(1): 13669, 2024 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871839

RESUMEN

Among the factors affecting the effectiveness of malaria control is poor knowledge of the entomologic drivers of the disease. We investigated anopheline populations as part of a baseline study to implement house screening of windows and doors as a supplementary malaria control tool towards elimination in Jabi Tehnan district, Amhara Regional State of Ethiopia. The samples were surveyed monthly using CDC light traps between June 2020 and May 2021. Mosquito trap density (< 3 mosquitoes/trap) was low, however, with a high overall Plasmodium sporozoite rate (9%; indoor = 4.3%, outdoor = 13.1%) comprising P. falciparum (88.9%) and P. vivax (11.1%). Anopheles gambiae s.l., mostly An. arabiensis, comprised > 80% of total anopheline captures and contributed ~ 42% of Plasmodium-infected mosquitoes. On the other hand, morphologically scored Anopheles funestus s.l., constituting about 6% of anopheline collections, accounted for 50% of sporozoite-infected mosquitoes. Most of the infected An. funestus s.l. specimens (86.7%) were grouped with previously unknown or undescribed Anopheles species previously implicated as a cryptic malaria vector in the western Kenyan highlands, confirming its wider geographic distribution in eastern Africa. Other species with Plasmodium infection included An. longipalpis C, An. theileri, An. demillioni, and An. nili. Cumulatively, 77.8% of the infected mosquitoes occurred outdoors. These results suggest efficient malaria parasite transmission despite the low vector densities, which has implications for effective endpoint indicators to monitor malaria control progress. Additionally, the largely outdoor infection and discovery of previously unknown and cryptic vectors suggest an increased risk of residual malaria transmission and, thus, a constraint on effective malaria prevention and control.


Asunto(s)
Anopheles , Mosquitos Vectores , Etiopía/epidemiología , Animales , Anopheles/parasitología , Mosquitos Vectores/parasitología , Humanos , Malaria/transmisión , Malaria/epidemiología , Plasmodium falciparum/aislamiento & purificación , Plasmodium falciparum/patogenicidad , Plasmodium vivax/fisiología , Esporozoítos , Control de Mosquitos/métodos , Malaria Vivax/transmisión , Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Malaria Falciparum/transmisión , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Femenino
12.
Viruses ; 15(9)2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37766297

RESUMEN

Crimean-Congo haemorrhagic fever virus (CCHFV) is the causative agent of CCHF, a fatal viral haemorrhagic fever disease in humans. The maintenance of CCHFV in the ecosystem remains poorly understood. Certain tick species are considered as vectors and reservoirs of the virus. Diverse animals are suspected as amplifiers, with only scarce knowledge regarding rodents in virus epidemiology. In this study, serum samples from febrile patients, asymptomatic livestock (cattle, donkeys, sheep, and goats), and peridomestic rodents from Baringo (Marigat) and Kajiado (Nguruman) counties within the Kenyan Rift Valley were screened for acute CCHFV infection by RT-PCR and for CCHFV exposure by ELISA. RT-PCR was performed on all livestock samples in pools (5-7/pool by species and site) and in humans and rodents individually. CCHFV seropositivity was significantly higher in livestock (11.9%, 113/951) compared to rodents (6.5%, 6/93) and humans (5.9%, 29/493) (p = 0.001). Among the livestock, seropositivity was the highest in donkeys (31.4%, 16/51), followed by cattle (14.1%, 44/310), sheep (9.8%, 29/295) and goats (8.1%, 24/295). The presence of IgM antibodies against CCHFV was found in febrile patients suggesting acute or recent infection. CCHFV RNA was detected in four pooled sera samples from sheep (1.4%, 4/280) and four rodent tissues (0.83%, 4/480) showing up to 99% pairwise nucleotide identities among each other. Phylogenetic analyses of partial S segment sequences generated from these samples revealed a close relationship of 96-98% nucleotide identity to strains in the CCHFV Africa 3 lineage. The findings of this study suggest active unnoticed circulation of CCHFV in the study area and the involvement of livestock, rodents, and humans in the circulation of CCHFV in Kenya. The detection of CCHF viral RNA and antibodies against CCHFV in rodents suggests that they may participate in the viral transmission cycle.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Humanos , Animales , Bovinos , Ovinos , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Kenia/epidemiología , Ganado , Ecosistema , Filogenia , Fiebre Hemorrágica de Crimea/epidemiología , Fiebre Hemorrágica de Crimea/veterinaria , Fiebre , Cabras , Inmunoglobulina M , Nucleótidos
13.
Ticks Tick Borne Dis ; 14(1): 102087, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459866

RESUMEN

Phleboviruses are emerging pathogens of public health importance. However, their association with ticks is poorly described, particularly in Africa. Here, adult ticks infesting cattle, goats and sheep were collected in two dryland pastoralist ecosystems of Kenya (Baringo and Kajiado counties) and were screened for infection with phleboviruses. Ticks mainly belonged to the species Rhipicephalus appendiculatus, Hyalomma impeltatum, and Hyalomma rufipes. A fragment of the RNA-dependent RNA polymerase (RdRp) gene was identified in thirty of 671 tick pools, of which twenty-nine were from livestock sampled in Baringo county. Phylogenetic analyses revealed that twenty-five sequences were falling in three clades within the group of tick-associated phleboviruses. The sequences of the three clades showed nucleotide distances 8%, 19% and 22%, respectively, to previously known viruses suggesting that these sequence fragments may belong to three distinct viruses. Viruses of the group of tick-associated phleboviruses have been found in several countries and continents but so far have not been associated with disease in humans or animals. In addition, five sequences were found to group with the sandfly-associated phleboviruses Bogoria virus, Perkerra virus and Ntepes virus recently detected in the same region. Further studies are needed to investigate the transmission and maintenance cycles of these viruses, as well as to assess their potential to infect vertebrates.


Asunto(s)
Phlebovirus , Garrapatas , Humanos , Ovinos , Animales , Bovinos , Phlebovirus/genética , Ganado , Kenia/epidemiología , Ecosistema , Filogenia
14.
Pathogens ; 12(5)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37242355

RESUMEN

Hantaviruses are zoonotic rodent-borne viruses that are known to infect humans and cause various symptoms of disease, including hemorrhagic fever with renal and cardiopulmonary syndromes. They have a segmented single-stranded, enveloped, negative-sense RNA genome and are widely distributed. This study aimed to investigate the circulation of rodent-borne hantaviruses in peridomestic rodents and shrews in two semi-arid ecologies within the Kenyan Rift Valley. The small mammals were trapped using baited folding Sherman traps set within and around houses, then they were sedated and euthanatized through cervical dislocation before collecting blood and tissue samples (liver, kidney, spleen, and lungs). Tissue samples were screened with pan-hantavirus PCR primers, targeting the large genome segment (L) encoding the RNA-dependent RNA polymerase (RdRp). Eleven of the small mammals captured were shrews (11/489, 2.5%) and 478 (97.5%) were rodents. A cytochrome b gene-based genetic assay for shrew identification confirmed the eleven shrews sampled to be Crocidura somalica. Hantavirus RNA was detected in three (3/11, 27%) shrews from Baringo County. The sequences showed 93-97% nucleotide and 96-99% amino acid identities among each other, as well as 74-76% nucleotide and 79-83% amino acid identities to other shrew-borne hantaviruses, such as Tanganya virus (TNGV). The detected viruses formed a monophyletic clade with shrew-borne hantaviruses from other parts of Africa. To our knowledge, this constitutes the first report published on the circulation of hantaviruses in shrews in Kenya.

15.
mSphere ; 8(2): e0048822, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36794933

RESUMEN

Arboviruses are among emerging pathogens of public and veterinary health significance. However, in most of sub-Saharan Africa, their role in the aetiologies of diseases in farm animals is poorly described due to paucity of active surveillance and appropriate diagnosis. Here, we report the discovery of a previously unknown orbivirus in cattle collected in the Kenyan Rift Valley in 2020 and 2021. We isolated the virus in cell culture from the serum of a clinically sick cow aged 2 to 3 years, presenting signs of lethargy. High-throughput sequencing revealed an orbivirus genome architecture with 10 double-stranded RNA segments and a total size of 18,731 bp. The VP1 (Pol) and VP3 (T2) nucleotide sequences of the detected virus, tentatively named Kaptombes virus (KPTV), shared maximum similarities of 77.5% and 80.7% to the mosquito-borne Sathuvachari virus (SVIV) found in some Asian countries, respectively. Screening of 2,039 sera from cattle, goats, and sheep by specific RT-PCR identified KPTV in three additional samples originating from different herds collected in 2020 and 2021. Neutralizing antibodies against KPTV were found in 6% of sera from ruminants (12/200) collected in the region. In vivo experiments with new-born and adult mice induced body tremors, hind limb paralysis, weakness, lethargy, and mortality. Taken together, the data suggest the detection of a potentially disease-causing orbivirus in cattle in Kenya. Its impact on livestock, as well as its potential economic damage, needs to be addressed in future studies using targeted surveillance and diagnostics. IMPORTANCE The genus Orbivirus contains several viruses that cause large outbreaks in wild and domestic animals. However, there is little knowledge on the contribution of orbiviruses to diseases in livestock in Africa. Here, we report the identification of a novel presumably disease-causing orbivirus in cattle, Kenya. The virus, designated Kaptombes virus (KPTV), was initially isolated from a clinically sick cow aged 2 to 3 years, presenting signs of lethargy. The virus was subsequently detected in three additional cows sampled in neighboring locations in the subsequent year. Neutralizing antibodies against KPTV were found in 10% of cattle sera. Infection of new-born and adult mice with KPTV caused severe symptoms and lead to death. Together, these findings indicate the presence of a previously unknown orbivirus in ruminants in Kenya. These data are of relevance as cattle represents an important livestock species in farming industry and often is the main source of livelihoods in rural areas of Africa.


Asunto(s)
Orbivirus , Femenino , Animales , Bovinos , Ovinos , Ratones , Orbivirus/genética , Kenia/epidemiología , Letargia , Rumiantes , Animales Domésticos , Cabras , Ganado , Anticuerpos Neutralizantes
16.
Pathogens ; 12(7)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37513814

RESUMEN

Insect-specific flaviviruses (ISFs), although not known to be pathogenic to humans and animals, can modulate the transmission of arboviruses by mosquitoes. In this study, we screened 6665 host-seeking, gravid and blood-fed mosquitoes for infection with flaviviruses and assessed the vertebrate hosts of the blood-fed mosquitoes sampled in Baringo and Kajiado counties; both dryland ecosystem counties in the Kenyan Rift Valley. Sequence fragments of two ISFs were detected. Cuacua virus (CuCuV) was found in three blood-fed Mansonia (Ma.) africana. The genome was sequenced by next-generation sequencing (NGS), confirming 95.8% nucleotide sequence identity to CuCuV detected in Mansonia sp. in Mozambique. Sequence fragments of a potential novel ISF showing nucleotide identity of 72% to Aedes flavivirus virus were detected in individual blood-fed Aedes aegypti, Anopheles gambiae s.l., Ma. africana and Culex (Cx.) univittatus, all having fed on human blood. Blood-meal analysis revealed that the collected mosquitoes fed on diverse hosts, primarily humans and livestock, with a minor representation of wild mammals, amphibians and birds. The potential impact of the detected ISFs on arbovirus transmission requires further research.

17.
Front Microbiol ; 14: 1325473, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38249470

RESUMEN

Introduction: Culicoides biting midges (Diptera: Ceratopogonidae) are vectors of arboviral pathogens that primarily affect livestock represented by Schmallenberg virus (SBV), epizootic hemorrhagic disease virus (EHDV) and bluetongue virus (BTV). In Kenya, studies examining the bionomic features of Culicoides including species diversity, blood-feeding habits, and association with viruses are limited. Methods: Adult Culicoides were surveyed using CDC light traps in two semi-arid ecologies, Baringo and Kajiado counties, in Kenya. Blood-fed specimens were analysed through polymerase chain reaction (PCR) and sequencing of cytochrome oxidase subunit 1 (cox1) barcoding region. Culicoides pools were screened for virus infection by generic RT-PCR and next-generation sequencing (NGS). Results: Analysis of blood-fed specimens confirmed that midges had fed on cattle, goats, sheep, zebra, and birds. Cox1 barcoding of the sampled specimens revealed the presence of known vectors of BTV and epizootic hemorrhagic disease virus (EHDV) including species in the Imicola group (Culicoides imicola) and Schultzei group (C. enderleni, C. kingi, and C. chultzei). Culicoides leucostictus and a cryptic species distantly related to the Imicola group were also identified. Screening of generated pools (11,006 individuals assigned to 333 pools) by generic RT-PCR revealed presence of seven phylogenetically distinct viruses grouping in the genera Goukovirus, Pacuvirus and Orthobunyavirus. The viruses showed an overall minimum infection rate (MIR) of 7.0% (66/333, 95% confidence interval (CI) 5.5-8.9). In addition, full coding sequences of two new iflaviruses, tentatively named Oloisinyai_1 and Oloisinyai_2, were generated by next-generation sequencing (NGS) from individual homogenate of Culicoides pool. Conclusion: The results indicate a high genetic diversity of viruses in Kenyan biting midges. Further insights into host-vector-virus interactions as well as investigations on the potential clinical significance of the detected viruses are warranted.

18.
Curr Opin Insect Sci ; 53: 100958, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35878761

RESUMEN

Aedes-borne viruses, yellow fever (YF), dengue, Chikungunya and Zika are taking a huge toll on global health as Africa faces re-emergence with potential for massive human catastrophe. Transmission driven by diverse vectors in ecological settings that range from urban to rural and sylvatic habitats with human and nonhuman primate/reservoir activities across such habitats has facilitated virus movement and spillover to susceptible human populations. Approved vaccine exists for YF, although availability for routine and mass vaccination is often constrained. Integrating vector surveillance, understanding disease ecology with rationalised vaccination in high-risk areas (YF) remains important in disease prevention and control. We review trends in disease occurrence in Africa, hinting on gaps in disease detection and management and the prospects for prevention and/or control.


Asunto(s)
Aedes , Fiebre Amarilla , Infección por el Virus Zika , Virus Zika , África/epidemiología , Animales , Humanos , Mosquitos Vectores , Fiebre Amarilla/epidemiología , Fiebre Amarilla/prevención & control , Virus de la Fiebre Amarilla , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/prevención & control
19.
Curr Opin Insect Sci ; 54: 100988, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36332839

RESUMEN

The arboviral diseases dengue, chikungunya, and yellow fever are re-merging and gaining a foothold in Africa, with a significant threat of large outbreaks in urban areas. Although their emergence is intimately linked to the primary vector Aedes aegypti, which thrives in urban environments, the risk of these diseases remains substantially heterogeneous in different geographic areas. Range expansion of invasive mosquito species Aedes albopictus, and colonization of urban habitats by sylvatic and peridomestic Aedes vectors, are likely to alter the diseases' epidemiology. We discuss how a network of different vector species and perhaps vector subpopulations could interact with associated serotypes/genotypes/lineages of the causative viruses of these diseases potentially impacting transmission risk in urban landscapes with implications for disease surveillance and control.


Asunto(s)
Aedes , Infecciones por Arbovirus , Animales , Urbanización , Mosquitos Vectores , Infecciones por Arbovirus/epidemiología , Brotes de Enfermedades
20.
J Agric Food Chem ; 70(22): 6658-6669, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35613461

RESUMEN

Plant parasitic nematodes (PPNs) develop through three major stages in their life cycle: hatching, infection, and reproduction. Interruption of any of these stages can affect their growth and survival. We used screenhouse pot experiments, laboratory in vitro hatching and mortality assays, and chemical analysis to test the hypothesis that the non-host Asteraceae plant vegetable black-jack (Bidens pilosa) suppresses infection of the PPN Meloidogyne incognita in two susceptible Solanaceae host plants, tomato (Solanum lycopersicum) and black nightshade (S. nigrum). In intercrop and drip pot experiments, B. pilosa significantly reduced the number of galls and egg masses in root-knot nematode (RKN)-susceptible host plants by 3-9-fold compared to controls. Chemical analysis of the most bioactive fraction from the root exudates of B. pilosa identified several classes of compounds, including vitamins, a dicarboxylic acid, amino acids, aromatic acids, and a flavonoid. In in vitro assays, the vitamins and aromatic acids elicited the highest inhibition in egg hatching, whereas ascorbic acid (vitamin) and 2-hydroxybenzoic acid (aromatic acid) elicited strong nematicidal activity against M. incognita, with LC50/48 h values of 12 and 300 ng/µL, respectively. Our results provide insights into how certain non-host plants can be used as companion crops to disrupt PPN infestation.


Asunto(s)
Solanum lycopersicum , Tylenchoidea , Animales , Productos Agrícolas , Solanum lycopersicum/parasitología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/parasitología , Verduras , Vitaminas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA