Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 32(2): 540-555, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38213030

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific neutralizing antibodies (NAbs) lack cross-reactivity between SARS-CoV species and variants and fail to mediate long-term protection against infection. The maintained protection against severe disease and death by vaccination suggests a role for cross-reactive T cells. We generated vaccines containing sequences from the spike or receptor binding domain, the membrane and/or nucleoprotein that induced only T cells, or T cells and NAbs, to understand their individual roles. In three models with homologous or heterologous challenge, high levels of vaccine-induced SARS-CoV-2 NAbs protected against neither infection nor mild histological disease but conferred rapid viral control limiting the histological damage. With no or low levels of NAbs, vaccine-primed T cells, in mice mainly CD8+ T cells, partially controlled viral replication and promoted NAb recall responses. T cells failed to protect against histological damage, presumably because of viral spread and subsequent T cell-mediated killing. Neither vaccine- nor infection-induced NAbs seem to provide long-lasting protective immunity against SARS-CoV-2. Thus, a more realistic approach for universal SARS-CoV-2 vaccines should be to aim for broadly cross-reactive NAbs in combination with long-lasting highly cross-reactive T cells. Long-lived cross-reactive T cells are likely key to prevent severe disease and fatalities during current and future pandemics.


Asunto(s)
Anticuerpos Neutralizantes , Vacunas contra la COVID-19 , COVID-19 , Animales , Humanos , Ratones , Anticuerpos Antivirales , Linfocitos T CD8-positivos , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , SARS-CoV-2 , Vacunas Virales
2.
Protein Expr Purif ; 221: 106505, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38768672

RESUMEN

Protein reagents are essential resources for several stages of drug discovery projects from structural biology and assay development through lead optimization. Depending on the aim of the project different amounts of pure protein are required. Small-scale expressions are initially used to determine the reachable levels of production and quality before scaling up protein reagent supply. Commonly, amounts of several hundreds of milligrams to grams are needed for different experiments, including structural investigations and activity evaluations, which require rather large cultivation volumes. This implies that cultivation of large volumes of either transiently transfected cells or stable pools/stable cell lines is needed. Hence, a production process that is scalable, speeds up the development projects, and increases the robustness of protein reagent quality throughout scales. Here we present a protein production pipeline with high scalability. We show that our protocols for protein production in Chinese hamster ovary cells allow for a seamless and efficient scale-up with robust product quality and high performance. The flexible scale of the production process, as shown here, allows for shorter lead times in drug discovery projects where there is a reagent demand for a specific protein or a set of target proteins.


Asunto(s)
Reactores Biológicos , Cricetulus , Plásmidos , Proteínas Recombinantes , Células CHO , Animales , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Cricetinae
3.
Clin Proteomics ; 20(1): 23, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308827

RESUMEN

BACKGROUND: Molecular components in blood, such as proteins, are used as biomarkers to detect or predict disease states, guide clinical interventions and aid in the development of therapies. While multiplexing proteomics methods promote discovery of such biomarkers, their translation to clinical use is difficult due to the lack of substantial evidence regarding their reliability as quantifiable indicators of disease state or outcome. To overcome this challenge, a novel orthogonal strategy was developed and used to assess the reliability of biomarkers and analytically corroborate already identified serum biomarkers for Duchenne muscular dystrophy (DMD). DMD is a monogenic incurable disease characterized by progressive muscle damage that currently lacks reliable and specific disease monitoring tools. METHODS: Two technological platforms are used to detect and quantify the biomarkers in 72 longitudinally collected serum samples from DMD patients at 3 to 5 timepoints. Quantification of the biomarkers is achieved by detection of the same biomarker fragment either through interaction with validated antibodies in immuno-assays or through quantification of peptides by Parallel Reaction Monitoring Mass Spectrometry assay (PRM-MS). RESULTS: Five, out of ten biomarkers previously identified by affinity-based proteomics methods, were confirmed to be associated with DMD using the mass spectrometry-based method. Two biomarkers, carbonic anhydrase III and lactate dehydrogenase B, were quantified with two independent methods, sandwich immunoassays and PRM-MS, with Pearson correlations of 0.92 and 0.946 respectively. The median concentrations of CA3 and LDHB in DMD patients was elevated in comparison to those in healthy individuals by 35- and 3-fold, respectively. Levels of CA3 vary between 10.26 and 0.36 ng/ml in DMD patients whereas those of LDHB vary between 15.1 and 0.8 ng/ml. CONCLUSIONS: These results demonstrate that orthogonal assays can be used to assess the analytical reliability of biomarker quantification assays, providing a means to facilitate the translation of biomarkers to clinical practice. This strategy also warrants the development of the most relevant biomarkers, markers that can be reliably quantified with different proteomics methods.

4.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36982290

RESUMEN

Duchenne muscular dystrophy (DMD) is a rare neuromuscular disease caused by pathogenic variations in the DMD gene. There is a need for robust DMD biomarkers for diagnostic screening and to aid therapy monitoring. Creatine kinase, to date, is the only routinely used blood biomarker for DMD, although it lacks specificity and does not correlate with disease severity. To fill this critical gap, we present here novel data about dystrophin protein fragments detected in human plasma by a suspension bead immunoassay using two validated anti-dystrophin-specific antibodies. Using both antibodies, a reduction of the dystrophin signal is detected in a small cohort of plasma samples from DMD patients when compared to healthy controls, female carriers, and other neuromuscular diseases. We also demonstrate the detection of dystrophin protein by an antibody-independent method using targeted liquid chromatography mass spectrometry. This last assay detects three different dystrophin peptides in all healthy individuals analysed and supports our finding that dystrophin protein is detectable in plasma. The results of our proof-of-concept study encourage further studies in larger sample cohorts to investigate the value of dystrophin protein as a low invasive blood biomarker for diagnostic screening and clinical monitoring of DMD.


Asunto(s)
Distrofia Muscular de Duchenne , Proteómica , Femenino , Humanos , Anticuerpos , Biomarcadores , Cromatografía Liquida , Distrofia Muscular de Duchenne/genética , Proteómica/métodos , Distrofina/sangre
5.
J Intern Med ; 291(1): 72-80, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34459525

RESUMEN

BACKGROUND: Emerging data support detectable immune responses for months after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination, but it is not yet established to what degree and for how long protection against reinfection lasts. METHODS: We investigated SARS-CoV-2-specific humoral and cellular immune responses more than 8 months post-asymptomatic, mild and severe infection in a cohort of 1884 healthcare workers (HCW) and 51 hospitalized COVID-19 patients. Possible protection against SARS-CoV-2 reinfection was analyzed by a weekly 3-month polymerase chain reaction (PCR) screening of 252 HCW that had seroconverted 7 months prior to start of screening and 48 HCW that had remained seronegative at multiple time points. RESULTS: All COVID-19 patients and 96% (355/370) of HCW who were anti-spike IgG positive at inclusion remained anti-spike IgG positive at the 8-month follow-up. Circulating SARS-CoV-2-specific memory T cell responses were detected in 88% (45/51) of COVID-19 patients and in 63% (233/370) of seropositive HCW. The cumulative incidence of PCR-confirmed SARS-CoV-2 infection was 1% (3/252) among anti-spike IgG positive HCW (0.13 cases per 100 weeks at risk) compared to 23% (11/48) among anti-spike IgG negative HCW (2.78 cases per 100 weeks at risk), resulting in a protective effect of 95.2% (95% CI 81.9%-99.1%). CONCLUSIONS: The vast majority of anti-spike IgG positive individuals remain anti-spike IgG positive for at least 8 months regardless of initial COVID-19 disease severity. The presence of anti-spike IgG antibodies is associated with a substantially reduced risk of reinfection up to 9 months following asymptomatic to mild COVID-19.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/diagnóstico , COVID-19/inmunología , Inmunidad Celular , Inmunidad Humoral , Inmunoglobulina G/inmunología , Reinfección , Adulto , Anticuerpos Antivirales/inmunología , Infecciones Asintomáticas , Prueba de Ácido Nucleico para COVID-19 , Prueba Serológica para COVID-19 , Femenino , Humanos , Inmunoglobulina G/sangre , Masculino , Células T de Memoria , Persona de Mediana Edad , Pandemias , SARS-CoV-2 , Factores de Tiempo
6.
Metab Eng ; 72: 171-187, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35301123

RESUMEN

Biologics represent the fastest growing group of therapeutics, but many advanced recombinant protein moieties remain difficult to produce. Here, we identify metabolic engineering targets limiting expression of recombinant human proteins through a systems biology analysis of the transcriptomes of CHO and HEK293 during recombinant expression. In an expression comparison of 24 difficult to express proteins, one third of the challenging human proteins displayed improved secretion upon host cell swapping from CHO to HEK293. Guided by a comprehensive transcriptomics comparison between cell lines, especially highlighting differences in secretory pathway utilization, a co-expression screening of 21 secretory pathway components validated ATF4, SRP9, JUN, PDIA3 and HSPA8 as productivity boosters in CHO. Moreover, more heavily glycosylated products benefitted more from the elevated activities of the N- and O-glycosyltransferases found in HEK293. Collectively, our results demonstrate the utilization of HEK293 for expression rescue of human proteins and suggest a methodology for identification of secretory pathway components for metabolic engineering of HEK293 and CHO.


Asunto(s)
Vías Secretoras , Animales , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Proteínas Recombinantes , Vías Secretoras/genética
7.
Mol Pharm ; 18(1): 328-337, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33259222

RESUMEN

Albumin-binding fusion partners are frequently used as a means for the in vivo half-life extension of small therapeutic molecules that would normally be cleared very rapidly from circulation. However, in applications where small size is key, fusion to an additional molecule can be disadvantageous. Albumin-derived affinity proteins (ADAPTs) are a new type of scaffold proteins based on one of the albumin-binding domains of streptococcal protein G, with engineered binding specificities against numerous targets. Here, we engineered this scaffold further and showed that this domain, as small as 6 kDa, can harbor two distinct binding surfaces and utilize them to interact with two targets simultaneously. These novel ADAPTs were developed to possess affinity toward both serum albumin as well as another clinically relevant target, thus circumventing the need for an albumin-binding fusion partner. To accomplish this, we designed a phage display library and used it to successfully select for single-domain bispecific binders toward a panel of targets: TNFα, prostate-specific antigen (PSA), C-reactive protein (CRP), renin, angiogenin, myeloid-derived growth factor (MYDGF), and insulin. Apart from successfully identifying bispecific binders for all targets, we also demonstrated the formation of the ternary complex consisting of the ADAPT together with albumin and each of the five targets, TNFα, PSA, angiogenin, MYDGF, and insulin. This simultaneous binding of albumin and other targets presents an opportunity to combine the advantages of small molecules with those of larger ones allowing for lower cost of goods and noninvasive administration routes while still maintaining a sufficient in vivo half-life.


Asunto(s)
Proteínas Recombinantes de Fusión/metabolismo , Albúmina Sérica/metabolismo , Proteínas Bacterianas/metabolismo , Semivida , Esperanza de Vida , Unión Proteica/fisiología , Streptococcus/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
8.
Protein Expr Purif ; 175: 105698, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32681960

RESUMEN

The Human Secretome Project aims to produce and purify all human secreted proteins as full-length. In order to enable this, a robust, gentle and effective purification process is needed, where multiple proteins can be purified in parallel. For this reason, a purification system based on a Protein C-tag and the HPC4 antibody with high affinity to the tag was chosen for purification. The strong binding between the tag and the antibody is specific and calcium-dependent, which allows for mild elution with EDTA. Presented here is a study comparing different protein purification base matrices coupled with the HPC4 antibody, aiming to increase the yield of purified protein and reduce the time for purification. Among the different tested matrices, Capto XP showed a high coupling degree and increased the amount of eluted protein as compared to the control matrix. By moving from batch incubation to direct sample loading and by performing the purification on the ÄKTAxpress, an automated protein purification process and a high reduction of hands-on sample handling was achieved. This new method also integrates the desalting step in the purification process, and the time for purification and analysis of each sample was decreased from five to three days. Moreover, a new mild method for matrix regeneration was developed using 50 mM EDTA pH 7.5 instead of 0.1 M glycine pH 2. This method was proven to be efficient for regeneration while maintaining the column binding performance even after nine rounds of regeneration.


Asunto(s)
Anticuerpos/química , Cromatografía de Afinidad , Proteínas Recombinantes de Fusión/aislamiento & purificación , Humanos , Proteínas Recombinantes de Fusión/química
9.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340383

RESUMEN

The use of biotherapeutics for the treatment of diseases of the central nervous system (CNS) is typically impeded by insufficient transport across the blood-brain barrier. Here, we investigate a strategy to potentially increase the uptake into the CNS of an affibody molecule (ZSYM73) via binding to the transferrin receptor (TfR). ZSYM73 binds monomeric amyloid beta, a peptide involved in Alzheimer's disease pathogenesis, with subnanomolar affinity. We generated a tri-specific fusion protein by genetically linking a single-chain variable fragment of the TfR-binding antibody 8D3 and an albumin-binding domain to the affibody molecule ZSYM73. Simultaneous tri-specific target engagement was confirmed in a biosensor experiment and the affinity for murine TfR was determined to 5 nM. Blockable binding to TfR on endothelial cells was demonstrated using flow cytometry and in a preclinical study we observed increased uptake of the tri-specific fusion protein into the cerebrospinal fluid 24 h after injection.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Receptores de Transferrina/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Transporte Biológico , Diseño de Fármacos , Citometría de Flujo , Humanos , Ratones , Modelos Moleculares , Conformación Molecular , Permeabilidad , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacocinética , Relación Estructura-Actividad
10.
Proteomics ; 19(15): e1900008, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31278833

RESUMEN

The plasma proteome offers a clinically useful window into human health. Recent advances from highly multiplexed assays now call for appropriate pipelines to validate individual candidates. Here, a workflow is developed to build dual binder sandwich immunoassays (SIA) and for proteins predicted to be secreted into plasma. Utilizing suspension bead arrays, ≈1800 unique antibody pairs are first screened against 209 proteins with recombinant proteins as well as EDTA plasma. Employing 624 unique antibodies, dilution-dependent curves in plasma and concentration-dependent curves of full-length proteins for 102 (49%) of the targets are obtained. For 22 protein assays, the longitudinal, interindividual, and technical performance is determined in a set of plasma samples collected from 18 healthy subjects every third month over 1 year. Finally, 14 of these assays are compared with with SIAs composed of other binders, proximity extension assays, and affinity-free targeted mass spectrometry. The workflow provides a multiplexed approach to screen for SIA pairs that suggests using at least three antibodies per target. This design is applicable for a wider range of targets of the plasma proteome, and the assays can be applied for discovery but also to validate emerging candidates derived from other platforms.


Asunto(s)
Inmunoensayo/métodos , Biotinilación , Humanos , Espectrometría de Masas , Persona de Mediana Edad , Plasma/química , Proteoma/análisis , Proteómica/métodos
11.
J Proteome Res ; 18(7): 2706-2718, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31094526

RESUMEN

The availability of proteomics resources hosting protein and peptide standards, as well as the data describing their analytical performances, will continue to enhance our current capabilities to develop targeted proteomics methods for quantitative biology. This study describes the analysis of a resource of 26,840 individually purified recombinant protein fragments corresponding to more than 16,000 human protein-coding genes. The resource was screened to identify proteotypic peptides suitable for targeted proteomics efforts, and we report LC-MS/MS assay coordinates for more than 25,000 proteotypic peptides, corresponding to more than 10,000 unique proteins. Additionally, peptide formation and digestion kinetics were, for a subset of the standards, monitored using a time-course protocol involving parallel digestion of isotope-labeled recombinant protein standards and endogenous human plasma proteins. We show that the strategy by adding isotope-labeled recombinant proteins before trypsin digestion enables short digestion protocols (≤60 min) with robust quantitative precision. In a proof-of-concept study, we quantified 23 proteins in human plasma using assay parameters defined in our study and used the standards to describe distinct clusters of individuals linked to different levels of LPA, APOE, SERPINA5, and TFRC. In summary, we describe the use and utility of a resource of recombinant proteins to identify proteotypic peptides useful for targeted proteomics assay development.


Asunto(s)
Fragmentos de Péptidos/análisis , Proteómica/métodos , Proteínas Recombinantes/análisis , Proteínas Sanguíneas/análisis , Cromatografía Liquida/métodos , Humanos , Marcaje Isotópico/métodos , Espectrometría de Masas en Tándem/métodos , Tripsina/metabolismo
12.
Int J Mol Sci ; 20(23)2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31801200

RESUMEN

Paracrine factors can induce cardiac regeneration and repair post myocardial infarction by stimulating proliferation of cardiac cells and inducing the anti-fibrotic, antiapoptotic, and immunomodulatory effects of angiogenesis. Here, we screened a human secretome library, consisting of 923 growth factors, cytokines, and proteins with unknown function, in a phenotypic screen with human cardiac progenitor cells. The primary readout in the screen was proliferation measured by nuclear count. From this screen, we identified FGF1, FGF4, FGF9, FGF16, FGF18, and seven additional proteins that induce proliferation of cardiac progenitor cells. FGF9 and FGF16 belong to the same FGF subfamily, share high sequence identity, and are described to have similar receptor preferences. Interestingly, FGF16 was shown to be specific for proliferation of cardiac progenitor cells, whereas FGF9 also proliferated human cardiac fibroblasts. Biosensor analysis of receptor preferences and quantification of receptor abundances suggested that FGF16 and FGF9 bind to different FGF receptors on the cardiac progenitor cells and cardiac fibroblasts. FGF16 also proliferated naïve cardiac progenitor cells isolated from mouse heart and human cardiomyocytes derived from induced pluripotent cells. Taken together, the data suggest that FGF16 could be a suitable paracrine factor to induce cardiac regeneration and repair.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/genética , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Animales , Células CHO , Diferenciación Celular/efectos de los fármacos , Cricetulus , Femenino , Factores de Crecimiento de Fibroblastos/clasificación , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/farmacología , Fibroblastos/citología , Fibroblastos/metabolismo , Expresión Génica , Biblioteca de Genes , Ensayos Analíticos de Alto Rendimiento , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Cultivo Primario de Células
13.
Bioinformatics ; 33(16): 2487-2495, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28398465

RESUMEN

MOTIVATION: The Human Protein Atlas (HPA) enables the simultaneous characterization of thousands of proteins across various tissues to pinpoint their spatial location in the human body. This has been achieved through transcriptomics and high-throughput immunohistochemistry-based approaches, where over 40 000 unique human protein fragments have been expressed in E. coli. These datasets enable quantitative tracking of entire cellular proteomes and present new avenues for understanding molecular-level properties influencing expression and solubility. RESULTS: Combining computational biology and machine learning identifies protein properties that hinder the HPA high-throughput antibody production pipeline. We predict protein expression and solubility with accuracies of 70% and 80%, respectively, based on a subset of key properties (aromaticity, hydropathy and isoelectric point). We guide the selection of protein fragments based on these characteristics to optimize high-throughput experimentation. AVAILABILITY AND IMPLEMENTATION: We present the machine learning workflow as a series of IPython notebooks hosted on GitHub (https://github.com/SBRG/Protein_ML). The workflow can be used as a template for analysis of further expression and solubility datasets. CONTACT: ebrunk@ucsd.edu or johanr@biotech.kth.se. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Regulación de la Expresión Génica , Aprendizaje Automático , Proteoma/genética , Escherichia coli/genética , Humanos , Especificidad de Órganos , Proteoma/química , Proteoma/metabolismo , Solubilidad
15.
Nucleic Acids Res ; 43(7): e49, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25618848

RESUMEN

We describe solid-phase cloning (SPC) for high-throughput assembly of expression plasmids. Our method allows PCR products to be put directly into a liquid handler for capture and purification using paramagnetic streptavidin beads and conversion into constructs by subsequent cloning reactions. We present a robust automated protocol for restriction enzyme based SPC and its performance for the cloning of >60 000 unique human gene fragments into expression vectors. In addition, we report on SPC-based single-strand assembly for applications where exact control of the sequence between fragments is needed or where multiple inserts are to be assembled. In this approach, the solid support allows for head-to-tail assembly of DNA fragments based on hybridization and polymerase fill-in. The usefulness of head-to-tail SPC was demonstrated by assembly of >150 constructs with up to four DNA parts at an average success rate above 80%. We report on several applications for SPC and we suggest it to be particularly suitable for high-throughput efforts using laboratory workstations.


Asunto(s)
Clonación Molecular/métodos , ADN/genética , Enzimas de Restricción del ADN/metabolismo , Vectores Genéticos , Hibridación de Ácido Nucleico
16.
Mol Cell Proteomics ; 13(2): 397-406, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24309898

RESUMEN

Global classification of the human proteins with regards to spatial expression patterns across organs and tissues is important for studies of human biology and disease. Here, we used a quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression of genes across a representative set of all major human organs and tissues and combined this analysis with antibody-based profiling of the same tissues. To present the data, we launch a new version of the Human Protein Atlas that integrates RNA and protein expression data corresponding to ∼80% of the human protein-coding genes with access to the primary data for both the RNA and the protein analysis on an individual gene level. We present a classification of all human protein-coding genes with regards to tissue-specificity and spatial expression pattern. The integrative human expression map can be used as a starting point to explore the molecular constituents of the human body.


Asunto(s)
Anticuerpos/farmacología , Expresión Génica , Genómica/métodos , Especificidad de Órganos/genética , Proteómica/métodos , Transcriptoma , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Masculino , Proteínas/genética , Proteínas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Integración de Sistemas , Análisis de Matrices Tisulares
17.
Nat Commun ; 15(1): 8941, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39414823

RESUMEN

Autoantibodies have been shown to be implied in COVID-19 but the emerging autoantibody repertoire remains largely unexplored. We investigated the new-onset autoantibody repertoire in 525 healthcare workers and hospitalized COVID-19 patients at five time points over a 16-month period in 2020 and 2021 using proteome-wide and targeted protein and peptide arrays. Our results show that prevalent new-onset autoantibodies against a wide range of antigens emerged following SARS-CoV-2 infection in relation to pre-infectious baseline samples and remained elevated for at least 12 months. We found an increased prevalence of new-onset autoantibodies after severe COVID-19 and demonstrated associations between distinct new-onset autoantibodies and neuropsychiatric symptoms post-COVID-19. Using epitope mapping, we determined the main epitopes of selected new-onset autoantibodies, validated them in independent cohorts of neuro-COVID and pre-pandemic healthy controls, and identified sequence similarities suggestive of molecular mimicry between main epitopes and the conserved fusion peptide of the SARS-CoV-2 Spike glycoprotein. Our work describes the complexity and dynamics of the autoantibody repertoire emerging with COVID-19 and supports the need for continued analysis of the new-onset autoantibody repertoire to elucidate the mechanisms of the post-COVID-19 condition.


Asunto(s)
Autoanticuerpos , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/epidemiología , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , SARS-CoV-2/inmunología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Mapeo Epitopo , Glicoproteína de la Espiga del Coronavirus/inmunología , Anciano , Epítopos/inmunología , Personal de Salud , Índice de Severidad de la Enfermedad , Imitación Molecular/inmunología
18.
J Proteome Res ; 12(6): 2439-48, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23276153

RESUMEN

A gene-centric Human Proteome Project has been proposed to characterize the human protein-coding genes in a chromosome-centered manner to understand human biology and disease. Here, we report on the protein evidence for all genes predicted from the genome sequence based on manual annotation from literature (UniProt), antibody-based profiling in cells, tissues and organs and analysis of the transcript profiles using next generation sequencing in human cell lines of different origins. We estimate that there is good evidence for protein existence for 69% (n = 13985) of the human protein-coding genes, while 23% have only evidence on the RNA level and 7% still lack experimental evidence. Analysis of the expression patterns shows few tissue-specific proteins and approximately half of the genes expressed in all the analyzed cells. The status for each gene with regards to protein evidence is visualized in a chromosome-centric manner as part of a new version of the Human Protein Atlas ( www.proteinatlas.org ).


Asunto(s)
Anticuerpos/química , Cromosomas Humanos/química , Proyecto Genoma Humano , Proteínas de Neoplasias/aislamiento & purificación , Neoplasias/química , Proteoma/aislamiento & purificación , Línea Celular , Línea Celular Tumoral , Expresión Génica , Perfilación de la Expresión Génica , Genoma Humano , Humanos , Microscopía Fluorescente , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteoma/genética , Proteoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
Protein Eng Des Sel ; 362023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-37702366

RESUMEN

Selection by phage display is a popular and widely used technique for the discovery of recombinant protein binders from large protein libraries for therapeutic use. The protein library is displayed on the surface of bacteriophages which are amplified using bacteria, preferably Escherichia coli, to enrich binders in several selection rounds. Traditionally, the so-called panning procedure during which the phages are incubated with the target protein, washed and eluted is done manually, limiting the throughput. High-throughput systems with automated panning already in use often require high-priced equipment. Moreover, the bottleneck of the selection process is usually the screening and characterization. Therefore, having a high-throughput panning procedure without a scaled screening platform does not necessarily increase the discovery rate. Here, we present an easy-to-use high-throughput selection system with automated panning using cost-efficient equipment integrated into a workflow with high-throughput sequencing and a tailored screening step using biolayer-interferometry. The workflow has been developed for selections using two recombinant libraries, ADAPT (Albumin-binding domain-derived affinity proteins) and CaRA (Calcium-regulated affinity) and has been evaluated for three new targets. The newly established semi-automated system drastically reduced the hands-on time and increased robustness while the selection outcome, when compared to manual handling, was very similar in deep sequencing analysis and generated binders in the nanomolar affinity range. The developed selection system has shown to be highly versatile and has the potential to be applied to other binding domains for the discovery of new protein binders.


Asunto(s)
Bacteriófagos , Biblioteca de Péptidos , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Técnicas de Visualización de Superficie Celular , Escherichia coli/genética , Escherichia coli/metabolismo
20.
N Biotechnol ; 72: 159-167, 2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36450334

RESUMEN

Protein activity regulated by interactions with metal ions can be utilized for many different purposes, including biological therapies and bioprocessing, among others. Calcium ions are known to interact with the frequently occurring EF-hand motif, which can alter protein activity upon binding through an induced conformational change. The calcium-binding loop of the EF-hand motif has previously been introduced into a small protein domain derived from staphylococcal Protein A in a successful effort to render antibody binding dependent on calcium. Presented here, is a combinatorial library for calcium-regulated affinity, CaRA, based on this domain. CaRA is the first alternative scaffold library designed to achieve novel target specificities with metal-dependent binding. From this library, several calcium-dependent binders could be isolated through phage display campaigns towards a set of unrelated target proteins (IgE Cε3-Cε4, TNFα, IL23, scFv, tPA, PCSK9 and HER3) useful for distinct applications. Overall, these monomeric CaRA variants showed high stability and target affinities within the nanomolar range. They displayed considerably higher melting temperatures in the presence of 1 mM calcium compared to without calcium. Further, all discovered binders proved to be calcium-dependent, with the great majority showing complete lack of target binding in the absence of calcium. As demonstrated, the CaRA library is highly capable of providing protein-binding domains with calcium-dependent behavior, independent of the type of target protein. These binding domains could subsequently be of great use in gentle protein purification or as novel therapeutic modalities.


Asunto(s)
Bacteriófagos , Proproteína Convertasa 9 , Biblioteca de Péptidos , Calcio , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA