Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 118(4): 1054-1070, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308388

RESUMEN

Alcohol dehydrogenases (ADHs) are a group of zinc-binding enzymes belonging to the medium-length dehydrogenase/reductase (MDR) protein superfamily. In plants, these enzymes fulfill important functions involving the reduction of toxic aldehydes to the corresponding alcohols (as well as catalyzing the reverse reaction, i.e., alcohol oxidation; ADH1) and the reduction of nitrosoglutathione (GSNO; ADH2/GSNOR). We investigated and compared the structural and biochemical properties of ADH1 and GSNOR from Arabidopsis thaliana. We expressed and purified ADH1 and GSNOR and determined two new structures, NADH-ADH1 and apo-GSNOR, thus completing the structural landscape of Arabidopsis ADHs in both apo- and holo-forms. A structural comparison of these Arabidopsis ADHs revealed a high sequence conservation (59% identity) and a similar fold. In contrast, a striking dissimilarity was observed in the catalytic cavity supporting substrate specificity and accommodation. Consistently, ADH1 and GSNOR showed strict specificity for their substrates (ethanol and GSNO, respectively), although both enzymes had the ability to oxidize long-chain alcohols, with ADH1 performing better than GSNOR. Both enzymes contain a high number of cysteines (12 and 15 out of 379 residues for ADH1 and GSNOR, respectively) and showed a significant and similar responsivity to thiol-oxidizing agents, indicating that redox modifications may constitute a mechanism for controlling enzyme activity under both optimal growth and stress conditions.


Asunto(s)
Alcohol Deshidrogenasa , Proteínas de Arabidopsis , Arabidopsis , Oxidación-Reducción , Arabidopsis/enzimología , Arabidopsis/genética , Alcohol Deshidrogenasa/metabolismo , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Especificidad por Sustrato , S-Nitrosoglutatión/metabolismo , Secuencia de Aminoácidos , Etanol/metabolismo
2.
Plant Physiol ; 194(4): 2263-2277, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38134324

RESUMEN

Carbon fixation relies on Rubisco and 10 additional enzymes in the Calvin-Benson-Bassham cycle. Epimerization of xylulose-5-phosphate (Xu5P) into ribulose-5-phosphate (Ru5P) contributes to the regeneration of ribulose-1,5-bisphosphate, the substrate of Rubisco. Ribulose-5-phosphate-3-epimerase (RPE, EC 5.1.3.1) catalyzes the formation of Ru5P, but it can also operate in the pentose-phosphate pathway by catalyzing the reverse reaction. Here, we describe the structural and biochemical properties of the recombinant RPE isoform 1 from Chlamydomonas (Chlamydomonas reinhardtii) (CrRPE1). The enzyme is a homo-hexamer that contains a zinc ion in the active site and exposes a catalytic pocket on the top of an α8ß8 triose isomerase-type barrel as observed in structurally solved RPE isoforms from both plant and non-plant sources. By optimizing and developing enzyme assays to monitor the reversible epimerization of Ru5P to Xu5P and vice versa, we determined the catalytic parameters that differ from those of other plant paralogs. Despite being identified as a putative target of multiple thiol-based redox modifications, CrRPE1 activity is not affected by both reductive and oxidative treatments, indicating that enzyme catalysis is insensitive to possible redox alterations of cysteine residues. We mapped phosphorylation sites on the crystal structure, and the specific location at the entrance of the catalytic cleft supports a phosphorylation-based regulatory mechanism. This work provides an accurate description of the structural features of CrRPE1 and an in-depth examination of its catalytic and regulatory properties highlighting the physiological relevance of this enzyme in the context of photosynthetic carbon fixation.


Asunto(s)
Chlamydomonas reinhardtii , Microalgas , Pentosas , Chlamydomonas reinhardtii/metabolismo , Microalgas/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Modelos Moleculares , Cloroplastos/metabolismo , Racemasas y Epimerasas , Fosfatos
3.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38542146

RESUMEN

Diabetic kidney disease (DKD) is a major cause of morbidity and mortality in individuals with type 2 diabetes mellitus (T2DM). The aim of this study was to investigate whether albumin structural alterations correlate with DKD severity and evaluate whether native and reduced albumin concentrations could complement the diagnosis of DKD. To this end, one hundred and seventeen T2DM patients without (n = 42) and with (n = 75) DKD (DKD I-III upon KDIGO classification) were evaluated; the total albumin concentration (tHA) was quantified by a bromocresol green assay, while structural alterations were profiled via liquid chromatography-high-resolution mass spectrometry (LC-HRMS). The concentrations of native albumin (eHA, effective albumin) and reduced albumin (rHA) were subsequently assessed. The HRMS analyses revealed a reduced relative amount of native albumin in DKD patients along with an increased abundance of altered forms, especially those bearing oxidative modifications. Accordingly, both eHA and rHA values varied during the stages of progressive renal failure, and these alterations were dose-dependently correlated with renal dysfunction. A ROC curve analysis revealed a significantly greater sensitivity and specificity of eHA and rHA than of tHA for diagnosing DKD. Importantly, according to the multivariate logistic regression analysis, the eHA was identified as an independent predictor of DKD.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/complicaciones , Tasa de Filtración Glomerular , Sensibilidad y Especificidad , Riñón
4.
Chembiochem ; 22(9): 1597-1608, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33400854

RESUMEN

SMYD3 is a multifunctional epigenetic enzyme with lysine methyltransferase activity and various interaction partners. It is implicated in the pathophysiology of cancers but with an unclear mechanism. To discover tool compounds for clarifying its biochemistry and potential as a therapeutic target, a set of drug-like compounds was screened in a biosensor-based competition assay. Diperodon was identified as an allosteric ligand; its R and S enantiomers were isolated, and their affinities to SMYD3 were determined (KD =42 and 84 µM, respectively). Co-crystallization revealed that both enantiomers bind to a previously unidentified allosteric site in the C-terminal protein binding domain, consistent with its weak inhibitory effect. No competition between diperodon and HSP90 (a known SMYD3 interaction partner) was observed although SMYD3-HSP90 binding was confirmed (KD =13 µM). Diperodon clearly represents a novel starting point for the design of tool compounds interacting with a druggable allosteric site, suitable for the exploration of noncatalytic SMYD3 functions and therapeutics with new mechanisms of action.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Sitio Alostérico , Sitios de Unión , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Proteínas HSP90 de Choque Térmico/química , N-Metiltransferasa de Histona-Lisina/química , Humanos , Cinética , Ligandos , Simulación de Dinámica Molecular , Piperidinas/química , Piperidinas/metabolismo , Unión Proteica , Estereoisomerismo
5.
Mol Pharm ; 17(9): 3609-3621, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32786955

RESUMEN

Protein inactivation either during the production process or along the gastrointestinal tract is the major problem associated with the development of oral delivery systems for biological drugs. This work presents an evaluation of the structural integrity and the biological activity of a model protein, catalase, after its encapsulation in glyceryl trimyristate-based solid lipid microparticles (SLMs) obtained by the spray congealing technology. Circular dichroism and fluorescence spectroscopies were used to assess the integrity of catalase released from SLMs. The results confirmed that no conformational change occurred during the production process and both the secondary and tertiary structures were retained. Catalase is highly sensitive to temperature and undergoes denaturation above 60 °C; nevertheless, spray congealing allowed the retention of most biological activity due to the loading of the drug at the solid state, markedly reducing the risk of denaturation. Catalase activity after exposure to simulated gastric conditions (considering both acidic pH and the presence of gastric digestive hydrolases) ranged from 35 to 95% depending on the carrier: increasing of both the fatty acid chain length and the degree of substitution of the glyceride enhanced residual enzyme activity. SLMs allowed the protein release in a simulated intestinal environment and were not cytotoxic against HT29 cells. In conclusion, the encapsulation of proteins into SLMs by spray congealing might be a promising strategy for the formulation of nontoxic and inexpensive oral biotherapeutic products.


Asunto(s)
Catalasa/administración & dosificación , Catalasa/química , Lípidos/química , Estómago/efectos de los fármacos , Administración Oral , Línea Celular Tumoral , Química Farmacéutica/métodos , Portadores de Fármacos/química , Ácidos Grasos/química , Células HT29 , Humanos , Concentración de Iones de Hidrógeno , Microesferas , Estructura Secundaria de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína/efectos de los fármacos
6.
Biochim Biophys Acta Gen Subj ; 1861(8): 2132-2145, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28552632

RESUMEN

BACKGROUND: In photosynthetic organisms, transketolase (TK) is involved in the Calvin-Benson cycle and participates to the regeneration of ribulose-5-phosphate. Previous studies demonstrated that TK catalysis is strictly dependent on thiamine pyrophosphate (TPP) and divalent ions such as Mg2+. METHODS: TK from the unicellular green alga Chlamydomonas reinhardtii (CrTK) was recombinantly produced and purified to homogeneity. Biochemical properties of the CrTK enzyme were delineated by activity assays and its structural features determined by CD analysis and X-ray crystallography. RESULTS: CrTK is homodimeric and its catalysis depends on the reconstitution of the holo-enzyme in the presence of both TPP and Mg2+. Activity measurements and CD analysis revealed that the formation of fully active holo-CrTK is Mg2+-dependent and proceeds with a slow kinetics. The 3D-structure of CrTK without cofactors (CrTKapo) shows that two portions of the active site are flexible and disordered while they adopt an ordered conformation in the holo-form. Oxidative treatments revealed that Mg2+ participates in the redox control of CrTK by changing its propensity to be inactivated by oxidation. Indeed, the activity of holo-form is unaffected by oxidation whereas CrTK in the apo-form or reconstituted with the sole TPP show a strong sensitivity to oxidative inactivation. CONCLUSION: These evidences indicate that Mg2+ is fundamental to allow gradual conformational arrangements suited for optimal catalysis. Moreover, Mg2+ is involved in the control of redox sensitivity of CrTK. GENERAL SIGNIFICANCE: The importance of Mg2+ in the functionality and redox sensitivity of CrTK is correlated to light-dependent fluctuations of Mg2+ in chloroplasts.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Magnesio/farmacología , Transcetolasa/química , Dominio Catalítico , Dicroismo Circular , Cristalografía por Rayos X , Oxidación-Reducción , Conformación Proteica , Tiamina Pirofosfato/farmacología
7.
J Org Chem ; 82(1): 202-210, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-27991785

RESUMEN

Racemates of five chiral resorcin[4]arenes, four tetra-O-substituted and one hepta-O-substituted, have been resolved by enantioselective HPLC, and their ECD spectra have been recorded online by stopped-flow measurements. The absolute configuration has been assigned by comparison of the experimental ECD spectra with DFT and semiempirical calculations. For the four tetra-O-substituted resorcin[4]arenes, the ECD exciton couplet at longer wavelength depends on the chirality induced in the arene scaffold by the substituents rather than on the precise nature of the substituents themselves. Accordingly, the exciton chirality model with excitons localized on the arene scaffold, here generalized to Cn symmetry, accurately describes the relationship between stereochemistry and chiroptical properties for this couplet, while its application at shorter wavelengths is unsafe. For the significantly larger hepta-O-substituted system the assignment particularly benefits from the use of the semiempirical ZINDO method.

8.
Chirality ; 27(12): 914-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26448200

RESUMEN

Caffeic acid-derived polyethers are a class of natural products isolated from the root extracts of comfrey and bugloss, which are endowed with intriguing pharmacological properties as anticancer agents. The synthesis of new polyether derivatives is achieved through ring-opening polymerization of chiral 2,3-disubstituted oxiranes, whose absolute configurations define the overall stereochemistry of the produced polymer. The absolute stereochemistry of one of these building blocks, methyl trans-3-(3,4-dimethoxy-phenyl)glycidate (3), was therefore characterized by the combination of enantioselective high-performance liquid chromatography (HPLC), electronic circular dichroism (ECD) spectroscopy, and time-dependent density functional theory (TD-DFT) calculations. Initial efforts aiming at the isolation of enantiomers by means of a standard preparative HPLC protocol followed by offline ECD analysis failed due to unexpected degradation of the samples after collection. The stopped-flow HPLC-CD approach, by which the ECD spectra of enantiomers are measured online with the HPLC system, was applied to overcome this issue and allowed a fast, reliable, and chemical-saving analysis, while avoiding the risks of sample degradation during the collection and processing of enantiomeric fractions. Subsequent TD-DFT calculations identified ( as the first eluted enantiomeric fraction on the Lux Cellulose-2 column, therefore achieving a full stereochemical characterization of the chiral oxirane under investigation.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Dicroismo Circular/métodos , Compuestos Epoxi/química , Espectrofotometría Ultravioleta/métodos , Estereoisomerismo
9.
J Phys Chem A ; 118(50): 11751-7, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25479132

RESUMEN

The description of solvation effects on the chiroptical properties of chiral molecules is still a difficult challenge in the field of computational spectroscopy; this issue is critical in stereochemical characterization, since a reliable assessment of absolute configuration requires high accuracy. The present case study reports the huge effect of solvation on the chiroptical properties of austdiol, a fungal metabolite of known stereochemistry. Standard protocols based on time-dependent density functional theory calculations failed to reproduce its experimental chiroptical properties in methanol. When short-range solvation effects are explicitly considered by means of ab initio molecular dynamics, the correlation between calculated and experimental data is greatly improved because of a better description of the chiral environment around the ketone chromophore, showing that the modeling of subtle solvent-induced perturbations may require the most accurate computational methods.


Asunto(s)
Aldehídos/química , Benzopiranos/química , Simulación de Dinámica Molecular , Teoría Cuántica , Solubilidad , Factores de Tiempo
10.
J Nat Prod ; 77(1): 70-8, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24387625

RESUMEN

Three new azaphilones with an unusual methylene bridge, named mycoleptones A, B, and C (2, 4, and 5), were isolated from cultures of Mycoleptodiscus indicus, a fungus associated with the South American medicinal plant Borreria verticillata. Additionally, four known polyketides, austdiol (1), eugenitin (3), 6-methoxyeugenin (6), and 9-hydroxyeugenin (7), were also isolated. The structural characterization of compounds was carried out by nuclear magnetic resonance spectroscopy, high-resolution mass spectrometry, electronic circular dichroism spectroscopy, time-dependent density functional theory calculations, and X-ray crystallography. Compounds 1-9 were weakly active when tested in antileishmanial and cytotoxicity assays.


Asunto(s)
Benzofuranos/aislamiento & purificación , Endófitos/química , Policétidos/aislamiento & purificación , Benzofuranos/química , Benzofuranos/farmacología , Brasil , Cristalografía por Rayos X , Ensayos de Selección de Medicamentos Antitumorales , Células HL-60 , Humanos , Leishmania/efectos de los fármacos , Linfocitos/efectos de los fármacos , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Policétidos/química , Policétidos/farmacología , Rubiaceae/microbiología
11.
Front Chem ; 12: 1378233, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38591056

RESUMEN

Introduction: Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer still lacking effective treatment options. Chemotherapy in combination with immunotherapy can restrict tumor progression and repolarize the tumor microenvironment towards an anti-tumor milieu, improving clinical outcome in TNBC patients. The chemotherapeutic drug paclitaxel has been shown to induce immunogenic cell death (ICD), whereas inhibitors of the indoleamine 2,3- dioxygenase 1 (IDO1) enzyme, whose expression is shared in immune regulatory and tumor cells, have been revealed to enhance the anti-tumor immune response. However, poor bioavailability and pharmacokinetics, off-target effects and hurdles in achieving therapeutic drug concentrations at the target tissue often limit the effectiveness of combination therapies. Methods: This work describes the development of novel biomimetic and carrier-free nanobinders (NBs) loaded with both paclitaxel and the IDO1 inhibitor NLG919 in the form of bioresponsive and biomimetic prodrugs. A fine tuning of the preparation conditions allowed to identify NB@5 as the most suitable nanoformulation in terms of reproducibility, stability and in vitro effectiveness. Results and discussion: Our data show that NB@5 effectively binds to HSA in cell-free experiments, demonstrating its protective role in the controlled release of drugs and suggesting the potential to exploit the protein as the endogenous vehicle for targeted delivery to the tumor site. Our study successfully proves that the drugs encapsulated within the NBs are preferentially released under the altered redox conditions commonly found in the tumor microenvironment, thereby inducing cell death, promoting ICD, and inhibiting IDO1.

13.
Environ Sci Technol ; 47(7): 3386-94, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23451708

RESUMEN

In this study, the systemic assessments of the stereoisomers of triazole fungicide difenoconazole are reported for the first time, including absolute stereochemistry, stereoselective bioactivity toward pathogens (Alternaria sonali, Fulvia fulva, Botrytis cinerea, and Rhizoctonia solani), and toxicity toward aquatic organisms (Scenedesmus obliquus, Daphnia magna, and Danio rerio). Moreover, the stereoselective degradation of difenoconazole in vegetables (cucumber, Cucumis sativus and tomato, Lycopersicon esculentum) under field conditions and in soil under laboratory-controlled conditions (aerobic and anaerobic) was investigated. There were 1.33-24.2-fold and 1.04-6.78-fold differences in bioactivity and toxicity, respectively. Investigations on the stereoselective degradation of difenoconazole in vegetables showed that the highest-toxic and lowest-bioactive (2S,4S)-stereoisomer displays a different enrichment behavior in different plant species. Under aerobic or anaerobic conditions, (2R,4R)- and (2R,4S)-difenoconazole were preferentially degraded in the soil. Moreover, difenoconazole was configurationally stable in the test soil matrices. On the basis of biological activity, ecotoxicity, and environmental behavior, it is likely that the use of pure (2R,4S)-difenoconazole instead of the commercial stereoisomer mix may help to increase the bioactivity and reduce environmental pollution.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Dioxolanos/química , Dioxolanos/toxicidad , Monitoreo del Ambiente , Fungicidas Industriales/toxicidad , Suelo/química , Triazoles/química , Triazoles/toxicidad , Verduras/química , Aerobiosis/efectos de los fármacos , Anaerobiosis/efectos de los fármacos , Animales , Cromatografía Líquida de Alta Presión , Hongos/efectos de los fármacos , Fungicidas Industriales/química , Cinética , Pruebas de Sensibilidad Microbiana , Estereoisomerismo , Factores de Tiempo , Pruebas de Toxicidad
14.
Talanta ; 257: 124332, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36773512

RESUMEN

In this paper, the development of efficient enantioselective HPLC methods for the analysis of five benzofuran-substituted phenethylamines, two substituted tryptamines, and three substituted cathinones is described. For the first time, reversed-phase (eluents made up with acidic water-methanol solutions) and polar-ionic (eluent made up with an acetonitrile-methanol solution incorporating both an acidic and a basic additive) conditions fully compatible with mass spectrometry (MS) detectors were applied with a chiral stationary phase (CSP) incorporating the (+)-(18-crown-6)-tetracarboxylic acid chiral selector. Enantioresolution was achieved for nine compounds with α and RS factors up to 1.32 and 5.12, respectively. Circular dichroism (CD) detection, CD spectroscopy in stopped-flow mode and quantum mechanical (QM) calculations were successfully employed to investigate the absolute stereochemistry of mephedrone, methylone and butylone and allowed to establish a (R)<(S) enantiomeric elution order for these compounds on the chosen CSP. Whole blood miniaturized samples collected by means of volumetric absorptive microsampling (VAMS) technology and fortified with the target analytes were extracted following an optimized protocol and effectively analysed by means of an ultra-high performance liquid chromatography-MS system. By this way a proof-of-concept procedure was applied, demonstrating the suitability of the method for quali-quantitative enantioselective assessment of the selected psychoactive substances in advanced biological microsamples. VAMS microsamplers including a polypropylene handle topped with a small tip of a polymeric porous material were used and allowed to volumetrically collect small aliquots of whole blood (10 µL) independently from its density. Highly appreciable volumetric accuracy (bias, in the -8.7-8.1% range) and precision (% CV, in the 2.8-5.9% range) turned out.


Asunto(s)
Metanol , Espectrometría de Masas en Tándem , Estereoisomerismo , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Cromatografía Líquida de Alta Presión/métodos
15.
Chirality ; 24(9): 741-50, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22544665

RESUMEN

The effect of conformational flexibility on the chiroptical properties of a series of synthetic (3R)-3-hydroxy-4-aryl-ß-lactams of known stereochemistry (1-6) was investigated by means of electronic circular dichroism (ECD) measurements and time-dependent density functional theory (TD-DFT) calculations. The application of the ß-lactam sector rules allowed a correct stereochemical characterization of these compounds, with the exception of a thienyl-substituted derivative (cis-). TD-DFT calculations yielded accurate predictions of experimental ECD spectra and [α](D) values, allowing us to assign the correct absolute configuration to all the investigated compounds. A detailed analysis of the ß-lactam ring equilibrium geometry on optimized conformers identified regular patterns for the arrangement of atoms around the amide chromophore, confirming the validity of the ß-lactam sector rules. However, relevant variations in theoretical chiroptical properties were found for compounds bearing a heterocyclic substituent at C4 or a phenyl substituent at C3, whose conformers deviate from these regular geometric patterns. This behavior explains the failure of the ß-lactam sector rules in cis-. This study showed the importance of conformational flexibility for the determination of chiroptical properties and highlighted the strengths and weaknesses of the different methods for the stereochemical characterization of chiral molecules in solution.


Asunto(s)
Conformación Molecular , Fenómenos Ópticos , Teoría Cuántica , beta-Lactamas/química , Modelos Moleculares , Estereoisomerismo
16.
Cancers (Basel) ; 14(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35205627

RESUMEN

Exploiting the tumor environment features (EPR effect, elevated glutathione, reactive oxygen species levels) might allow attaining a selective and responsive carrier capable of improving the therapeutic outcome. To this purpose, the in situ covalent binding of drugs and nanoparticles to circulating human serum albumin (HSA) might represent a pioneering approach to achieve an effective strategy. This study describes the synthesis, in vitro and in vivo evaluation of bioresponsive HSA-binding nanoparticles (MAL-PTX2S@Pba), co-delivering two different paclitaxel (PTX) prodrugs and the photosensitizer pheophorbide a (Pba), for the combined photo- and chemo-treatment of breast cancer. Stable and reproducible MAL-PTX2S@Pba nanoparticles with an average diameter of 82 nm and a PTX/Pba molar ratio of 2.5 were obtained by nanoprecipitation. The in vitro 2D combination experiments revealed that MAL-PTX2S@Pba treatment induces a strong inhibition of cell viability of MDA-MB-231, MCF7 and 4T1 cell lines, whereas 3D experiments displayed different trends: while MAL-PTX2S@Pba effectiveness was confirmed against MDA-MB-231 spheroids, the 4T1 model exhibited marked resistance. Lastly, despite using a low PTX-PDT regimen (e.g., 8.16 mg/Kg PTX and 2.34 mg/Kg Pba), our formulation showed to foster primary tumor reduction and curb lung metastases growth in 4T1 tumor-bearing mice, thus setting the basis for further preclinical validations.

17.
Pharmaceutics ; 14(3)2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35336051

RESUMEN

Osteosarcoma treatment is moving towards more effective combination therapies. Nevertheless, these approaches present distinctive challenges that can complicate the clinical translation, such as increased toxicity and multi-drug resistance. Drug co-encapsulation within a nanoparticle formulation can overcome these challenges and improve the therapeutic index. We previously synthetized keratin nanoparticles functionalized with Chlorin-e6 (Ce6) and paclitaxel (PTX) to combine photo (PDT) and chemotherapy (PTX) regimens, and the inhibition of osteosarcoma cells growth in vitro was demonstrated. In the current study, we generated an orthotopic osteosarcoma murine model for the preclinical evaluation of our combination therapy. To achieve maximum reproducibility, we systematically established key parameters, such as the number of cells to generate the tumor, the nanoparticles dose, the design of the light-delivery device, the treatment schedule, and the irradiation settings. A 60% engrafting rate was obtained using 10 million OS cells inoculated intratibial, with the tumor model recapitulating the histological hallmarks of the human counterpart. By scheduling the treatment as two cycles of injections, a 32% tumor reduction was obtained with PTX mono-therapy and a 78% reduction with the combined PTX-PDT therapy. Our findings provide the in vivo proof of concept for the subsequent clinical development of a combination therapy to fight osteosarcoma.

18.
Pharmaceutics ; 13(8)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34452091

RESUMEN

Cancer therapy is still a challenging issue. To address this, the combination of anticancer drugs with other therapeutic modalities, such as light-triggered therapies, has emerged as a promising approach, primarily when both active ingredients are provided within a single nanosystem. Herein, we describe the unprecedented preparation of tumor microenvironment (TME) responsive nanoparticles exclusively composed of a paclitaxel (PTX) prodrug and the photosensitizer pheophorbide A (PheoA), e.g., PheoA≅PTX2S. This system aimed to achieve both the TME-triggered and controlled release of PTX and the synergistic/additive effect by PheoA-mediated photodynamic therapy. PheoA≅PTX2S were produced in a simple one-pot process, exhibiting excellent reproducibility, stability, and the ability to load up to 100% PTX and 40% of PheoA. Exposure of PheoA≅PTX2S nanoparticles to TME-mimicked environment provided fast disassembly compared to normal conditions, leading to PTX and PheoA release and consequently elevated cytotoxicity. Our data indicate that PheoA incorporation into nanoparticles prevents its aggregation, thus providing a greater extent of ROS and singlet oxygen production. Importantly, in SK-OV-3 cells, PheoA≅PTX2S allowed a 30-fold PTX dose reduction and a 3-fold dose reduction of PheoA. Our data confirm that prodrug-based nanocarriers represent valuable and sustainable drug delivery systems, possibly reducing toxicity and expediting preclinical and clinical translation.

19.
Biochim Biophys Acta Biomembr ; 1863(9): 183641, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33984320

RESUMEN

The ability of styrene-maleic acid (SMAc) co-polymers to spontaneously insert into biological membranes can be exploited to extract G protein-coupled receptors (GPCRs) embedded in styrene-maleic acid lipid particles (SMALPs), preserving the native environment around the protein and thus enhancing the feasibility of functional studies. So far, the SMALP technology has been primarily employed on non-mammalian cells and protocols are not optimized for adherent human cell lines, which cannot be harvested in large amounts. In this work, a fine investigation of key parameters affecting the formation of SMALPs was undertaken with the purpose of maximizing the yield of extraction of a recombinant form of human ß2-adrenergic receptor (rhß2AR) from HEK293T cells. The study highlighted an important influence of ionic strength on the membrane solubilization efficiency and GPCR purification yield of SMAc co-polymers: by lowering the salt concentration of all buffers used in previously published SMALP protocols, the water solubility and extraction efficiency of the selected SMAc co-polymer (commercially supplied as a potassium salt) were enhanced. In-line combination of size-exclusion chromatography (SEC) with immobilized metal affinity chromatography (IMAC) allowed further improvement of the final rhß2AR yield by reducing the loss of SMALP-embedded GPCRs during the fractionation and purification of SMALPs. The overall findings of this study show that the available SMALP protocols can be significantly optimized in several aspects in order to increase the efficiency of GPCR solubilization and isolation from low-yielding expression systems.


Asunto(s)
Lípidos/química , Maleatos/química , Poliestirenos/química , Receptores Acoplados a Proteínas G/aislamiento & purificación , Células Cultivadas , Células HEK293 , Humanos , Receptores Acoplados a Proteínas G/química
20.
Redox Biol ; 38: 101806, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33316743

RESUMEN

Protein S-nitrosylation plays a fundamental role in cell signaling and nitrosoglutathione (GSNO) is considered as the main nitrosylating signaling molecule. Enzymatic systems controlling GSNO homeostasis are thus crucial to indirectly control the formation of protein S-nitrosothiols. GSNO reductase (GSNOR) is the key enzyme controlling GSNO levels by catalyzing its degradation in the presence of NADH. Here, we found that protein extracts from the microalga Chlamydomonas reinhardtii catabolize GSNO via two enzymatic systems having specific reliance on NADPH or NADH and different biochemical features. Scoring the Chlamydomonas genome for orthologs of known plant GSNORs, we found two genes encoding for putative and almost identical GSNOR isoenzymes. One of the two, here named CrGSNOR1, was heterologously expressed and purified. Its kinetic properties were determined and the three-dimensional structures of the apo-, NAD+- and NAD+/GSNO-forms were solved. These analyses revealed that CrGSNOR1 has a strict specificity towards GSNO and NADH, and a conserved folding with respect to other plant GSNORs. The catalytic zinc ion, however, showed an unexpected variability of the coordination environment. Furthermore, we evaluated the catalytic response of CrGSNOR1 to thermal denaturation, thiol-modifying agents and oxidative modifications as well as the reactivity and position of accessible cysteines. Despite being a cysteine-rich protein, CrGSNOR1 contains only two solvent-exposed/reactive cysteines. Oxidizing and nitrosylating treatments have null or limited effects on CrGSNOR1 activity and folding, highlighting a certain resistance of the algal enzyme to redox modifications. The molecular mechanisms and structural features underlying the response to thiol-based modifications are discussed.


Asunto(s)
Chlamydomonas reinhardtii , Oxidorreductasas , Aldehído Oxidorreductasas/genética , Chlamydomonas reinhardtii/genética , Cisteína , Óxido Nítrico , S-Nitrosoglutatión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA